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Abstract

Efficient and easy segmentation of images and volumes is

of great practical importance. Segmentation problems that

motivate our approach originate from microscopy imaging

commonly used in materials science, medicine, and biol-

ogy. We formulate image segmentation as a probabilistic

pixel classification problem, and we apply segmentation as

a step towards characterising image content. Our method

allows the user to define structures of interest by interac-

tively marking a subset of pixels. Thanks to the real-time

feedback, the user can place new markings strategically,

depending on the current outcome. The final pixel clas-

sification may be obtained from a very modest user input.

An important ingredient of our method is a graph that en-

codes image content. This graph is built in an unsupervised

manner during initialisation and is based on clustering of

image features. Since we combine a limited amount of user-

labelled data with the clustering information obtained from

the unlabelled parts of the image, our method fits in the

general framework of semi-supervised learning. We demon-

strate how this can be a very efficient approach to segmen-

tation through pixel classification.

1. Introduction

In this paper, we propose an interactive method for prob-

abilistic classification of pixels, which can be used for seg-

mentation of 2D and 3D images. Our approach is especially

advantageous for detecting patterns, a situation regularly

occurring in microscopy of materials and medical samples.

Such images often show a collection of objects which are

to be separated from the background. For example consider

segmenting individual facets of a bee eye shown in Fig 1.

When segmenting images showing a collection of simi-

lar objects, an established strategy involves extensive mod-

elling of the appearance of the objects, usually leading to

a highly specialised method. Another common strategy is

to learn the appearance of the objects from a large amount

of prelabelled data, often with high computational require-

ments during the training phase. Here we aim for a general

method that requires limited computation, as well as modest

user-labelling.

Our method fits into the framework of semi-supervised

learning, combining two ingredients: a model for image

content created in an unsupervised manner from the image

features, and a modest input from the user. When a user

marks a structure in the image as belonging to a class, our

method propagates the marks to similar structures in the rest

of the image. The output is a layered image which at ev-

ery pixel position contains the probabilities of belonging to

each of the defined classes. We call this output pixelwise

probabilities of belonging to segmentation classes. From

pixelwise probabilities, the segmentation is readily obtained

by selecting the most probable class for each pixel. The

method is highly flexible and captures the features which

are of interest to the user; an example with various im-

age features is shown in Fig. 2. Our approach allows easy

segmentation of complex structures, that would otherwise

require the development of algorithms targeted at specific

problems.

An important property of our model is real-time feed-

back, allowing the user to place new markings strategically,

depending on the current result. For this to work without

delay, the segmentation must be updated very fast. Our

method relies on an efficient update of the parameters used

for pixel classification, and an equally efficient update of

the classification results. With results shown promptly, the

user can continue adding marks until the desired outcome

is learned by the algorithm. Having learned the desired out-

come, the classification model can be applied to other im-

ages of the same type in an unsupervised manner, that is,

without additional user input.

Our prototype implementation, including a graphical

user interface, is in Matlab and C++. The code is available

at https://github.com/vedranaa/InSegt.
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Figure 1. Detecting individual facets of a bee eye using our inter-

active pattern-based segmentation method. On the left input image

and a very small subset of pixels manually marked as either being

close to a facet centre (cyan) or not being close to a facet centre

(magenta). On the right, the manual labelling has been propagated

to the whole image and the result is obtained by selecting the most

probable class for each pixel.

1.1. Related work

Benefits of user input with real-time feedback have been

recognised in image segmentation. A comprehensive sum-

mary of interactive approaches can be found in [3]. Here,

we review some important advances to place our method

in the existing framework, and to explain how our method

differs from the current trends in interactive segmentation.

Early interactive techniques for segmentation of highly

complex images include intelligent scissors [19] or live wire

[15], where the user cuts out an object by placing markers

along its boundary. These algorithms are computationally

cheap but require a lot of user effort to obtain a segmen-

tation. Less user input is required when using interactive

graph cuts [5, 4], which often give very impressive results

with only a few seeds provided by the user. In the GrabCut

method [23] the user provides a bounding rectangle, often

leading to very precise foreground-background separation.

