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Abstract

With the spread of technology in several fields, there is

an increasing demand to automate specialized tasks that

usually require human involvement in order to maximize ef-

ficiency and reduce processing time. Pollen identification

and classification is a proper example to be treated in the

Palynology field, which has been an expensive qualitative

process, involving observation and discrimination of fea-

tures by highly qualified experts. Although it is the most

accurate and useful method, it is a time-consuming pro-

cess that slowed down the research progress. In this pa-

per, we present a dataset composed of more than 13.000

objects, identified by an appropriate segmentation pipeline

applied on aerobiological samples. Besides, we present the

results obtained from the classification of these objects by

taking advantage of several Machine Learning techniques,

discussing which approaches have produced the most satis-

factory results, and outlining the challenges we had to face

to accomplish the task.

1. Introduction

The monitoring of pollen and fungal spores concentra-

tions allows the detection and the quantification of aller-

genic species [18] and of potential infectious diseases both

on humans [9] and plants [21]. For this reason, the clas-

sification of pollen species and types is an important task

in many areas such as medicine, biology, and agronomy,

among others. However, the long sample processing times

and manual counting of relevant entities in microscopy have

slowed down the spread of the application of aerobiology in

such brand new sectors [1]. Although the recent introduc-

tion of devices that allows the identification and classifica-

tion of pollen grains without the need for end-user inter-

vention [15, 11], manual Hirst-type spore-traps are still pre-

dominant [2], thanks to lower costs and established meth-

ods for the analysis of samples. In the last few years, mod-

ern Machine Learning methods based on deep neural net-

works have led to an impressive performance on a variety

of problems in different fields [14, 19, 7]. One of the key

elements of Deep Learning success is the availability of a

high amount of annotated data. Indeed, the performances

of the Deep Learning techniques scale with the amount of

data, promoting the definition of large-scale datasets in dif-

ferent scientific fields. For the above reasons, research on

methods for automatic classification of pollen grains will

foster the development of tools for aerobiologists that could

be used without the need for special equipment other than

a common bright-field microscope, a camera for image ac-

quisition and a computer for data processing. These tools

would be able to segment pollen grains from images and

assist scientists in grouping them by species. In this work,

we present a large-scale dataset of microscope pollen grain

images, collected from aerobiological samples. Experts in

the aerobiology field used Hirst-type spore-traps and stan-

dard procedures for the sampling and staining steps. Then,

microscope images of the samples have been digitalized

and processed through a proper image processing pipeline

to detect and extract five classes of objects, including four

species of the pollen grain and an additional class that could

often be misclassified as pollen (e.g., air bubbles, dust, etc.).

The proposed dataset contains more than 13.000 objects de-

rived from microscope images and labeled by experts. This

paper is organized as follows. Previous related works ex-

posing dataset that have already employed for automatic

pollen grain classification are presented and reviewed in

Section 2. In Section 3 we then provide our collected and

processed dataset together with a description of the pipeline

implementation. Section 4 shows the numerical and graph-



Dataset Number of Grains Image Type Resolution

Duller’s

Pollen Dataset [8]
630 Grayscale 25x25

POLEN23E [10] 805 Color
Minimum 250

pixel per dimension

Ranzato et al. [17]
3.686

(1.429 images)
Color

1024x1024

(multiple grains per image)

Proposed

Dataset

>12.000 + ∼1.000

examples of debris

(e.g., dust, air bubbles)

Color 84x84

Table 1. Comparison between the proposed dataset and the main

datasets used in pollen grain classification.

ical results of our experiments. Lastly, a brief exposition on

possible future research is presented in Section 6.

