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Abstract

Existing learning-based methods to automatically trace

axons in 3D brain imagery often rely on manually annotated

segmentation labels. Labeling is a labor-intensive process

and is not scalable to whole-brain analysis, which is needed

for improved understanding of brain function. We propose

a self-supervised auxiliary task that utilizes the tube-like

structure of axons to build a feature extractor from unla-

beled data. The proposed auxiliary task constrains a 3D

convolutional neural network (CNN) to predict the order of

permuted slices in an input 3D volume. By solving this task,

the 3D CNN is able to learn features without ground-truth

labels that are useful for downstream segmentation with the

3D U-Net model. To the best of our knowledge, our model

is the first to perform automated segmentation of axons im-

aged at subcellular resolution with the SHIELD technique.

We demonstrate improved segmentation performance over

the 3D U-Net model on both the SHIELD PVGPe dataset

and the BigNeuron Project, single neuron Janelia dataset.

1. Introduction

Understanding brain connectivity is a long-standing goal

in the neuroscience community. Recent advances in opti-

cal microscopy-based imaging methods, including CLAR-

ITY [1], Magnified Analysis of the Proteome (MAP) [12],

and SHIELD [21], have enabled high-resolution, densely

stained imaging of subcellular structures, such as axons.

With these new imaging capabilities comes the need for new

machine learning and image processing pipelines to detect

axons and compute network connectivity. Existing meth-

ods, such as the work of Hernandez et al. [8], first use a
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Figure 1: Max intensity projections of dense axons acquired using

the SHIELD technique. Full volume is shown on the left (2048×
2048×1271) with box indicating labeled subvolume (256×256×
206), shown on the right. Due to axon density, labeling is time-

consuming and difficult, motivating our work to utilize unlabeled

data during training.

3D CNN to segment the 3D volume, then skeletonize the

detected axon voxels, and finally refine the axons with gap

correction to mitigate segmentation errors and imaging arti-

facts. We focus our efforts on the first step of this pipeline,

segmentation of 3D microscopy volumes.

Machine learning methods for image and volume seg-

mentation are often dependent on sufficient amounts of

manually annotated training labels, which can be extremely

difficult and time-consuming to acquire for 3D microscopy

data. In this paper, we present a method to alleviate this de-

pendency on labeled data through the use of self-supervised

feature extraction.

1.1. Contributions

We present a self-supervised approach to utilize unla-

beled 3D microscopy data for axon segmentation. The en-

coder of the 3D U-Net model proposed by Çiçek et al.

[2] is first pre-trained on an auxiliary task using unlabeled

data and then the entire 3D U-Net model is fine-tuned on

the axon segmentation task using labeled data. Using this



framework, we present the proposed auxiliary task, which

involves reordering slices in each training subvolume so that

the tube-like structure of axons is corrupted. The auxiliary

task is to then use the 3D U-Net encoder and an auxiliary

classifier to predict the permutation that was used to reorder

the slices of each input subvolume, encouraging the encoder

to learn features related to axon structure. We also dis-

cuss a component of our self-supervised learning loss func-

tion, dubbed information weighting. Information weight-

ing is used to prevent penalization of poor performance on

training samples with few or no axons. Finally, we demon-

strate the benefits of our methods on two optical microscopy

datasets, one containing dense axons from the mouse hip-

pocampus imaged with SHIELD and one containing single

neurons from the adult Drosophila nervous system.

Specifically, we make the following contributions:

• A self-supervised auxiliary task for 3D U-Net archi-

tectures that improves axon segmentation performance

over existing methods.

• A methodology for improving training performance on

datasets with variable axon densities, which we refer to

as information weighting.

• An empirical evaluation of the impact of the proposed

auxiliary task on axon segmentation performance.

2. Related Work

2.1. Brain Mapping

Mapping of the brain has advanced rapidly in recent

years with the release of the BigNeuron Project, led by the

Allen Institute, which includes neuronal reconstruction al-

gorithms and publicly available, single neuron datasets to

benchmark against [22]. Despite these advances, tracing of

both single neurons and dense axons remains a challenging

task. Existing methods can be generally classified as either

image processing-based or deep learning-based.

