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Abstract

The clinical evidence suggests that cognitive disorders

are associated with vasculature dysfunction and decreased

blood flow in the brain. Hence, a functional understand-

ing of the linkage between brain functionality and the vas-

cular network is essential. However, methods to systemat-

ically and quantitatively describe and compare structures

as complex as brain blood vessels are lacking. 3D imag-

ing modalities such as multiphoton microscopy enables re-

searchers to capture the network of brain vasculature with

high spatial resolutions. Nonetheless, image processing

and inference are some of the bottlenecks for biomedical

research involving imaging, and any advancement in this

area impacts many research groups. Here, we propose a

topological encoding convolutional neural network based

on persistent homology to segment 3D multiphoton images

of brain vasculature. We demonstrate that our model out-

performs state-of-the-art models in terms of the Dice co-

efficient and it is comparable in terms of other metrics

such as sensitivity. Additionally, the topological charac-

teristics of our model’s segmentation results mimic man-

ual ground truth. Our code and model are open source at

https://github.com/mhaft/DeepVess.

∗Corresponding author.

1. Introduction

The health of the brain and heart, as the most two

critical organs, interconnect through the brain vasculature.

Since the brain energy depends exclusively on the sup-

ply of oxygen and glucose through the bloodstream and

the brain energy reserve is very limited, the brain re-

quires steady and reliable blood perfusion [24]. Therefore,

any blood flow interruption causes temporary or perma-

nent functional impairments [38]. Researchers and physi-

cians utilize various imaging modalities, such as multipho-

ton microscopy (MPM) [4] and optical coherence tomogra-

phy [39], to study and examine the 3D geometrical, topo-

logical, and fluid dynamics characteristics of the brain vas-

culature, including capillaries in live animal models.

Accurate analysis of brain vasculature over large 3D vol-

umes and multiple subjects within several controlled groups

forms a considerable portion of the bottleneck processes in

terms of time and personal allocation in biomedical research

and medicine. For instance, researchers studied the effects

of brain capillary stalling on Alzheimer’s disease in animal

models and reported that the image analysis required or-

der of magnitude higher time allocations in comparison to

the actual image acquisitions [6, 5, 11, 13, 20]. Notably,

the vessel segmentation and vectorization are the prevalent

required image analysis tasks [26]. Researchers often con-

sider the segmentation as a classification task and have pro-



Figure 1. An example of a persistence diagram. Panels A and B are the target and query images, respectively. The image intensities are

normalized into the [0, 1] range, and the color blue, red, and dark yellow represent low, medium, and high intensity values. In panel

C, green and magenta markers are associated with the target and query images, while square and circle markers are related to H0 and

H1 homology groups, respectively. The unfilled green markers located on the horizontal axis are the projected elements to match the

cardinalities of the two persistence diagrams. The arrows in panel C are the distance between the two persistence diagrams.

posed supervised, unsupervised, and semi-supervised solu-

tions using classical computer vision methods [26] and re-

cently deep learning (DL) methods [27].

In this work, we present a novel method for the seg-

mentation of 3D in vivo MPM images of brain vasculature

based on a topological encoding convolutional neural net-

work (CNN) using persistent homology (PH) as an unsu-

pervised loss term in addition to two other supervised loss

terms. Our work is motivated by the fact that the-state-of-

the-art MPM segmentation methods such as DeepVess [21]

suffer from topological errors in the regions with low signal-

to-noise (SNR) and by the recent successful integration of

the algebraic topology metrics such as persistent homol-

ogy into differentiable DL layers [7]. Even though per-

sistent homology has been introduced and utilized in var-

ious fields such as computational topology, its application

in the computer vision is limited to preprocessed feature se-

lections [23]. Our algorithm improved DeepVess’ accuracy

significantly, specifically in the low SNR regions, and by

producing more plausible results, qualitatively.

2. Related Work

2.1. Vessel segmentation

The segmentation of vasculature networks or particular

vessel segments, e.g. the aorta, is an essential task in most

biomedical research applications and medical settings due

to the fact that the original task requires enormous time

and personal allocations. The vessel segmentation problem

is tackled through the established computer vision meth-

ods, which commonly require feature engineering and ac-

cept/reject rules, as well as the DL methods, which are

formulated as supervised, unsupervised, or semi-supervised

learning problems [14, 29, 42]. For instance, Yi et al. [45]

proposed a 3D method using the region growing algorithm

utilizing its computational and implementation efficiency.

