
Multi-object Graph-based Segmentation with Non-overlapping Surfaces

Patrick M. Jensen, Anders B. Dahl, Vedrana A. Dahl

Department of Applied Mathematics and Computer Science

Technical University of Denmark, Kgs. Lyngby, Denmark

{patmjen,abda,vand}@dtu.dk

Abstract

For 3D images, segmentation via fitting surface meshes to

object boundaries provides an efficient way to handle large

images and enforce geometric prior knowledge. Further-

more, fitting such meshes with graph cuts has proven to be

a versatile and robust framework. However, when segment-

ing multiple distinct objects in one image, current methods

do not allow the natural constraint that objects should not

overlap. In this paper, we present an extension to graph cut

based methods which can provide a globally optimal segmen-

tation of thousands of objects while guaranteeing no overlap.

Our method works by separating objects with planes whose

positions are determined as part of the graph cut. To demon-

strate the general applicability of our method, we apply it

to several 3D microscopy data sets from both biology and

materials science. Our results show both quantitative and

qualitative improvements.

1. Introduction

3D microscopy includes techniques such as X-ray micro-

or nano-CT, light-sheet microscopy, optical coherence to-

mography, and confocal microscopy. These techniques,

widely used in materials and bio-science, often result in

large 3D images that are difficult to interpret through visual

inspection. It is therefore important to be able to quantify

3D structures, e.g. the size of cells, and here segmentation is

an essential tool.

Segmenting multiple objects that are densely packed can

easily result in an overlap between the detected objects,

which is not physically possible. Therefore, it is often de-

sirable to constrain the segmentation such that the detected

objects do not intersect. Besides giving a sensible solution,

avoiding overlap also regularizes the segmentation in gen-

eral. Thus, the resulting segmentation of individual objects

is more accurate than without this constraint.

In this work, we propose a method for accurately seg-

menting multiple densely packed objects while preventing

overlap. Our approach uses an s-t graph cut to fit surface

meshes to object boundaries. Using surface meshes provides

a compact representation of the segmentation, allowing us

to process large volumes with a large number of objects.

In general, incorporating non-overlap constraints directly

into the graph cut formulation is challenging, and existing

approaches are based on assumptions that limits their appli-

cation. Examples are situations where only a few objects are

to be detected, where objects have a certain shape, or where

user-provided scribbles are available.

We propose a method to incorporate non-overlap con-

straints for problems where pairs of interacting objects can

be separated by a plane. This is always the case for convex

objects [2], but can also be valid for non-convex shapes.

As a result, our approach can be applied to a range of

problems involving the segmentation of non-overlapping

densely packed objects. Our method allows us to simul-

taneously detect thousands of non-overlapping objects by

finding a globally optimal solution to the modeled segmenta-

tion problem. We provide an implementation of the method

at: https://github.com/patmjen/NOS.

1.1. Approaches for preventing overlap

By definition, an s-t graph cut provides a bipartition of

a graph, so binary segmentation is the most straightforward

use of the s-t graph cut in image analysis. Segmenting

multiple objects with a single graph involves constructing

sub-graphs dedicated to each object. This opens a possibility

for adding interactions between objects, such as containment

and exclusion, by adding edges between nodes of the sub-

graphs. While containment is relatively easy to enforce,

exclusion (preventing overlap) is in general challenging.

Several authors have explored the topic of preventing

overlap in graph-based multi-object segmentation [1, 7, 12,

20, 25]. The key challenge is that graph cuts can only be

used to minimize so-called submodular energy functions.

Adding Exclusion typically results in non-submodularity

and is therefore not straightforward to model with graphs. A

common way to circumvent this is to represent some objects

with their complement, which turns exclusion between A
and B into containment of A in Bc. This means that non-



overlap may only be enforced between pairs of surfaces.

More specifically, we must divide our surfaces into two

groups, and separation can only be enforced between two

surfaces if they are in different groups. A simple example is

illustrated in Figure 1.

B

(a) Surfaces A and B

split into groups {A}
and {B}.

C

A B

(b) Surfaces A, B, and

C grouped as {A} and

{B, C}.