Extensions of GrabCut include shape priors [22] and and

improvement to graph cut energy representation [27]. An

alternative to combinatorial graph-based solutions is the use

of a curve to represent the segmentation boundaries. Such

interactive active contours often minimise an energy func-

tional in a variational framework [28, 24].

Common to the described methods is the focus on seg-

menting relatively large foreground objects, which justifies

using regularisation on the length or the curvature of the

segmentation boundary. In some applications, it is, how-

ever, not possible to use a strong regulariser. For example,

when segmenting the bee eyes shown in Fig. 1, regularisa-

tion could remove or merge small regions.

The need for segmenting a number of small objects is

often seen in areas like microscopy for life science or ma-

terials science. The appearance of such images can vary

significantly, with texture as well as intensity carrying in-

formation that is useful for obtaining the desired segmen-

tation. A specialist would use such clues to distinguish

amongst structures, but automating the segmentation task

typically requires highly sophisticated and problem-adapted

methods. While there are situations that justify the develop-

ment of a specialised method, in many cases a reasonable

result with modest interactive effort would be preferred.

When segmenting small image structures, e.g. cells, a

well-suited approach is classification of pixels. This is the

basis for the ilastik segmentation tool [2, 26], which em-

ploys a random forest classifier [6] trained on image fea-

tures including colour, edges, orientation and texture. The

features are computed from the image before starting the

interactive labelling of image structures, while parameters

of the random forest classifier are learned from the manual

labelling. When a user updates the labels to improve the

segmentation, the parameters of the classifier need to be re-

learned, which is computationally costly and causes a no-

ticeable delay in the feedback. Another specialised tool for

segmentation of microscopy images is the trainable Weka

segmentation [1] (a part of the Fiji [25] distribution of Im-

ageJ) which utilises a data mining and machine learning

toolkit for solving pixel classification problems. A user can

choose from a variety of image features and interactively

re-train the classifier.

Frameworks using neural networks are increasingly pop-

ular in pixel classification, and often yield impressive re-

sults [17]. A neural network operates on features extracted

locally from the image. This input is fed through a se-

ries of multidimensional linear functions, with a non-linear

activation between them, ending up in a probabilistic out-

put. The weights of the linear functions need to be trained

by optimising the performance on the usually large set of

prelabelled data. This provides extreme flexibility to the

method and, provided adequate training, neural networks

may solve pixel classification problems as accurately as spe-

cialists. However, neural networks are dependent on large

training sets and require computationally costly training,

which makes them less convenient for the task of segment-

ing a small set of images.

Our approach shares some similarities with neural net-

works. We also feed the input through linear functions with

non-linear steps in between. However, we use the features

extracted from the image to construct the linear functions

in a preprocessing step. The functions are then kept fixed,

while they operate on the interactively provided user input,

resulting in a probabilistic output. Due to the fixed linear

functions, our method is not as adaptable as neural net-

works. For example, our approach is less fit for semantic

segmentation of photographs. Nevertheless, we achieve ex-

cellent results when segmenting patterned images, without

requiring a large set of labelled data and without performing

a costly optimisation during interactive update.

The foundation of our method is a linear operator en-



Figure 2. An example demonstrating the flexibility of our method. In the top row, different features of interest marked by the user in two

classes (cyan and magenta). The user input is propagated between image pixels using the same model for image content, but results in

different segmentations, shown in the bottom row.

coding image content using image–dictionary relationship.

Similar approach, without the interactive update, has been

used for evolving deformable models [8, 9, 10], quanti-

fying composite materials [12, 13] and measuring retinal

microvasculature [14]. In this work, we use the image–

dictionary relationship to propagate the brush strokes pro-

vided by the users.

2. Method

Our method combines two sources of information, the

structure in the image and the user-provided partial la-

belling. The structure in the image is captured in the pre-

processing step, namely clustering, which we describe in

2.1. After that, in 2.2, we explain how clustering is used for

transforming the user-provided partial labelling into pixel-

wise probabilities of belonging to each of the classes. The

interactive update, covered in 2.3, is obtained by immedi-

ately displaying the result of the transformation and allow-

ing the user to repeatedly improve the partial labelling.