2. Related Works

Existing works on automatic pollen grain detec-

tion/classification are trained and evaluated on datasets

which include from 65 to about 4.000 number of grains,

most of them report results obtained on self-collected

databases. Two public databases are the Duller’s Pollen

Dataset [8] and the POLEN23E [10]. The first, contains

a total of 630 grayscale images of size 25x25. Specifi-

cally, the database consists of a certain number of images

of a few pollen taxa. The raw images were collected us-

ing a charge coupled device (CCD) camera with a resolu-

tion of 768 by 576 pixels and then processed to identify

pollen grains. The authors used an algorithm that takes a

series of images at different focal points after detecting a

grain via microscope. A database containing 805 color im-

ages from 23 different pollen types in the Brazilian savan-

nah, with 35 images for each pollen type has been presented

in [10] where the authors proposed an algorithm that com-

bined three types of features: color, shape and texture based

features. Moreover, the authors evaluated the performance

of computational techniques for the pollen grains classifi-

cation. Specifically, they used four classifiers: Sequential

Minimal Optimization (SMO) and C-Support Vector Classi-

fication (C-SVC), a decision tree based classifier and the k-

nearest neighbors (KNN). The results show that the compu-

tational techniques achieved satisfactory results. Especially,

they achieved the highest performance values when using

features extracted from texture, color and shape in combina-

tion with a Bag of Visual Word (BOW), reporting a Correct

Classification Rate (CCR) 64%. In this context, BOW refers

to the local information found in specific regions. For what

concerns the pollen grain classification, larger datasets have

been proposed for the task of pollen grain detection such

as the ones used in [17]; however, the number of grains

is between 3.000 and 4.000 objects. Furthermore, in [17]

the authors proposed a system to recognize biological par-

ticles. The proposed system is composed of four stages:

First, they detected locations or small regions containing

interesting samples by using a feature finder. Second, dif-

(a) (b) (c) (d) (e)

Figure 1. Examples of acquired samples. (a) Corylus avellana

(well-developed pollen grains), (b) Corylus avellana (anomalous

pollen grains), (c) Alnus (well-developed pollen grains), (d) De-

bris, (e) Cupressaceae.

Figure 2. The proposed dataset that includes for each object the

related binary mask and the segmented object.

ferential invariants of the brightness are computed at multi-

ple scales of resolution. Third, after applying a point-wise

non-linear mappings to a higher dimensional feature space,

this information is averaged over the whole region thus pro-

ducing a vector of features. In the final stage, each sample

is classified by a mixture-of-Gaussians generative model.

The results shed light on the effectiveness of the proposed

solution, achieving a correct classification rate of 83% (ac-

curacy) for 3 categories of particles. In Table 1, we summa-

rized the composition of the datasets herein described, pro-

viding a preliminary comparison with the proposed dataset.

3. Material and Methods

3.1. Dataset

The main contribution of this work is the availability of a

novel dataset that includes 13.416 objects of pollen grains.

Experts in aerobiology manually labeled each object by us-

ing a web-based tool. In order to pre-process and analyze

the aerobiological samples, they used segments of tape in

which the pollen grains adhered. Each segment of tape was

placed on a rotating drum, moved at 2 mm h-1 under a suc-

tion hole. The daily segments of the pollen grains have been

inspected by making use of a Leitz Diaplan bright-field mi-

croscope and a 5 MP CMOS sensor. By the standard proce-

dures, the pollen walls placed on the microscope slides were

selectively stained with a mounting medium containing ba-

sic fuchsin (0,08 % gelatin, 0,44% glycerin, 0,015% liq-



uefied phenol, 0,0015% basic fuchsin in aqueous solution).

The proposed dataset is composed of more than 13.000 ob-

jects spanning over 5 different categories: (1) Corylus Avel-

lana (well-developed pollen grains), (2) Corylus Avellana

(anomalous pollen grains), (3) Alnus, (4) Debris, (5) Cu-

pressaceae (see Fig. 1). We collected objects for each class

alongside the related binary mask and the segmented ob-

ject with green background. An amount of 63 images in

the dataset represents pollen grain objects overlapped with

a non-pollen one. To avoid the misclassification of these im-

ages, we decided not to insert them into the dataset used for

the experiments. Considering the small number of observa-

tions related to Cupressaceae class (43), we did not include

them in the dataset used for the experiments. Therefore,

the total number of objects in the dataset for experiments is

13.310 (see Fig. 2).

3.2. Processing pipeline

This section introduces the designed pipeline which con-

sists of three main stages: pre-processing, segmentation and

mask post-processing.