C

A B

(c) Surfaces A, B, and

C grouped as {A, C}
and {B}.

Figure 1: Usual construction of separation constraints for multiple

surfaces. For the case in (a) we can easily split two surfaces into

groups. For (b) and (c) there will always be a pair of surfaces with

no separation constraints.

Pairwise exclusion may suffice for some applications,

especially if only a few objects are to be segmented, e.g.

organ segmentation in medical image analysis. However,

for our problem this type of construction is not adequate –

we will need to support separation constraints between an

arbitrary number of surfaces. Furthermore, previous methods

usually require that we identify a region of interaction for

pairs of surfaces, and then add edges between corresponding

nodes in the graph for each surface [12, 20, 25]. This may

require re-meshing of the surfaces or significant changes to

the graph, which in turn may be highly non-trivial if several

surfaces share a region of interaction.

A way of handling non-submodular energy terms is to

use a more general framework, quadratic pseudo-boolean

optimization (QPBO). If QPBO provides labeling for all

nodes, the solution is guaranteed to be optimal. However,

QPBO might leave some graph nodes unlabeled, which is

typically problematic when enforcing exclusion in pixel-

wise segmentation. Still, unlabeled nodes will not be an

issue if relatively few energy terms are non-submodular, and

for our approach, QPBO often provides a globally optimal

solution.

2. Method

Our method builds upon existing approaches for graph

cut segmentation. To make the paper self-contained, we

first review the two most relevant algorithms for our work:

graph-based surface detection, and quadratic pseudo-boolean

optimization. Next, we detail our extension which ensures

that the fitted surface meshes are separated by planes. Finally,

we cover a few implementational details of our approach.

For clarity, we reserve the terms vertex and edge for meshes

and use node and arc when dealing with graphs.

2.1. Surface fitting with graph cuts

Wu and Chen [24] were the first to suggest using an s-t

graph cut, and its polynomial-time solution, to detect sur-

faces in a 3D image. The approach was initially used for

terrain-like and tubular surfaces [15]. For terrain-like sur-

faces, the solution is found by searching along the columns

of the volume. Tubular surfaces are found by searching radi-

ally along rays from the tube center. An interpretation of this

approach, which can be generalized to any shape, involves a

meshed base-surface.

In this interpretation, the meshed base-surface is fit to

the data by displacing the mesh vertices along the vertex

normals. The goal is to place the vertices at the boundary of

the object of interest, such that the region inside the mesh

gives a segmentation of the object. The optimal displacement

of vertices is found using a s-t graph cut.

While base-surfaces for terrain-like and tubular objects

may be a regular quad mesh (see Figure 2, left), this may not

be suitable for other shapes. For roughly spherical objects,

a regular polyhedron may be used [8, 23] (see Figure 2,

right). A different strategy involves using a rough initial

segmentation as a base-surface [25].

(a) Quad. mesh. (b) Regular polyhedron.

Figure 2: Examples of different base-surfaces and the positions of

the graph nodes computed from the mesh. The nodes belonging to

a normal-aligned column are connected by lines.

The underling graph construction is shared by all ap-

proaches, and is summarized in the following. With a

base-mesh as an input, we will construct a graph G =
(V ∪ {s, t}, E) with nodes V , a source node s, a sink node t,
and arcs E .

For a node set, V , we consider each mesh vertex i, with

position vi, and generate a series of candidate positions along

the (outward) vertex normal, ni, as

vi,k = vi + k δstep ni for k = 0, 1, ..., nstep. (1)

Here, δstep and nstep are user defined parameters which

define the step length and number of steps, respectively.

With each candidate positions vi,k we associate a graph node

vi,k ∈ V . We will refer to the set of nodes,

Ci = {vi,k | k = 0, 1, ..., nstep}, (2)



associated with a mesh vertex i as the normal-aligned col-

umn of i. Furthermore, we say that two normal aligned

columns are neighbors, if their corresponding mesh vertices

are connected with an edge.

The arc set E consists of terminal arcs and internal arcs.