Similarly, Mile et al. [29] represented the segmentation

in terms of a deformable parametric model that accurately

match the vessel fractal shapes.

On the other hand, due to the current success of DL in

various research fields, DL models are popular and yield

higher accuracy levels. In recent years, researchers, practi-

tioners, and challenge participants almost exclusively uti-

lize different variants of DL models to tackle different

biomedical computer vision problems. For example, a

model based on the transfer learning of the Google Incep-

tion V3 network [40] surpassed the accuracy of seven oph-

thalmologists combined in the diabetic retinopathy detec-

tion task within the color fundus images [18]. The CNN

models, such as the model by Wu et al. [44] can segment

vasculature networks successfully, and in different circum-

stances, recurrent neural network (RNN) models are pro-

posed in place of post-processing conditional random fields

(CRF) models [16, 15]. The most common biomedical

image segmentation DL architecture theme is called U-

Net [35], which is a fully convolutional architecture [28]

with encoding and decoding layers in addition to skip con-

nections at different spatial scales.

2.2. MPM segmentation

MPM is the standard imaging modality for studying dif-

ferent live animal models enabling longitudinal studies (e.g.

weeks and months) while providing high temporal resolu-

tions (e.g. 2-30 Hz) and sub-micron spatial resolutions with

minimally invasive procedure requirements. In comparison

to the linear process-based counterpart imaging modality,

the intensity of the non-linear processes in MPM imaging

(e.g. two-photon excited fluorescence) is proportional to the

square or cube of the required average laser power. This

non-linearity increases imaging depth and decrease photo-



bleaching [25].

Tsai et al. [42] introduced the first comprehensive MPM

image processing software suit, a.k.a. VIDA, based on tra-

ditional computer vision methods with the ability to handle

large datasets. On the other hand, Teikari et al. [41] uti-

lized 2.5D CNN architecture with CRF post-processing to

segment MPM vessel images, while Bates et al. [3] used

RNN architecture to extract the vasculature graph repre-

sentations. Recently, DeepVess et al. [21] was proposed,

which is an optimized CNN architecture with a customized

loss function and accuracy comparable to that of expert hu-

man annotators for both vessel segmentation and centerline

extractions and Gur et al. [19] developed an unsupervised

neural network with active contours mimicking loss term.

2.3. Topological data analysis

Topological data analysis (TDA) is a mathematical field

that studies complex datasets from the algebraic topology

point of view. PH, as a TDA theory, is able to characterize

high-dimensional manifolds within datasets such as graph-

based characterization, unsupervised feature engineering,

and image manifold analysis [12, 33, 36].

In comparison to other models with no regularization

or preset boundary topologies (e.g. multivariate regression

model and support vector machines), Chen et al. [8] used

PH to regularize the decision boundaries and to simplify

the boundaries. Similarly, Rieck et al. [34] used the PH

as a complexity metric for DL architectures by modeling

the network as a weighted stratified graph to facilitate the

underling optimization problem required for the learning

process such as the mimicking the best DL regularization

tricks (e.g. dropout and batch normalization) and optimiza-

tion practice such as validation-based early stopping.

The feature engineering based on the input image is

the primary utilization of PH for the segmentation task.

Qaiser et al. [32] trained a CNN based on the extracted topo-

logical features using enhanced persistent homology pro-

files to segment tumors in Hematoxylin and Eosin stained

histology images. Differently, Assaf et al. [2] segmented

the cells by selecting the target object within the candidates

based on the largest life span using PH of the cubical com-

plex. Similarly, Gao et al. [17] used the PH to segment

the high-resolution CT images of the left ventricle includ-

ing the papillary muscles and the trabeculae by detecting

the salient object with the desirable topological characteris-

tic, i.e. handles, to be restored in the final results. Further-

more, Clough et al. [10] tackled the same problem with the

exception of using the PH for providing the gradient signals

to the learning optimizer.

3. Method

3.1. Persistent homology

The homology in the context of abstract algebra uses in-

variant theory to maps the groups on an algebraic variety

such as Euclidean spaces to the topological space. If we

describe the manifolds in a D-dimensional Euclidean space

X ∈ R
D as a simplicial complex K, which is a generaliza-

tion of graphs in the higher dimensions, simplicial homol-

ogy represents the connectivity of K in terms of homology

groups using matrix reduction algorithms. A k-dimensional

simplex is the convex combination of k + 1 vertices. The

vertices correspond to points in a sufficiently nice ambient

R
D space, which results in the existence of the simplex ge-

ometrical realization within X . A collection of simplices

forms a simplicial complex X if for every simplex τ ∈ X ,

every face σ ⊆ τ is also in X and also for any two simplices

τi and τj , σ = τi ∩ τj is a face of both τi and τj .