Postprocessing choices, covered in 2.4, are concerned

with the outputs of the interactive update. The most obvious

output is a probability image. While probability image can

give the image segmentation, other postprocessing methods

may be utilised as well. For the second output, which we

call dictionary probabilities, the user-provided partial la-

bellings are propagated to the clusters constructed in the

preprocessing step. This encodes the learned information

about the structures in the image and can be used for subse-

quent automatic processing of similar images.

Our method comes in a range of flavours. In this section,

we explain only the simplest variant, the other possibilities

are covered in Sec. 3.

Notation. Throughout the paper we consider an image I

defined on an X-by-Y image grid with pixel values in ei-

ther grayscale or RGB colour space. During the interactive

part, the user will be placing marks in the image grid, to in-

dicate the pixels which belong to one of the C segmentation

classes. We chose to represent this user-provided informa-

tion with a layered label image L, where L(x, y, c) = 1 if

the user indicated that pixel (x, y) belongs to class c, and 0

otherwise.

2.1. Clustering image patches

The aim of preprocessing is to find the structures in the

image without considering the user-provided labels. In the

framework of semi-supervised learning, a cluster assump-

tion states that, if points are in the same cluster, they are

likely to be of the same class – which does not imply that

each class forms a single cluster [7]. For our purpose, we

assume that image features tend to form discrete clusters

and that image features in the same cluster are more likely

to share a class. However, we do not assume that each class

is represented by only one cluster, so we will need many

more clusters than classes. Therefore, we create a multi-

tude of clusters to capture the variety of features present in

the image.

In Sec. 3 we will explain the implementation details and

some more advanced ways of accomplishing clustering. In

this section, we outline the basic approach, which operates

on intensity patches. For this case, only two parameters

are required: the number of clusters K and the size of the

patches M . The number of clusters should be large, mea-

sured in hundreds or thousands, and is roughly reflecting

the variability in the image. The size of the patches should

reflect the scale of the distinctive image features and could,

for example, be 9 pixels. For simplicity, we always assume



that the size of the image patches M is odd and patches are

centred around the central pixel.

We extract patches of size M -by-M from the image I ,

treat each patch as a vector containing the pixel intensi-

ties and group those vectors into K clusters, e.g. using k-

means clustering based on Euclidean distance. The result-

ing collection of cluster centres represents the content of the

image. As these basic elements are inferred by grouping

features from the image, we call the collection of K clus-

ter centres an intensity dictionary, and each of its elements

(each cluster centre) is denoted dictionary patch. Every im-

age pixel (x, y) in the centre of an M -by-M image patch

is, by means of clustering, uniquely assigned to one clus-

ter. We represent this using an assignment image A. For

boundary pixels we define A(x, y) = 0.

2.2. Relation between image and dictionary

According to the cluster assumption, image patches as-

signed to the same dictionary patch are more likely to be-

long to the same class. Unique for our method is that we use

this assumption on a pixel level, and not on a patch level.

That is, if two image patches are assigned to the same dic-

tionary patch, their corresponding pixels (i.e. the pixels at

the same position in the patch) are more likely to belong to

the same class. In other words, for every dictionary patch,

there is a certain (unknown) classification of its individual

pixels, which all assigned patches are likely to share.

To exploit this assumption, we define a binary relation

between corresponding pixels assigned to the same dictio-

nary pixel. For example, a central pixel of an image patch

assigned to a certain dictionary patch relates to central pix-

els of all other patches assigned to the same dictionary

patch. Likewise, the pixel directly above the central pixel

relates to corresponding pixels in other patches, and a sim-

ilar relation extends to all positions in a patch. This results

in M2K cliques of pixels, one for every pixel in the inten-

sity dictionary. Due to the overlap between image patches,

every non-boundary pixel belongs to M2 different cliques.

The central part of our method is concerned with trans-

forming a user-provided partial labelling to pixelwise prob-

abilities. The transformation matrix we use has a very sim-

ple decomposition, which makes our method efficient and

allows for immediate feedback to the user. The construc-

tion of the transformation matrix is therefore fundamental

for our method. However, describing how this matrix is

constructed provides little intuition about our method, so

we start by motivating our approach.