Internal arcs impose geometric constraints on the solution,

such that vertices have a well-defined position along each

normal-aligned column, and that the displacement of two

neighboring vertices does not vary more than a pre-set value

∆. The internal arcs have infinite weight and consist of:

Intracolumn arcs (vi,k, vi,k−1) between successive nodes

of each normal-aligned column Ci. Here k = 1, 2, ..., nstep.

Intercolumn arcs (vi,k, vj,l) from nodes of each normal-

aligned column Ci, to nodes of a neighboring normal-aligned

column Cj , where l = max{0, k −∆}.

These arcs are illustrated in Figure 3. The parameter ∆
constrains the displacement of neighbouring vertices relative

to the base-mesh. If the base-mesh is chosen to be smooth,

then ∆ can be thought of as a regularization parameter.

Figure 3: Illustration of intracolumn arcs (blue) and intercolumn

arcs (red) for ∆ = 2.

The terminal arcs connect graph nodes with either the

source s or the sink t. Those arcs have finite weights derived

from a cost function which is given by the image values.

Several cost functions have been used in the literature, and

they typically lead to slightly different weight functions. The

most suitable cost function is often problem-specific with

popular choices being based on image edges [15] or regions

[10]. A region-based cost function is constructed such that

it attains negative values where image data supports object,

and positive values where image data supports background.

If the node vi,k has a negative weight −w it will be con-

nected to the source with an arc (s, vi,k) having a weight

w. If the node has a positive weight w it will be connected

to the sink with an arc(vi,k, t) having a weight w. How-

ever, we always connect the innermost node in each normal

aligned column to the source, to guarantee at least one node

is included in the object.

It has been shown [15, 24] that the vertex displacements

which result in the minimum total cost, while satisfying the

constraints set by ∆, can be found by computing a minimum

s-t cut in this arc weighted graph. Such a cut splits the

nodes into two disjoint subsets; the source set, S, and the

sink set, T . Nodes in S are then defined to be inside the

object of interest and vice versa for T . Mesh vertices are

then moved to the position associated with the outermost

node in their normal aligned columns which is in S. The s-t
cut is often computed with the efficient algorithm by Boykov

and Kolmogorov [3]. Furthermore, several extensions to this

basic construction have since been developed [4].

Setting up a segmentation via surface fitting requires some

knowledge of the geometry of the segmentation problem, or

pre-processing, in order to get an appropriate initialization.

2.2. Quadratic pseudoboolean optimization

It turns out that the construction from the previous section

can be reformulated in a more general framework known as

quadratic pseudo-boolean optimization (QPBO). The benefit

of this is that QPBO allows us to model constraints that

are not possible with the construction in Section 2.1 [9, 14].

Specifically, it enables us to enforce that two graph nodes

cannot both be in the source set, which is what allows us to

ensure that surfaces do not overlap.

A quadratic pseudo-boolean (QPB) function is a function

f : {0, 1}n → R which can be written as

f(x) = θconst +

n
∑

i=1

θi(xi) +

n
∑

i=1

∑

j>i

θij(xi, xj). (3)

Computing a minimum s-t cut can then be reformulated as

minimizing the following QPB energy function [13]

E(x) = θconst +
∑

v∈V

θv(xv) +
∑

(u,v)∈E

θuv(xu, xv), (4)

where

xv =

{

0, v is in the source set S,

1, otherwise.
(5)

To define the θv and θuv functions, it will be convenient to

use the following notation

θv,i = θv(i) and θuv,ij = θuv(i, j). (6)

Furthermore, unless we explicitly specify a value for θv,i
and θuv,ij we assume it to be zero. Now, let w((u, v)) be

the weight of arc (u, v), and add the following unary terms

θv,0 = w((s, v)) and θv,1 = w((v, t)), (7)

and the following binary terms

θuv,01 = w((u, v)) and θuv,10 = w((v, u)). (8)

Minimizing E(x) then corresponds to computing the mini-

mum s-t cut on G.

Several papers have explored methods to minimize QPB

functions [11, 13, 19]. If (and only if) the function is sub-

modular, meaning that all binary functions satisfy

θuv,00 + θuv,11 ≤ θuv,01 + θuv,10, (9)



then the minimization can be done with the construction in

Section 2.1 [9, 14]. In general, however, the minimization of

QPB functions is NP-hard [13]. Thus, many methods focus

on computing partial solutions, where each variable, xi, can

be given the value 0, 1, or unknown. The strength is that if

0 or 1 is assigned, then it is guaranteed to be the globally

optimal value. The downside is that some variables may

remain unassigned.