Image processing-based methods often start with gener-

ating an over-segmentation with watershed [13, 27], fol-

lowed by region proposal merging [5, 14, 20]. Common

methods for region proposal merging include simulated an-

nealing [24] and hierarchical clustering [9]. Deep learning-

based methods for brain mapping often use segmentation

techniques to distinguish axons and neurons from other

anatomy [15, 16, 28]. U-shaped architectures, such as 3D

U-Net [2] are most popular for this task. Various improve-

ments have been suggested for the use of 3D U-Net to trace

axons and neurons [28]. Other deep-learning-based meth-

ods use flood-filling to trace neurons outward from an initial

neuron voxel [10]. While many of these methods operate on

electron microscopy data, we focus on automated segmen-

tation of axons present in optical microscopy data.

Figure 2: Our proposed model. The encoder and auxiliary classi-

fier are first trained to learn the proposed self-supervised auxiliary

task. Then, 3D U-Net, composed of the pre-trained encoder and

randomly initialized decoder, is trained on the segmentation task

using the limited labels available.

2.2. SelfSupervised Learning

Self-supervised learning (SSL) is a form of unsupervised

learning that has become widely popular in recent years

[3, 4, 6, 17, 18]. SSL methods leverage large unlabeled

datasets by withholding portions of the dataset and creating

auxiliary tasks whose goal is to predict the withheld portion.

Once trained on the auxiliary task, relevant learned repre-

sentations can be transferred to a target supervised learning

task. These approaches are most beneficial in data regimes

where labeled data is sparse [26, 30], which is often the case

for medical datasets. Additionally, these approaches have

the benefit of learning features from the auxiliary task that

can lead to more robust models [7]. This robustness is likely

due to the auxiliary task forcing new semantic features to be

learned that are applicable to the target task [23].

Several SSL methods have been proposed for classifica-

tion, regression, and segmentation of 3D medical volumes.

Often these methods extend auxiliary tasks proposed for 2D

images, such as the work of Zhuang et al. [32], which ex-

tended the jigsaw puzzle task by Noroozi and Favaro [18]

into the task of solving a Rubik’s cube. Instead of reorder-

ing patches in a 2D image, the volume is broken into cubes

that are scrambled and rotated, requiring the CNN to predict

both the cube order and rotation. Features learned in the

Rubik’s cube task were shown to be helpful for both clas-

sification and segmentation of CT data. Zhang et al. [31]

proposed a slice ordering task for body part recognition in

CT data, but did not use a 3D CNN and instead built a 2D

CNN classifier to identify the relative position of pairs of

input slices randomly sampled from the input 3D volume.

They observed that this task forces the CNN to learn spa-

tial context information helpful for the downstream, body

recognition task. Inspired by these approaches, we propose

an auxiliary task to improve axon segmentation. Because

our experiments indicated that learning the Rubik’s cube



task for SHIELD data is highly difficult, we focused our ef-

forts on re-formulating the slice ordering task to maximize

axon segmentation performance.

3. Proposed Method

In our work, we propose incorporating self-supervised

learning into the popular 3D U-Net segmentation model.

First, the 3D U-Net encoder is pre-trained on an auxiliary

task that requires no labels. Once trained, the entire 3D U-

Net model, including the pre-trained encoder and the ran-

domly initialized decoder, can be trained on the axon seg-

mentation task using limited labeled data. Figure 2 illus-

trates our model, including the auxiliary classifier used to

solve the auxiliary task.

3.1. SelfSupervised Auxiliary Task

Our proposed self-supervised auxiliary task is motivated

by the tube-like structure of axons. We treat the slices of

each 3D volume as frames in a video that can be reordered,

as is done in the shuffle and learn task proposed by Misra

et al. [17]. By reordering the slices, the structure of axons

in the volume is corrupted. Rather than tasking the CNN

with predicting whether the slices are in the correct order,

we instead task it with classifying the permutation used to

reorder the slices. We opt for this more challenging task

based on previous work that has shown that more difficult

auxiliary tasks produce more useful feature representations

[19, 26].

The proposed auxiliary task requires that each training

sample be split into slices along an axis. We chose to use

the z-axis because this is the primary direction in which ax-

ons and neurons move in the datasets used. If each train-

ing sample has a size X × Y × Z, then there are Z! pos-

sible permutations of slices along the z-axis. In our exper-

iments, we chose Z = 8. We first construct a set of N

random permutations of the Z slices and enforce a mini-

mum hamming distance between each selected permutation

as was done in the work of Noroozi and Favaro [18]. En-

forcing a minimum distance between permutations reduces

ambiguity in the auxiliary task by guaranteeing no permu-

tations are highly similar. During training, a random per-

mutation from the constructed set is applied to each train-

ing sample. The CNN is then tasked with predicting the

index, 0 to N , of the permutation used. For example, the

original order of slices in a training sample can be repre-

sented as [0, 1, 2, 3, 4, 5, 6, 7] and a possible permutation is

[5, 2, 1, 7, 0, 4, 6, 3]. We used a one-hot encoding to label

each training sample where argmax of the encoding is the

index to the permutation applied to the sample.