As covered previously, the assignment image A, ob-

tained in an unsupervised manner, contains information on

clusters of structures in the image I . At the same time, im-

age I is accompanied by the user-provided partial labelling

L. To combine the two sources of information, we create a

dictionary of labels to accompany our intensity dictionary.

For each dictionary patch k ∈ {1, . . . ,K} we use A to iden-

tify the locations of all image patches assigned to it. At

those locations in the image grid we extract corresponding

patches but from the labelling image L. For the set of re-

lated labelling patches we compute a pixelwise average for

every layer. As a result, every M -by-M dictionary patch

now has a corresponding M -by-M labelling representation

consisting of C layers.

When the image is fully labelled, the label image L sums

to one in every pixel, as only one out of C classes has a la-

bel of 1. Consequently, the labelling representation of every

dictionary patch also sums to one in every pixel. However,

due to the pixelwise averaging, the values of this represen-

tation are not binary, they instead encode the normalised

frequency of a dictionary pixel being labelled as belonging

to class c in the current labelling image. For this reason, we

think of this labelling representation as of pixelwise proba-

bilities of belonging to class c, and we call them dictionary

probabilities.

Dictionary probabilities can now be pasted back into an

X-by-Y image grid, again using the location information

from A, and again averaged in every pixel. This results in an

X-by-Y probability image P consisting of C layers, where

P is a diffused version of L. In other words, we use the

self-similarity information encoded by A to propagate the

user-provided markings from L onto the rest of the image.

In light of this motivation, now we turn to explain the

construction of the transformation matrices used for ef-

ficient computation of dictionary probabilities and image

probabilities. Fundamental for this transformation is the

relation between the X-by-Y image grid and the M -by-

M -by-K dictionary grid. This relation will be encoded us-

ing an n-by-m biadjacency matrix B, where n = XY and

m = M2K. For this purpose, we need a linear (single)

index for the pixels in the image and the pixels in the dic-

tionary grid.

The linear index of an image pixel (x, y) is

i = x+ (y − 1)X . (1)

As for the dictionary grid, we use (0, 0, k) for the cen-

tral pixel of the k-th dictionary element, and coordinates of

other pixels in the patch are defined in terms of within-patch

displacements ∆x and ∆y, both from {−s, . . . , 0, . . . , s}
with s = (M − 1)/2. A dictionary pixel at coordinates

(∆x,∆y, k) has a linear index

j = (∆x+ s) + (∆y + s)M + (k − 1)M2 . (2)

Each assignment of an image patch centered around

(x, y) to a k-th dictionary patch centered around (0, 0, k)
induces a relation between the M2 image pixels and the

M2 dictionary pixels, see Fig. 3. Using ∼ for denoting a
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Figure 3. A subset of relations between a 9 × 6 image and a

3× 3× 4 dictionary caused by the framed patch centered around

the pixel shaded darker being assigned to the first dictionary patch.

relation between image pixels and dictionary pixels gives

A(x, y) = k ⇒
(x+∆x, y+∆y) ∼ (∆x,∆y, k),
for all ∆x and ∆y

. (3)

Since image patches are overlapping, every non-

boundary image pixel relates to M2 dictionary pixels. Im-

age pixels in a boundary relate to less than M2 dictionary

pixels, and the four corner pixels relate to only one dictio-

nary pixel. In total there are (X−2s)(Y −2s)M2 relations

between the image pixels and the dictionary pixels.

We represent the relations between n image pixels and

m dictionary pixels using an n-by-m biadjacency matrix

B, with elements

bij =

{

1 i ∼ j
0 otherwise

, (4)

where i and j are linear indices of an image pixel and a

dictionary pixel. The algorithm for constructing B is sum-

marised in Alg. 1.