For our application, we found that even using the basic

method of [13] would very often result in fully assigned

(globally optimal) solutions. This method works by building

a graph, similar to the construction in Section 2.1, with two

nodes, a primal and dual, for every binary variable xi. Non-

submodular energy terms can then be modelled by adding

edges between primal and dual nodes, and the minimization

is done by computing a minimum s-t cut.

Finally, for the few cases where a full assignment was

not immediately returned, a small adjustment of the method

parameters would then fix it.

2.3. Adding overlap constraints

We now detail our extension, which allows us to enforce

that surfaces do not overlap. Our construction proceeds as

follows; assume we have two objects, A and B, to segment.

Let cA and cB be the center of the base-surface meshes for

object A and B, respectively. Now, consider a plane P with

normal vector nP = cB − cA placed between A and B. If we

constrain each mesh to not cross the plane, we would ensure

that they cannot overlap. However, if the plane is not placed

optimally the resulting segmentation may be subpar (see

Figure 4). Therefore, to make the method more robust, we

(a) Bad plane placement. (b) Good plane placement.

Figure 4: Importance of plane placement for the segmentation of

two overlapping balls. The center of each base-mesh is marked

with a ‘+’. In (a) the plane is placed too far to the left. In (b) the

plane is placed correctly which has resulted in each object being

well segmented.

want the position of the plane to be determined dynamically

as part of the segmentation problem.

To achieve this, first build graphs GA = (VA ∪ {s, t}, EA)
and GB = (VB ∪ {s, t}, EB), according to the graph con-

struction from Section 2.1. Then, merge the graphs into

G = (V, E) = (VA ∪ VB ∪ {s, t}, EA ∪ EB). Next, generate

a number of candidate positions p0, p1, ..., pn where

pi =
i

n
cB +

(

1−
i

n

)

cA, (10)

and n = ⌊‖cB − cA‖ /δstep⌋. Recall that δstep is the step

size used for building the normal-aligned columns for each

surface graph, cf. Section 2.1. Notice that positions start at

object A and then move towards object B. Now, add nodes

u1, u2, ..., un to V where uk is associated with pk. Further-

more, add arcs (ui, ui−1) for i = 1, 2, ..., n to E where each

arcs has infinite weight. Note that this construction is the

same as for the normal-aligned columns, see Figure 5. Thus,

we can define the final position of the plane as pi where i is

the smallest number such that ui ∈ T .

Next, we add interaction between the surfaces and the

planes. Here, it will be more convenient to work with the

QPB energy function E(x), cf. Section 2.2. Iterate over all

candidate plane positions, pi, and add energy terms to E(x)
according to the following rules:

1. For every normal-aligned column C ⊂ VA, find the

first node vk ∈ C whose position vk satisfies (vk −
pi)

T nP > 0. Add the term θvkui,01 = ∞ to E(x) (see

Figure 5, left). This will enforce that if vk ∈ S then

ui ∈ S. We only need to consider this first node since

the construction of the surface graph ensures that if any

later node vl ∈ S then vk ∈ S.

2. For all normal-aligned columns C ⊂ VB find the

first node vk ∈ C whose position vk satisfies (vk −
pi)

T nP < 0. Add the term θvkui,00 = ∞ (see Figure 5,

right). This term acts like an exclusion arc as it ensures

that if either vk or ui are in S, then the other cannot.

Again, we only consider the first node as vk ∈ T will

ensure that all later nodes are also in T .

These terms ensure that surface A and B never cross the plane

and therefore cannot overlap. The complete construction is

visualized in Figure 5. Intuitively, terms from step 1 will

cause surface A to ‘push’ the plane away as it grows, and

terms from step 2 will cause the plane to ‘push’ on surface

B. As both surfaces grow to fit the data they will move the

plane to a position of equilibrium where no surface can grow

without degrading the overall segmentation. Note that the

terms from step 2 are not submodular, which means we must

use QPBO based methods to minimize the energy.