Homology groups {Hk(K) : k ∈ {0, ..., D − 1}} de-

scribe the kth order topological features, i.e. holes of the

kth dimension. For instance,H0(K), H1(K), and H2(K)
correspond to connected components, 2D hole or 3D tun-

nel, and 3D voids, respectively. The Betti numbers (βi)

summarize the homology group information by measuring

the cardinality of the Hi(K). For example, a 2D ring has

Betti numbers of (1, 1), a filled 2D square has Betti num-

bers of (1, 0), a torus has Betti numbers of (1, 1, 1), and a

sphere has Betti numbers of (1, 0, 1).
Betti numbers are very abstract representation of the ho-

mology groups and they are not smooth in noisy datasets.

Persistent homology resolves this shortcoming of Betti

numbers by measuring the topological features of X at dif-

ferent resolutions to promote the detection of the true fea-

tures embedded in X and exclusion of features constructed

based on quantification and noise errors. The simplicial

complexes can be ordered into a nested sequence by consid-

ering a non-decreasing function f : K → R that induces a

homomorphism on the simplicial homology groups for each

dimension. For every a ∈ R, there is a subcomplex of K
as a sublevel set K(a) = f−1(− inf, a] and a set of scale

weights a0 ≤ a1 ≤ ... ≤ an (a.k.a. filtration parameter) put

the K in filtration based on the ordering of f to represent

the growth of K by changing the filtration parameter (ai),

∅ = K0 ⊆ K1 ⊆ ... ⊆ Kn = K. (1)

Over the course of K growth by filtration, topological

features are born and die at different scales. Persistence ho-

mology maps the birth and death of features into R
2 space

as (bi, di) points, where bi, di ∈ [0, 1] or any other range.

The collection of all points based on k-dimensional topo-

logical features generate the kth persistence diagram,

PDk : (X , f) → {(bi, di) : i ∈ Ik}. (2)



Figure 2. Our convolutional neural network architecture. The input is a 98× 98× 7 3D image patch with a single input channel. The first

three 3D convolution layers with the 3× 3× 3 kernel size and 32 features were followed by a max-pooling with the 2× 2 kernel size and

2× 2 strides. Then two 2D convolution layers with the 3× 3 kernel size and 64 features followed by a max-pooling with the 2× 2 kernel

size and 2× 2 strides are applied. Finally, a dense layer classifier with a 1024-node fully-connected hidden layer as well as a dropout layer

at the training time was applied. The loss function terms are based on the generalize Dice, cross-entropy, and topological persistence.

If homology is computed over a field, the homology of

a filtration admits an interval decomposition, which is the

sum of the elements of rank one within the interval [bi, di).
The persistence of each point in each PDk is the lifetime of

the feature and defined as pers(bi, di) = |di − bi|. Further-

more, the points in each PDk are indexed in a descending

order based on their persistence value. Therefore, the first

point in Ik is the most persistent feature and the last one is

probably an artifact.

To implement the PH as a differentiable DL layer, the

complete inverse map from PDk to the input dataset D :
(X,Y ) and a loss function are required. The complete in-

verse map has two steps: mapping PDk to X and then map-

ping X to D. The inverse map between PDk and X can be

defined by searching for the pair of two simplices τ and τ ′

such that bi = f(τ) and di = f(τ ′),

π(PDk, i ∈ Ik; f) : (bi, di) → (τ, τ ′). (3)

The second step of the complete inverse map is to con-

nect the X to the input dataset D. Since in most computer

vision problems, the D = (X,Y ) consists of 3D digitized

images as voxel grids, we define the filtration function on

the voxel intensity value and simplex based on the voxel

neighborhood. Therefore, the filtration is equivalent of level

sets at different intensity thresholds and the mapping asso-

ciates each simplex (τ ) to the indices of voxels σ ∈ τ that

their intensity values are equal to the filtering cutoff value

(ai),

ω(τ) = argmax σ∈τ f(σ). (4)

The PH cost functions should represent the distance be-

tween the target persistence diagram PD and the predicted

persistence diagram P̂D. We use Wasserstein-1 distance

W1(p, q), a.k.a. Earth-Mover distance, which is related to

the minimum cost of stockpile transportation from stock

configuration p to stock configuration q, where the trans-

portation cost is equal to the mass times the transportation

distance. Note that under a few mild assumptions, W1 is

continuous and differentiable almost everywhere [31]. The

objective is to minimize the W1 between P̂D and PD. At

first, the cardinalities of PD and P̂D are matched by pro-

jecting the additional points in P̂D to the diagonal (5) and

then the loss function measures the Wasserstein-1 distance
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Figure 3. 2D slice-based Dice coefficient variation as a function of

imaging depth based on our model and baselines. On each box,

the central red line indicates the median, while the bottom and top

limits of the box indicate the first and third quartiles, respectively.