We trained the encoder of the 3D U-Net model and an

auxiliary classifier together to learn the proposed auxiliary

task. We chose to use the 3D U-Net encoder to enable

downstream transfer of the learned features into the full 3D

U-Net model used for segmentation. Whereas the output of

the encoder would normally be input to the decoder, during

training of the auxiliary task, we instead pass it into the aux-

iliary classifier, composed of two fully connected layers and

a final softmax activation layer. The output of the auxiliary

classifier is a one-hot encoding of length N . The auxiliary

classifier architecture is shown in Figure 2.

3.2. SelfSupervised Loss

The proposed auxiliary task is trained using cross-

entropy loss and information weighting. We define informa-

tion weighting as the ratio of the sum of the training sample

to the sum of the whole volume that the sample was drawn

from. This can be stated as

L(y, ŷ, xj , x) =

∑Vj

i=1
xj

∑V

i=1
x

×

(

−

N
∑

i=1

yi × log ŷi

)

(1)

In Equation 1, y is the index of the permutation, ŷ is the

predicted index of the permutation, xj is the flattened, per-

muted subvolume, and x is the flattened full volume from

which xj was drawn. The weighting of the cross-entropy is

motivated by the observation that axons have a higher voxel

intensity than the background. Therefore, we expect sub-

volumes with more axons and hence more information to

have a higher sum of voxel intensities than subvolumes with

fewer axons. Because only axons are visible in microscopy

data generated with CLARITY, MAP, and SHIELD, if there

are no axons present in a selected subvolume, then there

is no information available to predict slice order or struc-

ture. Thus, the task of permutation classification becomes

impossible. Information weighting is introduced to avoid

penalizing poor performance in this situation. We assume

uniform noise across whole volumes.

3.3. Implementation & Training Details

Our implementation was developed in PyTorch and is

available online1. We used ADAM [11] as an optimizer and

an initial learning rate of 1 × 10−3 for both the auxiliary

and segmentation tasks. Early stopping was used to prevent

overfitting and training ended after 100 epochs without im-

provement in validation loss. During training of both the

auxiliary and segmentation tasks, subvolumes of a speci-

fied size were randomly sampled from the training volumes.

During validation and inference, a sliding window of the

same size was used to sample across the volume, ensuring

the same subvolumes were sampled each time validation or

testing was done. We utilized the 3D U-Net implementation

by Wolny et al. [29]. For the auxiliary task, the number of

slices per sample was set to eight in each experiment. For

the segmentation task, binary cross-entropy loss was used

and rotation was randomly applied to each axis of training

samples for augmentation.

1https://github.com/tzofi/ssl-for-axons
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Figure 3: Examples of segmentation masks generated by 2D U-Net, 3D U-Net, and the proposed approach. On the top are results from

the SHIELD PVGPe dataset and on the bottom are results from the Janelia dataset. Results are not thresholded and pixel intensities embed

model confidence. The proposed approach generates higher confidence and more precise segmentation predictions.

4. Experimental Results

4.1. Datasets

4.1.1 SHIELD PVGPe Dataset

We trained and evaluated our models on a microscopy

dataset called PVGPe imaged from a one mm-thick mouse

brain tissue that includes areas of globus pallidus externa,

globus pallidus interna, substantia nigra reticulata, and sub-

thalamic nucleus mouse. The tissue was stained with calre-

tinin antibody immunostaining, prepared using the SHIELD

technique [21], and imaged using a light-sheet imager

(SMARTSPIM, Lifecanvas) after 3X tissue expansion. The

acquired PVGPe image volume is 2048×2048×1271 vox-

els, with a voxel resolution of 0.65 × 0.65 × 2 µm in x, y,

z. The labeled subvolume is 256 × 256 × 206. The max

intensity projections for both are shown in Figure 1. We

first preprocessed the PVGPe volumes by clipping the low-

est and highest values, applying a median filter, and scal-

ing values between zero and one with min-max normaliza-

tion. We then split the labeled PVGPe subvolume as fol-

lows for segmentation training: 128× 256× 206 for train-

ing, 64 × 256 × 206 for validation, and 64 × 256 × 206
for testing. When pre-training the 3D U-Net encoder on

the auxiliary task, the same training subvolume was used.