When dealing with more than two surfaces, we first con-

struct a graph for each surface. Then, all graphs are merged

into one graph and the above construction is added for each

pair of interacting surfaces. Finally, the method from [13]

is used to perform all segmentations simultaneously. If no

variables are unassigned, the resulting segmentation is thus

guaranteed to be globally optimal while having no overlap.



A B

Figure 5: Illustration of the construction used to separate two

surfaces with a moving plane. Graphs for two objects A and B are

shown, but without intra- and intercolumn arcs. Red nodes indicate

candidate plane positions, and each candidate plane is shown as a

vertical red line. Red arcs are added to pairs of candidate position

nodes pointing left, as candidate points are ordered going from A

to B. Interaction terms from step 1 are shown as solid blue arcs,

and terms from step 2 are shown as dashed blue arcs.

2.4. Detecting potential overlaps

We now describe a strategy for determining which meshes

need to have overlap constraints added. One could add

constraints between every pair of surfaces, but this would

result in an unnecessarily large graph. As the run-time and

resource use of the QPBO method is related to the size of

the graph, we want it to be as small as possible.

Often, one chooses a base-surface mesh which approx-

imates a sphere of some radius r centered at a point c. In

this case, the node farthest from the center in each normal

aligned column will have distance d = r+δstepnstep from c.

Thus, the fitted mesh will be contained in a bounding sphere

of radius d centered at c.

From this, it follows that two meshes (whose base-surface

approximates a sphere) can only overlap if their bounding

spheres intersect. This happens when D < dA + dB , where

D is the distance between the mesh centers, and dA, dB
are the radii of the two bounding spheres. Therefore, when

adding overlap constraints, we first compute all pairwise

center distances, and then only add constraints for meshes

whose bounding spheres intersect.

For more general meshes, one could also use distance

fields, bounding boxes, or, in the case of a few objects,

manual annotation to determine which meshes could overlap.

3. Results and discussion

We now apply the developed method to three data sets

with known ground truth segmentations. The first consists of

a simulated fluorescence microscopy image of HL60 cell nu-

clei (see Figure 6a) [22]. As the data is computer-generated,

we know the ground truth segmentation for the entire volume.

The task is to segment the cells and the main challenge is the

low contrast between foreground and background and the

small distance between cells. We increased the segmenta-

tion difficulty further by adding Poisson and Gaussian noise

(std. dev. of 40 with image intensity values between 0 and

255) per the description in [21]. We refer to this data set as

simulated cells.

The second data set is a 3D confocal microscopy image

of C. Elegans embryos (see Figure 6b) [17]. Here, we only

have ground truth segmentations for a single xy-slice. Again,

the task is to segment the cells and the challenge is the high

noise level of the image and poorly defined object boundaries.

Furthermore, we again have many closely packed objects.

We refer to this data set as cells.

The third data set is a 3D X-ray tomographic microscopy

image of liquid foam (see Figure 6c) [16, 18] from the To-

moBank data repository [6]. As no ground truth is provided,

we have manually annotated a single xy-slice to quantita-

tively evaluate the performance of the methods. The task is

to segment individual foam bubbles, which is made difficult

since the walls between bubbles are often not visible in the

3D image. We refer to this data set as foam.

The sizes of the data sets are shown in Table 1.

Data set Size [voxels] Voxel size [μm]

Sim. cells [22] 349 × 639 × 59 0.125 × 0.125 × 0.200

Cells [17] 512 × 708 × 35 0.090 × 0.090 × 1.000

Foam [18, 16] 504 × 504 × 230 6.000 × 6.000 × 6.000

Table 1: Size of the data sets.

For the segmentation of the images, we place a geodesic

4-frequency subdivided icosahedron at the center of each

object. For the simulated cells and cells data set, center

positions were manually annotated. For the foam data set,

bubble centers were found by first binarizing the image and

then finding local maxima of the distance transform. The

radius of the base-mesh was chosen as one voxel. When sam-

pling along the normal-aligned columns, steps were scaled

to move an equal number of μm along each axis. We use the

region based cost function from [10]. The parameters used

for segmentation are shown in Table 2. For the cells data set,

the in-region and out-region costs were scaled such that their

sum over the image region resulted in the same value.