The whiskers do not include outliers, which are plotted using the

plus sign.

between counterpart topological features to equate the num-

ber of topological features with high persistent between PD
and P̂D and push the rest of that features to have zero per-

sistent values,

proj(bi, di) =
bi + di

2
, (5)

ET (βk; P̂Dk) =

(

βk
∑

i=1

‖(bi, di)− (0, 1)‖1

)1

+





|Ik|
∑

i=βk+1

‖(bi, di)− proj(bi, di)‖
1





1

=

nk
∑

i=1

|1− di + bi|+

|Ik|
∑

i=nk+1

|di − bi|.

(6)

The gradient of the topological loss function (6) with re-

spect to the input image is measurable through the inverse

maps (3) and enables the optimization of the whole network

in an end-to-end fashion.

An example of this framework is depicted in Figure 1.

Panel A and B in Figure 1 are the target and query images,

respectively, and the image intensities are normalized into

the [0, 1] range. The color blue, red, and dark yellow rep-

resent low, medium, and high intensity values such as 0.01,

0.20, and 0.70. In Figure 1.C, green and magenta mark-

ers are associated with the target and query images, and

square and circle markers are related to H0 and H1 homol-

ogy groups, respectively. The unfilled markers located on

the horizontal axis are the elements that are projected to the

diagonal line to match the cardinalities of the target persis-

tence diagram PD and the query persistence diagram P̂D.

The arrows are the distances between the target and query

features, which measure the distance between the two per-

sistence diagrams. For example, when the filtering value

is equal to the red color (e.g. 0.20), the letter “j” will ap-

pear, which results in the birth of a hole that is confined

between the letter “C” and the letter “j” in addition to birth

of a new connected components that corresponds to the dot

of letter “j”. The changes due to appearance of letter “j”

are reflected in Figure 1.C as the magenta circle and square

with mid-range persistent values. The magenta circle and

square with low-range persistent values in the lower right

corner are related to the letter “Q”.

3.2. Network architecture

We adopted the network architecture of DeepVess [21],

which is the state-of-the-art architecture optimized for ves-

sel segmentation in MPM images, as our baseline architec-

ture (Fig. 2). Briefly, DeepVess’ architecture has an input

image, which is 7-voxel deep along the third direction and

initially apply three 3D convolution layers with the 3×3×3
kernel size, 32 features, and without padded edges followed

by a max-pooling with the 2 × 2 kernel size and 2 × 2
strides. Then two 2D convolution layers with the 3× 3 ker-

nel size and 64 features followed by a max pooling with the

2× 2 kernel size and 2× 2 strides are applied. Finally, the

output of the last max-pooling layer is flattened to a fully-

connected layer followed by a 1024-node fully-connected

layer in addition to a dropout layer at the training time

(with 50% probability) and the last fully-connected layer,

which is reshaped to the output patch size. LeakyReLU was

used as the activation function for all the layers. The width

of the input image and consequently the receptive field as

the output size were the optimized design hyperparameters

that were selected based on the new loss function and prior

knowledge of the topological characteristics of brain vascu-

lature networks.

3.3. Learning and implementation

We preprocessed the 3D in vivo MPM images of mouse

brain vasculature networks following [21]. Briefly, the

physiological motion artifacts were removed using non-

rigid non-parametric diffeomorphic demons image registra-

tion [43], followed by image intensity normalization and

1µm3 spatial resolution scaling.

DeepVess resolved the highly unbalanced class popula-

tion problem by using a customized cross-entropy loss func-

tion (7),

LDeepV ess(y, ŷ) =
∑

i∈{TP,FP,FN}

CE(yi, ŷi), (7)



which is measured over all voxels except true negative vox-

els. Instead, we used generalized Dice loss function (8) due

to the successful results in [30],

LDice(y, ŷ) = 1−
2
∑

i(yi × ŷi) + ǫ
∑

i(y
2
i + ŷ2i ) + ǫ

. (8)

Additionally, we used the normal cross-entropy loss

function (LCE) for the initial optimization warm-up to de-

crease the required training time,

CE(yi, ŷi) = − yi × log(ŷi)

− (1− yi)× log(1− ŷi).
(9)

In this training regime, initially, LCE is the significant

loss term, but after the initial warm-up phase, LDeepV ess

will automatically dominate the optimization as a result of

the highly unbalanced class populations.