Pre-processing. As reported earlier, the automatic detec-

tion of pollen grains is a challenging task due to the pres-

ence of heavy background noise in the digitalized slides

scans, which can drastically affect the performance of seg-

mentation methods. For this reason, we designed a proper

pre-processing pipeline with the aim of reducing back-

ground noise and improving the high segmentation qual-

ity in the presence of several problematic conditions deriv-

ing either from the manual sectioning of the aerobiologi-

cal sample itself (i.e., debris and dust and fungal spores) or

from the mounting technique (air bubbles). The first step of

the proposed pipeline consists of applying the OpenCV im-

plementation of mean shift algorithm 1. The output of this

procedure is an image with color gradients and fine-grain

texture flattened. In the second stage, we split the pipeline

into two different steps. First, we developed a procedure

to smooth background artifacts to improve object detection

in the foreground. In order to discriminate the foreground

from the background of the mean-shifted image, we used

Otsu’s method [16] in combination with a binary threshold,

set to 127. Under the supervision of experts in aerobiology,

we observed that pollen objects are usually higher than 500

in diameter. Based on these assumptions, we removed all

the objects with a size smaller than this by using connected

components with eight neighbors. Finally, we applied the

resulting binary mask to the input image and changed the

color of the detect contours in yellow. The second step of

this stage consists of applying an 11 × 11 kernel Gaussian

filter to the input image in order to blur the artifacts in the

background. In the final stage, we combined both the out-

1https://docs.opencv.org/2.4/modules/imgproc/

doc/filtering.html?highlight=meanshiftfiltering

put images from previous steps. This step is essential not

only to distinguish objects of the foreground from the other

ones in the background but also to guarantee that the fol-

lowing image processing will not damage the object con-

tours, influencing the effectiveness of the image segmenta-

tion pipeline. In Fig. 3, we illustrated the described steps to

highlight objects contours.

Segmentation pipeline. The object segmentation pipeline

aims to partition an image by maximizing the pollen grains

detection alongside reducing the detection of non-pollen

ones (i.e., dust, artifacts, etc.). With this aim, after chang-

ing the color space of the output image of the previous stage

from RGB to HSV, we transformed the image in grayscale

and applied a binary threshold to it. In order to reduce the

noise background generated by previous image processing

steps, we applied a closing operator followed by dilation

using a 3 × 3 kernel for both operations. In this instance,

we implemented the flood fill algorithm intending to distin-

guish the foreground from the background by reassigning

the values of all neighboring pixels of a given point with a

required uniform color. Therefore, all the objects of interest

have been filled with black color, whereas the background

has been filled with white color. Through analyzing con-

nected components in the image, we also removed objects

with a size smaller than 100 pixels in diameter.

Mask post-processing pipeline. The developed proce-

dure for mask post-processing is fundamental to improve

the image quality of the output image derived from the pre-

vious steps. The main idea is to generate a binary mask

for each object, developing a closed outline for the object’s

boundary in a manner that it outlines the object contours

tightly and also minimize the presence of background noise.

To this aim, we applied a pool of effective image process-

ing functions. After applying a mean shift algorithm, we

used an adaptive threshold function. Formally, the function

converts a grayscale image into a binary image by using a

given threshold. The threshold value is calculated individu-

ally for each pixel in the input image. Specifically, we used

an adaptive Gaussian threshold. In the final step, a pro-

cedure based on selecting connected components (objects)

with a size greater than 150 pixels of diameter is developed

in order to reduce background noise. Once applied the flood

fill algorithm, we used a dilation operator with a 3×3 kernel

with full of ones to increase the size of the object in binary

mask image, iterating the process for 5 times. In Fig.4, we

reported the overall pipeline.

4. Experiments

This section presents the results obtained for a pool of

Machine Learning algorithms, comparing the performance

of the techniques herein proposed for pollen grains classifi-

cation. Also, we addressed the problem of the imbalanced

dataset and how we deal with it.



Figure 3. Pipeline used to highlight contours objects.

Figure 4. The overall pipeline. (a) Image of an aerobiological sample, (b) image after applying mean shift filtering function, (c) the resulting

image after converting color space from RGB to HSV derived from previous steps, (d) the mask generated by applying binary threshold,

closing and dilate operators, (e) image after applying binary mask to input image (f) the detected object, (g) the resulting binary mask after

applying a mean shift filter and adaptive threshold, (h) the obtained binary image and (i) the related segmented object from original patch.

4.1. Experiments with LBP and HOG features

In this stage, we carried out our experiments via classi-

cal Machine Learning techniques, such as Random Forest,

Support Vector Machines (SVM), AdaBoost, among oth-

ers [3]. In order to introduce the data to a classifier, we first

needed to extract features from the raw data. Specifically,

we investigated object texture by using Local Binary Pattern

(LBP) [13] and Histogram of Oriented Gradient (HOG) [6].

In order to perform classification, we divided the data into

a training set and a test set. To do so, we have consid-

ered the first 85% of the data as the training set and the

remaining 15% as test set. In this stage, the classification

is performed with the dataset composed of segmented im-

ages with green background in order to consider the only

texture of the detected object. Also, we carried out our ex-

periments by using the following models: Linear Support

Vector Machine (SVM), RBF SVM, Random Forest, Ad-

aBoost, Multi-Layer Perceptron (MLP) [3]. To handle the

problem of imbalanced data, we first selected optimal hy-

perparameters by applying the Grid Search algorithm 2. and

computing the average accuracy at each run. Therefore, we

evaluated the performance of each classifier by using the

proposed imbalanced dataset, relying on optimal hyperpa-

rameters that have been selected from the previous step. To

2https://scikit-learn.org/stable/modules/

generated/sklearn.model_selection.GridSearchCV.