We evaluated the segmentation performance using the

Dice similarity coefficient (also known as F1 score), bound-

ary F1 (BF) score [5], and Jaccard score (also known as

intersection over union). For the simulated cells data set, a

score was computed for each segmented object. For the cells

and foam data set, a score was only computed for meshes

which intersected the xy-slice with known ground truth. Cor-

respondences between segmentations and ground truth labels

were determined a priori. If an intersecting mesh did not

have a corresponding label, it was assigned a score of 0.

The segmentation of each data set with and without over-



(a) Sim. cells (b) Cells (c) Foam

Figure 6: Top row: 3D renderings of the data sets. Bottom row: xy-slices of the data sets.

Sim. cells Cells Foam

Param. w/o w/ w/o w/ w/o w/

µin 105 105 100 100 −0.0002 −0.0002

µout 90 90 5 5 0.0022 0.0022

σin 4 4 20 20 0.02 0.02

σout 4 4 20 20 0.04 0.04

∆ 7 8 9 9 2 2

δstep 0.5 0.5 0.5 0.5 0.5 0.5

nstep 90 90 50 50 30 30

Table 2: Method parameters used for segmentation. See [10] for

explanation of the µ and σ parameters.

lap constraints are shown in Figure 9. Figure 7 and Table 3

summarize the segmentation scores for each data set. For

the segmentations with overlap constraints, we achieved a

full assignment for all data sets. Adding overlap constraints

generally results in an improved segmentation, especially

for the foam data set. For the cells data set, there is a small

decrease in the maximum score. This can partly be attributed

to the fact that we only measure the segmentation quality in

a single xy-slice. Thus, adding the overlap constraints may

cause some local degradations of segmentation quality, even

if the overall (3D) segmentation may be better. The reason

this does not happen for the foam data set is that overlap

Sim. cells Cells Foam

w/o w/ w/o w/ w/o w/

Dice Mean 0.83 0.84 0.61 0.62 0.81 0.88

Max. 0.91 0.91 0.91 0.89 0.97 0.98

Min. 0.51 0.58 0.00 0.00 0.00 0.00

BF Mean 0.96 0.97 0.66 0.66 0.95 0.98

Max. 1.00 1.00 1.00 1.00 1.00 1.00

Min. 0.77 0.88 0.00 0.00 0.00 0.00

Jaccard Mean 0.72 0.73 0.50 0.49 0.73 0.81

Max. 0.84 0.84 0.84 0.81 0.95 0.95

Min. 0.34 0.41 0.00 0.00 0.00 0.00

Table 3: Summary of statistics segmentation scores with and with-

out overlap constraints. The best scores for each data set have been

marked with bold (the marking is based on additional decimals).

is a much bigger problem here than for the cells data set.

Therefore, fixing it results in a greater overall improvement.

As Figure 7 demonstrates, most of the segmentation im-

provements come from increasing the quality of the worst

segmentations. This is a direct result of removing non-

physical segmentation overlap, as shown in Figure 8. When

objects are allowed to overlap the segmentation of one ob-

ject can stray into a neighboring object which increases



Dice BF Jaccard (IoU)

0.6

0.8

1

(a) Simulated cells.

Dice BF Jaccard (IoU)

0

0.5

1

(b) Cells.

Dice BF Jaccard (IoU)
0.4

0.6

0.8

1

(c) Foam.

Without overlap constraints With overlap constraints

Figure 7: Boxplots of segmentation scores with and without overlap

constraints.

the number of false positives. When this is prevented, the

segmentations follow the true object contours more closely.

Furthermore, the segmentations now resemble the physical

reality more, since distinct object cannot overlap.

Finally, the method was found to be fairly robust to small

parameter changes. However, changing ∆, δstep, or δstep
could have significant effects on the run time, as they directly

affect the size of the graph.

4. Conclusion and further work

In this paper, we have presented an extension for multi-

object graph-based segmentation which allows us to enforce

that segmented objects may not overlap. The extension

worked by separating neighboring objects with planes whose

position was determined dynamically. When applied to data

sets with known ground truth segmentations, adding overlap

constraints resulted in quantitative improvements. Further-

more, overlap prevention also qualitatively improved the

segemtnations as they better complied with physical reality.