The objective of the topological cost function (6) is to

enforce the prior knowledge of the desired topological char-

acterises in terms of the target Betti numbers (βk). Due to

the fractal characteristics of venous and arterial networks

and their interaction through the grid networks of capillar-

ies [37]. The topological characterises of brain vasculature

network is scale-dependent. Therefore, the optimal size of

the field of view based on the topological constrains is the

largest field of view, which has similar Betti numbers in var-

ious regions. In our case, which is the mouse brain vascu-

lature network, we observed there is no large capillary loop

within a 21 × 21 µm2 region, which translates to target β0

of 1 and β1 of 0, equivalent to one connected component

without any hole. Therefore, the topological loss function is

deterministic without the need to be inferred from the data,

and it can be formulated based on (6) into

LT (P̂D) =
D−1
∑

k=0

ET (β̃k; P̂Dk)

= ET (1; P̂D0) + ET (0; P̂D1).

(10)

The final proposed loss function contains three terms:

Dice, cross-entropy, and topology loss functions. We mea-

sured the topological loss function on 10% of the samples

in the mini-batch to reduce the computational cost, while

maintaining a sufficient gradient signal,

L(y, ŷ) = LDice(y, ŷ) + λLCE(y, ŷ)

+ λ′LT

(

PD(ŷ1, .., ŷ⌊n/10⌋)
)

.
(11)

We implemented our model in TensorFlow [1] and mea-

sure PH using the “Topology Layer” package [7]. We

trained our model using Adam stochastic optimization with

a learning rate of 10−4 for 2000 epochs. We set the λ and

λ′ to the optimal values of 1 and 0.01 based on the evalua-

tion results of the validation dataset. The division patterns

of the image patches within the training dataset were shifted

randomly to cover different possible slicing schemes. Also,

the same procedure was used to enhance the classification

at the inference phase. Our code and model are open source

at https://github.com/mhaft/DeepVess.

4. Experiments

4.1. Data

We demonstrate the performance of our algorithm on

DeepVess dataset [21], which is the largest, publicly avail-

able, manually-labeled, in vivo MPM image dataset of

mouse brain vasculature with 24 mice and more than 13 ×
106µm3 labelled images. We utilized their division of the

dataset into training, validation, and testing sub-datasets

(50%, 25%, and 25%). Similarly, while we fine-tuned and

optimized the models based on the performance on the val-

idation dataset, the final model accuracy results were mea-

sured on the independent test sub-dataset.

4.2. Baseline and evaluation

We compare our proposed model to the state-of-the-art

segmentation methods VesselNN [41], DeepVess [21], and

UMIS [19] in addition to VIDA [42] and 3D U-Net [9],

which are the methods commonly used in the analysis of

MPM and other biomedical image modalities.

We evaluate our model qualitatively with figures in addi-

tion to quantitatively based on accuracy, sensitivity , speci-

ficity, Dice coefficient (a.k.a. F1), and Jaccard index. This

metrics are based on the populations of true positive (TP),

true negative (TN), false positive (FP), and false negative

(FN) cases,

Sensitivity =
TP

TP + FN
, (12)

Specificity =
TN

TN + FP
, (13)

Accuracy =
TP + TN

TP + TN + FP + FN
, (14)

Jaccard =
TP

TP + FP + FN
, (15)

Dice =
2× TP

2× TP + FP + FN
. (16)

4.3. Results and Discussion

We constructed a loss function (11) that enables the op-

timization of CNN models to segment a highly imbalanced

foreground using the Dice term, besides encoding the prior

knowledge of the topological characteristics of the segmen-

tation results into the dense layer classifier through the topo-

logical loss term.

We compared the performance of our proposed model to

the-state-of-the-art baselines quantitatively in Table 1 and



Figure 4. Qualitative comparison between our model and DeepVess [21]. A-B. The cross-sections spaced through the depth are plotted.

The first column is the image intensity of the 2D slice in gray-scale. The second and third columns are the results of DeepVess and our

models overlaid on the intensity images. The last column of each panel is the entropy with cooler and warmer colors representing the lower

and higher uncertainty levels, respectively. C. The results of DeepVess and our models applied to the last sample. The cyan and yellow

arrows represent the discontinuity and hole artifacts, respectively. Scale bar is 100µm.