html



carry out our experiments, we used penalized classification

models for SVM and Random Forest algorithms. Penal-

ized models help focusing on the minority class by adjust-

ing weights inversely proportional to class frequencies in

the training data. The major issue of the class imbalanced

dataset is the lack of samples of a given class, which could

lead to poor results. Also, we performed a stratified train-

test splitting to ensure that both training and test set fea-

turing the same percentage of classes. To evaluate the per-

formance of each classifier, we used the weighted F1 score

for quantitative evaluation [4], which represents a more re-

liable performance metrics than accuracy in this context.

The weighted F1 score function calculates the F1 metrics

for each class, and their average weighted by support (i.e.,

the number of true instances for each class). With regard to

LBP, Table 2 reports the experiments related to the LBP fea-

ture representation for the input pollen images, considering

the evaluated parameters for each employed classification

algorithm. Results show that MLP leads to the best results

in terms of accuracy (0.8002) and F1 score (0.7764) with

an alpha value equal to 0.0001 and a number of estimators

equal to 500. We also observed that Linear SVM, Random

Forest, and AdaBoost performed accurate results yielding

an accuracy and F1 score of over greater than 0.70, whereas

SVM with RBF kernel [5] showed worst performance. The

classifier achieved an accuracy of 0.6430 and an F1 score

of 0.6714, considering a gamma value of 1.0 and a C value

of 1000. Also, Table 2 reports the experimental results ob-

tained using the HOG features. In this instance, SVM with

RBF kernel achieved the highest value in terms of accu-

racy (0.8658) and F1 score (0.8566), considering a gamma

value of 0.1 and a C value of 1000. This specific setting

also outperforms the performances of the approaches that

take the LBP representation. In particular, all the evaluated

approaches detailed in Table 2 achieved accuracy and F1

scores higher than 0.70.

4.2. Experiments with Convolutional Neural Net­
works

For the sake of comparison, we also performed ob-

ject classification through the use of a Deep Convolutional

Neural Network (i.e., AlexNet [12]). Considering that

CNNs and Deep Learning models take advantage of a huge

amount of data, we trained two CNN standard architectures

(AlexNet and SmallerVGGNET) considering two different

settings for the training data. First, we trained the CNNs

considering the standard dataset, composed of the patches

depicting the pollen objects. In a second stage, we aug-

mented the dataset by including the segmented version of

the training patches obtained by applying the segmentation

mask and padding the background with all green pixels.

This can be considered as an additional approach for data

augmentation, which helps the CNN to focus on the pollen

Methods Parameters HOG

Accuracy F1score

LINEAR SVM C = 1000 0.7646 0.7673

RBF SVM G = 0.1 C = 1000 0.8658 0.8566

RANDOM FOREST EST = 10 0.7616 0.7124

ADABOOST LR = 0.5 EST = 500 0.7752 0.7627

MLP a = 0.1 EST = 300 0.8493 0.8431

Methods Parameters LBP

Accuracy F1score

LINEAR SVM C = 100 0.7446 0.7439

RBF SVM G = 1.0 C = 1000 0.6430 0.6714

RANDOM FOREST EST = 1000 0.7792 0.7387

ADABOOST LR = 1.0 EST = 100 0.7722 0.7487

MLP a = 0.0001 EST = 500 0.8002 0.7764

Table 2. Comparison between the best results by using HOG and

LBP features.

(a)

(b)

Figure 5. AlexNet training loss and accuracy. (a) Loss/accuracy

without using augmented dataset (b) Loss/accuracy with using

augmented dataset.

grain in the image, as well as ignoring the remaining ele-

ments present in the background. For both experiments, we

also performed additional data augmentation by performing



Epoch AlexNet - SD SmallerVGGNET - SD

Accuracy F1 score Accuracy F1 score

10 0.8067 0.7709 0.3831 0.4463

20 0.6830 0.7130 0.8428 0.8156

30 0.7992 0.7447 0.8277 0.7976

Epoch AlexNet - AD SmallerVGGNET - AD

Accuracy F1 score Accuracy F1 score

10 0.8528 0.8507 0.8618 0.8465

20 0.8943 0.8890 0.8973 0.8914

30 0.8963 0.8897 0.8408 0.8139

Table 3. Classification performances of AlexNet and SmallerVGGNet by using Standard Dataset (SD) and Augmented Dataset (AD).