It is worth noting that our extension is not restricted to

the basic version of the graph cut method used in this paper.

Indeed, it can be applied to any method in the graph cut fam-

(a) Simulated cells.

(b) Cells.

(c) Foam.

Without overlap constraints With overlap constraints

Figure 8: Examples of non-physical segmentation overlaps which

are corrected by our method. Figures show cross-sections of fitted

surface meshes overlaid on xy-slices of the data.

ily, since it only adds additional constraints to the existing

graph structures but does not otherwise modify them.

Furthermore, it is possible to generalize the extension

to separate objects with other surfaces than planes, which

would increase its usefulness. The current construction could

instead use the level sets of any suitable function as the

separating surfaces. However, if the separating surfaces have

curvature, some amount of overlap will be possible due to

the discrete nature of meshes. Developing the mathematical

theory for this more general construction will be the subject

of future work.

Acknowledgements: This work is partly supported by

The Center for Quantification of Imaging Data from MAX

IV (QIM) funded by The Capital Region of Denmark



(a) Sim. cells (b) Cells (c) Foam

Figure 9: Segmentation results overlaid on data. Blue surfaces and curves were fitted without overlap constraints, red ones with overlap

constraints. Rows 1 and 3 show the fitted surface meshes overlaid on 3D rendering of data. Rows 2 and 4 show cross-sections of surface

meshes overlaid on xy-slices of the data.



References

[1] Junjie Bai, Abhay Shah, and Xiaodong Wu. Optimal multi-

object segmentation with novel gradient vector flow based

shape priors. Computerized Medical Imaging and Graphics,

69:96–111, nov 2018. 1

[2] Stephen P. Boyd and Lieven. Vandenberghe. Convex opti-

mization. Cambridge University Press, 2004. 1

[3] Yuri Boykov and Vladimir Kolmogorov. An Experimental

Comparison of Min-Cut/Max-Flow Algorithms for Energy

Minimization in Vision. IEEE Transactions on Pattern Anal-

ysis & Machine Intelligence, 26(9):1124–1137, 2004. 3

[4] Xinjian Chen and Lingjiao Pan. A Survey of Graph

Cuts/Graph Search Based Medical Image Segmentation.

IEEE Reviews in Biomedical Engineering, 11:112–124, 2018.

3

[5] Gabriela Csurka, Diane Larlus, Florent Perronnin, and France

Meylan. What is a good evaluation measure for semantic seg-

mentation?. In British Machine Vision Conference, volume 27,

page 2013, 2013. 5

[6] Francesco De Carlo, Doğa Gürsoy, Daniel J Ching, K Joost

Batenburg, Wolfgang Ludwig, Lucia Mancini, Federica

Marone, Rajmund Mokso, Daniël M Pelt, Jan Sijbers, et al.