We also experimented with increasing the amount of train-

ing data for the auxiliary task by including an additional,

equally sized, training subvolume. These experiments are

called Proposed and Proposed+, respectively. The addi-

tional subvolume used was sampled from an area adjacent

to the original training subvolume to reduce variability in

axon density that is present throughout the volume.

4.1.2 Janelia Dataset

We also evaluated the proposed approach on the Janelia

dataset from the BigNeuron Project [22], consisting of op-

tical microscopy data of single neurons from the adult

Drosophila nervous system. This dataset includes 42 vol-

umes. 35 volumes were used for self-supervised training

and 18 of those 35 were also used to train the supervised

segmentation model. Of the remaining seven volumes, three

were used for validation and four were used for testing. We

scaled all volumes between zero and one using min-max

normalization. As in Wang et al. [28]’s prior work utilizing

this dataset, we used a sample size of 128 × 128 × 64 for

training and inference.

4.2. Segmentation Experiments

In this section, we compare the performance of the pro-

posed self-supervised 3D U-Net model with other methods,

including past work by Hernandez et al. [8], the 2D U-

Net model developed by Ronneberger et al. [25], and the

3D U-Net model developed by Çiçek et al. [2]. We used

Area Under the Curve (AUC) and top F1 score as metrics

to measure voxel-level segmentation accuracy. AUC was

computed with threshold increments of 0.05. For each ex-

periment, we trained the model six times and report both the

mean and standard deviation of the AUC and F1 metrics.

For all experiments that included pre-training the 3D

U-Net encoder for the auxiliary task, we used eight slices



Method Sample Size AUC Mean AUC Std. F1 Mean F1 Std.

3D CNN (Hernandez [8]) 19× 19× 19 0.4305 – 0.4710 –

2D U-Net (Ronneberger [25]) 32× 32× 1 0.4942 0.0125 0.5179 0.0106

3D U-Net (Çiçek [2]) 32× 32× 32 0.4239 0.0374 0.4913 0.0453

Proposed Approach 32× 32× 32 0.4652 0.0294 0.5845 0.0075

Proposed+ Approach 32× 32× 32 0.4661 0.0294 0.5884 0.0097

2D U-Net (Ronneberger [25]) 128× 128× 1 0.2756 0.0344 0.3800 0.0485

3D U-Net (Çiçek [2]) 128× 128× 64 0.3397 0.0322 0.5236 0.0636

Proposed Approach 128× 128× 64 0.4088 0.0601 0.5576 0.0251

Proposed+ Approach 128× 128× 64 0.4523 0.0626 0.5718 0.0150

Table 1: Average performance of models over six trials on the SHIELD PVGPe dataset containing dense axons. The proposed approach

consists of pre-training the 3D U-Net encoder on an auxiliary task using unlabeled data and then training the entire 3D U-Net on the

segmentation task. Proposed+ utilizes twice as much training data for the auxiliary task and achieves the highest AUC among 3D models

and highest F1 score among all models. F1 standard deviation (std) is also lower among models trained with the proposed approach.

Method Sample Size AUC Mean AUC Std. F1 Mean F1 Std.

2D U-Net (Ronneberger [25]) 128× 128× 1 0.6782 0.0131 0.6603 0.0050

3D U-Net (Çiçek [2]) 128× 128× 64 0.6796 0.0164 0.6965 0.0069

Proposed Approach 128× 128× 64 0.6971 0.0215 0.7062 0.0053

Table 2: Performance of models on the Janelia dataset containing single neurons. Each model was trained and evaluated six times to

compute mean and standard deviation (std) values.

along the z-axis per sample and generated ten permutations,

tasking the auxiliary classifier with predicting which of the

ten permutations was used to reorder each sample.

4.2.1 SHIELD PVGPe Dataset Results

Results are shown in Table 1 and indicate that the proposed

self-supervised method outperforms both the 3D CNN used

by Hernandez et al. [8] and the 2D and 3D U-Net models.