Algorithm 1 Construction of B

1: Initiate B as an n-by-m matrix with bij = 0
2: for an non-boundary pixel (x, y) do

3: Retrieve pixel assignment k = A(x, y)
4: for within-patch displacement (∆x,∆y) do

5: compute i for (x+∆x, y +∆y) using Eq. (1)

6: compute j for (∆x,∆y, k) using Eq. (2)

7: assign bij = 1
8: end for

9: end for

The biadjacency matrix B defines the linear mapping

used to propagate the information from the image to the

dictionary and vice versa. Consider a quantity defined on

the image grid (e.g. user-provided markings indicating pix-

els which belong to class 1) arranged into a length n vector

v such that the i-th element contains the value of the i-th
image pixel. Propagating these values to the dictionary is

carried out by calculating a length m vector

d = diag(BT
1n×1)

−1
B

T
v , (5)

where 1 denotes a column vector of ones, while diag(·) de-

notes a diagonal matrix with the diagonal defined by the

argument. The j-th element of d contains the value of the

j-th dictionary pixel computed by averaging the values of

the related image pixels. The summation is accomplished

by multiplying with B
T while the diagonal matrix accom-

plishes the division with the total number of related pixels.

For this reason we define the m-by-n transformation ma-

trix for mapping from the image to the dictionary as

T1 = diag(BT
1n×1)

−1
B

T . (6)

Similarly, mapping from the dictionary to the image is given

by the n-by-m matrix

T2 = diag(B1m×1)
−1

B . (7)

Those two transformation matrices are fundamental for

our method. The propagation of user-provided markings (as

described in the motivational paragraphs) is computed as

P = T2T1L , (8)

where L is the user-provided labelling L arranged in a n-

by-C matrix, while the resulting n-by-C matrix P needs to

be arranged back into a layered image P .

2.3. Interactive update

When equipping our method with the user-provided in-

teractive update, we run into choices with regards to: i) how

we treat unlabelled pixels, ii) the number of applied dif-

fusion steps, and the way of treating intermediate results

between the steps, and iii) the possibility of changing the

number of segmentation classes. After testing many types

of interactive updates, we kept three main versions. In all

versions the number of classes C is chosen during initiali-

sation and kept fixed during the update.

How we handle pixels that have not been labelled by the

user is also common to all versions. Such pixels are initially

assigned equal probability of belonging to each class. As a

result, before the user places the first label, all probabilities

are equal and no segmentation is possible.

The user starts the interaction by choosing a pencil cor-

responding to one of the C classes applies markings to

some pixels. The partial labelling information is immedi-

ately transformed to the probability image and shown to the

user as an image segmentation, with every pixel placed in

the class with the highest probability. After the first pencil

stroke, only one class will have values larger than 1

C
in the

label image L, and the same applies for the probability im-

age P computed using (8). Thus, at first, many pixels will

belong to the first marked class and no pixels will be as-

signed to the classes that have not been marked yet. As the

user adds markings for the other classes, those will appear

in probability image P .



Thanks to the real-time feedback, the user can quickly

improve the result by placing markings in misclassified re-

gions (the regions that have been incorrectly classified).

With many unlabelled pixels in L, the image P will typ-

ically have many values that only differ slightly from 1

C
.

Those small deviations carry the information needed for in-

ferring the class of the unlabelled pixels.

As for the number of applied diffusion steps, we use ei-

ther one or two. When using two diffusion steps, instead of

continuing to diffuse the (already diffused) probability im-

age, we can apply additional non-linear operations between

the two diffusions. Very good results are obtained if we

apply binarisation of the labels between the two diffusion

steps. For binarisation, we identify the class of the high-

est probability for each pixel, and apply {0, 1} labelling.

If there are pixels with no clear probability maximum, we

let them retain their unresolved labels. Consequently, for

the second iteration of the diffusion, many pixels act as la-

belled, and this improves the quality of the result.

The options for the two-step diffusion and binarisation

are implemented in our segmentation tool, such that the user

can quickly switch between the variants of the method and

decide which one yields the best results for the data at hand.

Likewise, the user can quickly determine whether the qual-

ity of the results is sufficient or additional markings should

be placed.

The user can inspect the output of the classification dis-

played as a final segmentation based on the resulting proba-

bility image. Alternatively, there is an option for inspecting

the C probability images, which often gives a better insight

into the quality of the result.

2.4. Postprocessing

Our approach allows for various postprocessing options,

which may be grouped into two postprocessing strategies.