(a)

(b)

Figure 6. SmallerVGGNET training loss and accuracy. (a)

Loss/accuracy without using augmented dataset (b) Loss/accuracy

with using augmented dataset.

random horizontal and vertical flipping and random rota-

tion range of 25◦ in training data. Moreover, we set the

base learning rate to 0.001, the batch size to 64, and a num-

ber of epochs to 1000. To manage the overfitting problem,

we introduced an Early stopping function, which allows us

to stop training once the model performance stops improv-

ing on a hold out validation set. After every 10 epoch, we

evaluated the network performance on the test set. AlexNet

yielded an average F1 score of 0.87 using the augmented

dataset. With regard to the standard dataset, it could be ob-

served that AlexNet achieved an average F1 score of 0.74,

as reported in Table 3. Fig.5 (a) and Fig.5 (b) show the

performance plots related to the training of AlexNet con-

sidering the standard and the augmented dataset, respec-

tively. In particular, each plot shows the loss and accuracy

of the training and validation data over 30 epochs, when

Early Stopping occurred. It can be observed that the use

of the augmented dataset, besides improving the model per-

formances, helps in maintaining more stable the loss and

accuracy fluctuation over the epochs after just 5 epochs.

Table 3 details the accuracy and F1 results measured on

the test set every 10 epochs, considering the standard (SD)

and the augmented dataset (AD), respectively. AlexNet out-

performs the standard ML approaches only when the aug-

mented dataset is considered. For the sake of complete-

ness, we carry out our experiments by also using a different

CNN architecture, which could represent a more suitable

solution for classifying images with a small size. In our

case, we implemented a SmallerVGGNet, which is a variant

of Very Deep Convolutional Networks (VGGNet) [20] by

employing the same parameters used for AlexNet. Small-

erVGGNet achieved an average F1 score of 0.85 using an

augmented dataset and an average F1 score of 0.69 using

images from the standard dataset. Fig.6 (a) and Fig.6 (b)

show the performance plots related to the training of Small-

erVGGNET considering the standard and the augmented

dataset, respectively. Also, in this case, the use of the aug-

mented dataset improves the model performances and helps

in maintaining more stable the loss and accuracy fluctuation

over the epochs. Table 3 details the accuracy and F1 re-

sults measured on the test set by using the standard and the

augmented dataset, respectively. SmallerVGGNET trained

on the augmented dataset outperforms all the previous ap-

proaches reaching an accuracy of 0.8973 and an F1 score of

0.8914 after 20 epochs (see Table 3). In our experiments,



(a)

(b)

Figure 7. Example of good classification performed by (a) AlexNet and (b) SmallerVGGNET. Each raw includes 8 examples of each

involved objects correctly classified together with its confidence score.

(a)

(b)

Figure 8. Example of bad classification performed by (a) AlexNet and (b) SmallerVGGNET, together with the confidence score.

we observed that both AlexNet and SmallerVggnet clas-

sify pollen objects with a high confidence score. Regard-

ing AlexNet, it tends to classify better the Corylus Avel-

lana objects of category 1 (well-developed pollen) and 2

(anomalous pollen). Although AlexNet is able to classify

the majority of the pollen grains accurately, it tends to mis-

classify pollen objects of Corylus Avellana (well-developed

pollen) class with a texture similar to the object of Alnus



class. Furthermore, the highest error occurred in AlexNet

when the objects present features (texture) different from

the peculiar ones of their class (see Fig. 8 (a)). In this

instance, AlexNet is not able to classify them accurately.

Compared to AlexNet, SmallerVGGnet achieved lower ac-

curacy and F1 score when applied to objects of categories

1 and 2. However, under challenging conditions where

a pollen object is overlapped with another one (pollen or

Debris), SmallerVGGNET achieved impressive results. In

general, the objects of class 2 and 4 are the most confused

by the model. In Fig. 7, examples of good classification

performed by AlexNet and SmallerVGGNET are reported,

respectively. In Fig. 8 we reported examples of misclas-

sification performed by both CNN models. Each example

details the true and predicted class, as well as the confidence

of the model.
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6. Conclusions and Future Works

In this paper we presented a large-scale pollen image

dataset. We processed microscope images to detect and

extract the depicted objects. Indeed, the project involved

experts on Agronomy, Aerobiology and Computer Vision.

In this paper, we investigated the performance of common

Machine Learning approaches on the pollen grain classifi-

cation task. The presented work is meant to support the re-

search on automatic pollen grain classification systems, that

can now leverage on the first large-scale annotated dataset

of microscope pollen grain images. In future studies, we

aim to extend our approach by defining an appropriate Deep

Learning architecture to improve the reliability of the clas-

sification results.
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