We carried out two sets of segmentation experiments, one

with 32×32×32 sized samples and one with 128×128×64
sized samples. During these experiments, the 2D U-Net

model was trained with one slice per sample, i.e. 32×32×1
and 128 × 128 × 1, and the self-supervised auxiliary task

used in the proposed method was trained with eight slices

per sample, i.e. 32 × 32 × 8 and 128 × 128 × 8. Self-

supervised pre-training resulted in improved performance

in both sets of experiments and had the most significant im-

pact when larger, and thus fewer, samples were used. For

larger sample sizes, the self-supervised approach improved

AUC by over 10% and F1 by nearly 5% over the 3D U-Net

model. Despite the proposed approach also achieving the

highest F1 score when smaller sample sizes were used, the

2D U-Net achieved the highest AUC. We argue F1 as the

more important metric for axon segmentation as it indicates

the ability of the model to maximize recall and precision

simultaneously, and has a larger impact on qualitative re-

sults, as shown in Figure 3. In each set of experiments, we

trained the 2D and 3D U-Net models, and two variants of

the proposed approach, Proposed and Proposed+. Proposed

used only the segmentation training subvolume to train the

auxiliary task, whereas Proposed+ included an additional

training subvolume to train the auxiliary task. We observed

that even if all data are labeled and can be used to train the

segmentation model, there is still benefit in first learning the

auxiliary task. Furthermore, increasing the amount of unla-

beled training data for the auxiliary task leads to increased

downstream segmentation accuracy, as Proposed+ achieved

the highest F1 score in both sets of experiments.

All experiments that included self-supervised pre-

training of the encoder had a lower standard deviation in

top F1 score than 3D U-Net, indicating that random weight

initialization had less of an impact on performance when

the encoder was pre-trained on the auxiliary task. We also

observed that models that were first pre-trained generated

predictions that were less noisy and higher confidence than

all other models evaluated, as shown in Figure 3.

In evaluating the accuracy of the proposed model on the

auxiliary task, we conducted 50 trials to account for ran-

domness in permutation selection per input subvolume. The

resulting mean test accuracy was 67%, indicating that the

network was able to learn the auxiliary task effectively.

4.2.2 Janelia Dataset Results

When segmenting single neurons in the Janelia dataset, we

used sample sizes of 128× 128× 8 for self-supervised pre-

training and 128×128×64 for segmentation. The 2D U-Net



model was trained with sample sizes of 128 × 128 × 1 in

these experiments. The proposed self-supervised approach

resulted in incremental improvements in both AUC and F1

score over both the 2D and 3D U-Net models during six

trials, as shown in Table 2. The mean AUC improved ap-

proximately 1% and the mean F1 score improved 1.75%

over the 3D U-Net model. While still beneficial to per-

formance on the Janelia dataset, the proposed approach ap-

pears to have a larger impact on more challenging segmen-

tation tasks that have less labeled data, as was the case with

the SHIELD PVGPe dataset. Resulting segmentation masks

for the Janelia dataset are shown in Figure 3.

5. Discussion

Our results indicate that features learned from a self-

supervised auxiliary task can be used to improve axon seg-

mentation. In analyzing the precision and recall values that

contribute to the AUC for each model, we observed that, in

comparison to both the 2D and 3D U-Net models, the pro-

posed approach consistently yields higher precision. This

finding suggests that incorporating the proposed auxiliary

task may help reduce false positives and noise, which is fur-

ther supported by the segmentation masks, shown in Figure

3. We also noticed that there is a notable amount of vari-

ability in training these models, especially due to the small

amount of labeled training data. We capture this variability

by training each model six times and reporting the standard

deviation in test performance. Additional trials could lead

to incremental changes in results. Furthermore, the incor-

poration of additional labeled data for training, validation,

and testing would decrease variability and better capture the

overall benefit of the proposed models.

6. Conclusion

This paper proposed the use of self-supervised learning

to extract features from unlabeled microscopy data that can

be utilized for improved axon segmentation. Our work is

the first to demonstrate automated segmentation of axons in

data imaged with the SHIELD technique. We focused on an

auxiliary task centered around reordering slices in each in-

put 3D subvolume and constraining the 3D U-Net encoder

and an auxiliary classifier to predict the permutation used

for the reordering. By learning to solve this task, the 3D U-

Net encoder learns high-level features regarding axon struc-

ture that can be transferred into the full 3D U-Net model for

segmentation. We demonstrated that this approach results

in higher segmentation accuracy than achieved with exist-

ing models on both the dense axon SHIELD PVGPe dataset

and the single neuron Janelia dataset from the BigNeuron

Project. The proposed approach can easily be incorporated

into the widely used 3D U-Net to improve axon segmenta-

tion in optical microscopy data.
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