TomoBank: a tomographic data repository for computa-

tional X-ray science. Measurement Science and Technology,

29(3):034004, 2018. 5

[7] Andrew Delong and Yuri Boykov. Globally Optimal Segmen-

tation of Multi-Region Objects. In International Conference

on Computer Vision, pages 285–292. IEEE, 2009. 1

[8] Jan Egger, Miriam H.A. Bauer, Daniela Kuhnt, Barbara Carl,

Christoph Kappus, Bernd Freisleben, and Christopher Nim-

sky. Nugget-cut: A segmentation scheme for spherically- and

elliptically-shaped 3D objects. In Joint Pattern Recognition

Symposium, pages 373–382. Springer, 2010. 2

[9] Daniel Freedman and Petros Drineas. Energy minimization

via graph cuts: Settling what is possible. In Computer Vision

and Pattern Recognition, pages 939–946. IEEE, 2005. 3, 4

[10] Mona Haeker, Michael Abràmoff, Milan Sonka, Xiaodong

Wu, and Randy Kardon. Incorporation of Regional Infor-

mation in Optimal 3-D Graph Search with Application for

Intraretinal Layer Segmentation of Optical Coherence Tomog-

raphy Images. In Information Processing in Medical Imaging,

pages 607–618. Springer, 2007. 3, 5, 6

[11] Fredrik Kahl and Petter Strandmark. Generalized roof duality

for pseudo-boolean optimization. In International Conference

on Computer Vision, pages 255–262. IEEE, 2011. 3

[12] Dagmar Kainmueller, Hans Lamecker, Stefan Zachow, and

Hans Christian Hege. Coupling deformable models for multi-

object segmentation. In International Symposium on Biomed-

ical Simulation, pages 69–78. Springer, 2008. 1, 2

[13] Vladimir Kolmogorov and Carsten Rother. Minimizing non-

submodular functions with graph cuts - A review. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

29(7):1274–1279, 2007. 3, 4

[14] Vladimir Kolmogorov and Ramin Zabih. What Energy Func-

tions can be Minimized via Graph Cuts? IEEE Transactions

on Pattern Analysis and Machine Intelligence, 26(2):147–159,

2004. 3, 4

[15] Kang Li, Xiaodong Wu, Danny Z. Chen, and Milan Sonka.

Optimal surface segmentation in volumetric images - A graph-

theoretic approach. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 28(1):119–134, 2006. 2, 3

[16] Rajmund Mokso, Christian M Schlepütz, Gerd Theidel,

Heiner Billich, Elmar Schmid, Tine Celcer, Gordan Mikul-

jan, Leonardo Sala, Federica Marone, Nick Schlumpf, et al.

GigaFRoST: the gigabit fast readout system for tomography.

Journal of synchrotron radiation, 24(6):1250–1259, 2017. 5

[17] John Isaac Murray, Zhirong Bao, Thomas J Boyle, Max E

Boeck, Barbara L Mericle, Thomas J Nicholas, Zhongying

Zhao, Matthew J Sandel, and Robert H Waterston. Automated

analysis of embryonic gene expression with cellular resolution

in c. elegans. Nature methods, 5(8):703, 2008. 5

[18] C Raufaste, B Dollet, K Mader, S Santucci, and R Mokso.

Three-dimensional foam flow resolved by fast X-ray tomo-

graphic microscopy. Europhysics Letters, 111(3):38004–

38010, 2015. 5

[19] Carsten Rother, Vladimir Kolmogorov, Victor Lempitsky, and

Martin Szummer. Optimizing Binary MRFs via Extended

Roof Duality. In Computer Vision and Pattern Recognition,

pages 1–8. IEEE, 2007. 3

[20] Qi Song, Xiaodong Wu, Yunlong Liu, Mark Smith, John

Buatti, and Milan Sonka. Optimal graph search segmentation

using arc-weighted graph for simultaneous surface detection

of bladder and prostate. In Medical Image Computing and

Computer-Assisted Intervention, pages 827–835. Springer,

2009. 1, 2

[21] David Svoboda, Michal Kozubek, and Stanislav Stejskal. Gen-

eration of digital phantoms of cell nuclei and simulation of

image formation in 3D image cytometry. Cytometry Part A,

75A(6):494–509, 2009. 5

[22] David Svoboda and Vladimı́r Ulman. MitoGen: A framework

for generating 3D synthetic time-lapse sequences of cell pop-

ulations in fluorescence microscopy. IEEE Transactions on

Medical Imaging, 36(1):310–321, 2016. 5

[23] Yao Wang and Reinhard Beichel. Graph-based segmentation

of lymph nodes in CT data. In International Symposium on

Visual Computing, pages 312–321. Springer, 2010. 2

[24] Xiaodong Wu and Danny Z. Chen. Optimal Net Surface

Problems with Applications. In International Colloquium on

Automata, Languages, and Programming, pages 1029–1042.

Springer, 2002. 2, 3

[25] Yin Yin, Xiangmin Zhang, Rachel Williams, Xiaodong Wu,

Donald D. Anderson, and Milan Sonka. LOGISMOS-layered

optimal graph image segmentation of multiple objects and

surfaces: Cartilage segmentation in the knee joint. IEEE

Transactions on Medical Imaging, 29(12):2023–2037, dec

2010. 1, 2