Model Accuracy Sensitivity Specificity Dice Jaccard

VIDA [42, 19] 60.2% 99.8% 56.4% 30.4% 17.9%

VesselNN [41, 21] 95.1% 62.4% 98.7% 69.7% 55.1%

3D U-Net [9, 22] 95.6% 70.0% 98.2% 72.7% 59.4%

UMIS [19] 98.6% 99.2% 98.6% 82.9% 70.8%

DeepVess [21] 96.4% 90.0% 97.0% 81.6% 69.2%

Ours 96.8% 96.4% 98.2% 86.5% 76.2%

Table 1. Result of our model in comparison to the baseline models. Baseline models are VIDA [42], VesselNN [41], U-Net [9], UMIS [19],

and DeepVess [21]. The measured performance metrics are accuracy, sensitivity, specificity, Dice coefficient, and Jaccard index, with the

last two metrics being correlated. Our model presents a higher Dice and Jaccard indices while maintaining comparable performance in

terms of the other metrics.

qualitatively in Figure 4. Our model outperforms other

models in terms of Dice and Jaccard indices. Since fore-

ground voxels are less than 10% of the population, these

two metrics are better indicators of the actual performance

of a model in comparison to other metrics such as accu-

racy. A classifier that classifies all the input voxels as

backgrounds results in 90% accuracy and 100% specificity

(or 100% sensitivity if it classifies all the voxels as fore-

grounds); nevertheless, its Dice and Jaccard indices are 0%.

Under other models, the results will have slightly higher

accuracy, sensitivity, and specificity; but with lower Dice

and Jaccard indices in addition to having topological errors

(Figure 4). However, these shortcomings demonstrate the

existing capacity for improvement, mainly because this tool

is frequently used in different branches of biomedical re-

search and also the dependency of downstream image anal-

ysis tasks, such as the centerline extraction, on the quality

of the segmentation results.

The usage of infrared light to excite fluorophores with

high absorption cross-sections enables deeper imaging in

light-scattering tissues with low energy requirements and

high resolution. However, the main sources of image pro-

cessing difficulties are the rapid loss of signal and the back-

ground signal from the superficial layer in the images ac-

quired deeper within the tissue. Due to this intrinsic lim-

itation, the study of the model performance as a function

of depth is essential. Figure 3 is the box-plot of the Dice

Coefficient measured at each slice for all slices in the 3D

image. Our model has lower Dice variation in comparison

to DeepVess, while our model maintains a similar median

value for the performance, which is an indicator that our

model is less sensitive to the SNR variation over the depth

of imaging with higher consistency.

Figure 4 illustrates the results of our model and Deep-

Vess overlaid on the input images. In Figure 4.A-B, the

cross-sections spaced through the depth are plotted. The

first column is the image intensity of the 2D slice in gray-

scale. The second and third columns are the results of Deep-

Vess and our model overlaid on the intensity images. The

input images were divided into the input patches using dif-

ferent splitting schemes to measure our model uncertainty

by measuring Shannon’s entropy. Higher entropy values

correlate with higher segmentation uncertainties. The last

column is the entropy with cooler and warmer colors rep-

resenting the lower and higher uncertainty levels, respec-

tively.

Although the deeper slices, e.g. Figure 4.B, have more

voxels with uncertainty; evidently, the level of uncertainty

is lower than the results in [21] and the topological features

of the segmentation results are close to the ground truth and

the topological priors in our application. In Figure 4.C, the

cyan and yellow arrows in DeepVess’ result represent the

discontinuity and hole artifacts, respectively. The segmen-

tation results based on our model do not have any hole in

addition to the fact that the integrity and continuity of the

vessel are very well-maintained. These two characteristics

are essential for the downstream image analysis tasks, in-

cluding the vessel centerline extraction.

5. Conclusion

We proposed a convolutional neural network architec-

ture with a loss function consists of three terms, including

a topological loss term. The topological loss term is based

on the persistent homology and encodes the prior knowl-

edge of topological features and their characteristics into

the model. We demonstrated the application of this model

to the segmentation of brain vasculature networks in multi-

photon microscopy images in mice. While our model out-

performs the-state-of-the-art models based on the Dice and

Jaccard indices, our model has comparable accuracy, sensi-

tivity, and specificity in addition to producing segmentation

results with less topological errors in comparison to the-

state-of-the-art models.
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