One strategy involves processing the probability image to

obtain the segmentation or detection of interesting fea-

tures from the probability image. These operations are

application-driven and examples are illustrated in Sec. 4.

The second strategy involves reusing the information

stored in the dictionary and the associated dictionary prob-

abilities. The linear transformation (8), which is core to our

method, first transforms the user-provided markings from L
to the dictionary space (using matrix T1) and then back to

the image space (using matrix T2). Consider only the first

product

D = T1L .

This is an m-by-C matrix containing the pixelwise proba-

bilities of the dictionary pixels (i.e. the dictionary probabili-

ties) which can be useful for processing a previously unseen

image similar to I .

Processing a new image Î requires extracting all M -by-

M patches for every pixel of Î and assigning those patches

to the existing dictionary, i.e. the dictionary created using

patches from I . Just like before, this assignment defines

an image-to-dictionary and we can compute the two asso-

ciated transformation matrices. Here we are interested in

the dictionary-to-image transformation T̂2. To compute the

probability image corresponding to the unlabelled image Î
we therefore need to compute

P̂ = T̂2D .

and rearrange the result into P̂ .

This way of using our method fits into the framework

of supervised learning. The original image I and the com-

puted labelling L can in this context be seen as a (labelled)

training set (ignoring the fact that the labelling is computed

in a semi-supervised way). Our method is then capable of

producing the probability image P̂ for the new, unlabelled

image Î . The approach will work as long as the initial clus-

tering captures the features present in Î , which holds for

similar images.

3. Implementation details

When developing our framework, we made a number of

implementational choices governed by the performance of

our method. First, our method is rather robust to the quality

of the clustering while preprocessing, so using an approx-

imate clustering will generally not deteriorate the output.

We therefore focus on efficiency when building the dictio-

nary and use a k-means tree [21], built from consecutive

k-means clusterings. In this implementation, the size of the

dictionary is defined in terms of the branching factor b and

the number of layers t. Since each node in the tree makes

up a dictionary element, the total number of dictionary ele-

ments is given by K = bt+1
−1

b−1
.

Our experience is that good performance is obtained also

without running the k-means until convergence for each tree

layer, and therefore a fixed number of iterations is chosen,

e.g. 10 iterations. Furthermore, to limit the computational

burden and memory usage, we extract only a subset of M -

by-M patches from the image when building the dictionary.

As for producing A given the clustering represented by a

k-means tree, the patch vector is compared with the nodes

in the first layer to find the match. The patch vector is then

compared to the children of this node, and the most simi-

lar node is again chosen. This process is repeated until a

leaf node or an empty node is reached. The patch vector is

assigned to the most similar node along this path.

Second, the features used for clustering need to reflect

the distinction in the appearance of the classes we want to

separate. For many types of images, an intensity-based ap-

proach as sketched in Sec. 2 will perform well. However,

in challenging cases, more elaborate image features might

provide better results. Some of the results we show in Sec. 4



are based on SIFT [18], but other features can also be incor-

porated in our method. The approach is as follows.

Image features represented by vectors are extracted from

all pixel positions in the image and clustered in K clusters.

For speed, it often suffices to consider only a subset of pix-

els for clustering, as long as we capture the variability in the

image. Every position (x, y) from the image grid can now

be uniquely assigned to one of the k clusters – the cluster

that is closest to the feature vector extracted at (x, y). This

results in an assignment image A. The only additional infor-

mation we need for building the transformation matrices is a

value M , which earlier represented the size of the extracted

image patches. The value M now determines the size of

the overlap when linking the image to the dictionary. While

we now freely chose M , it is reasonable to use a value that

corresponds to the size of the extracted features.

4. Results

In Fig. 4 we show a three-class classification of a volu-

metric X-ray image of a peripheral nerve with myelinated

axons appearing as tubular structures. The data originates

from a larger study [11] which used our method as initial-

ization for mesh-based segmentation [20]. Using a purely

intensity-based approach to pixel classification, it would be

difficult to differentiate between the bright background and

the bright axons inside the dark myelin. Furthermore, a

significant bias field makes it difficult to choose a global

threshold. Our approach utilises a very limited user input in

just one slice of the volume to differentiate between three

classes: background, myelin, and axon. Based on the dic-

tionary probabilities learned from this one slice, our method

automatically classifies all other slices yielding a volumet-

ric segmentation.

Fig. 5 shows an example of segmenting a volumetric im-

age of a fibre composite into two classes: background class

and fibre centre class. Using our method, a huge number

of individual fibres can be segmented with modest user in-

put. The probability image of a fibre centre class precisely

indicates a region for each fibre centre, and can readily be

used in postprocessing for obtaining information about the

spatial distribution of fibres. In this example we also use

the result of single-slice segmentation for batch processing

of a whole volume stack, allowing quantification of larger

material sample [12, 13]. For comparison, we also show

a result obtained by thresholding the intensity image. This

nicely illustrates a challenge in segmenting densely packed

fibres, when the image resolution does not suffice to clearly

delineate the boundary of every individual fibre.

In Fig. 6 we show a three-class segmentation of onion

cells. Since cell walls and nuclei both appear dark, a

purely intensity-based method would not distinguish these

two classes – a task which our method successfully solves

with only modest user input.

Figure 4. Volumetric segmentation of a peripheral nerve. In the

top row, a slice from the volumetric data with overlayed limited

user input and the three-class segmentation dividing the pixels into

background (cyan), myelin (purple) and axon (magenta). The mid-

dle row shows two layers of probability images, corresponding to

the myelin class and the axon class. High intensity indicates a high

probability of belonging to the class. The bottom row shows the

3D visualization of the data obtained by processing a full volume

stack and assigning each voxel to the class of the highest probabil-

ity. This experiment was performed using M = 9, K = 4000 and

a clustering based on SIFT features.

In Fig. 7 we show the use of our method for counting

cells in a stained microscopy image, similar to [16]. Unlike

other examples, this is a colour (RGB) image. To utilise

colour information, the features extracted from every image

patch contain three colour channels concatenated into a sin-

gle feature vector. Since the final goal is to count and mea-

sure the cells, we postprocess the probability images. This

is done by computing the local maxima of the centre-class

probability image to obtain individual cell segmentation.



Figure 5. Volumetric segmentation of fibre composite. In the top

row a slice with manual input indicating fibre centres (magenta)

on a background (cyan) class, together with a resulting two-class

segmentation. The middle row shows a probability image corre-

sponding to the fibre centres class and the output of processing a

full volume stack. From the 3D visualisation it is evident that fi-

bres form clusters of different orientations. The bottom row shows

a zoom-in on the central part of the image slice, together with

the corresponding probability image and (for comparison) a seg-

mentation obtained by directly thresholding the image intensities.

Settings used in this experiment are M = 9 and K = 4000.

5. Conclusion

We propose a method for interactive labeling of image

pixels. Instrumental for our method are transformations

which propagate the information from the image grid to a

dictionary, and back to the image. The transformations are

constructed such that the propagation is strong between im-

age pixels with a similar appearance. We present an algo-

rithm for building a matrix representation of those trans-

formations, allowing real-time processing. We demonstrate

how the propagation of user-provided labelling can be used

for interactive image segmentation. Furthermore, a segmen-

tation of one image allows for subsequent automatic pro-

cessing of similar images. With only modest user input, our

method can yield good results when segmenting patterned

Figure 6. A three-class segmentation of onion cells. In the top row

an image with manual input and a segmentation into three classes:

background (cyan), nucleus (purple) and wall (magenta). In the

bottom row the probability images for the wall and the nucleus

class. Settings used are M = 9 and K = 4000.

Figure 7. A three-class segmentation of a histopathology image.

In the top left an original colour image. In the top right the ex-

tent of the manual input and a corresponding segmentation into

three classes, with a frame cropped to the central part of the im-

age. In the bottom left the probability images for the two classes

also shown on the central part. In the bottom right the final result

obtained through additional postprocessing to distinguish individ-

ual cells. Settings used are M = 5 and K = 4000.

images. We find this extremely useful for many tasks in

microscopy for materials and life sciences.
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