Estimation of Orientation and Camera Parameters from Cryo-Electron Microscopy Images with Variational Autoencoders and Generative Adversarial Networks

Nina Miolane
Stanford University
nmiolane@stanford.edu

Frédéric Poitevin
Stanford University
frederic.poitevin@stanford.edu

Yee-Ting Li
SLAC National Accelerator
ytl@slac.stanford.edu

Susan Holmes
Stanford University
susan@stat.stanford.edu

Abstract

Cryo-electron microscopy (cryo-EM) is capable of producing reconstructed 3D images of biomolecules at near-atomic resolution. However, raw cryo-EM images are only highly corrupted - noisy and band-pass filtered - 2D projections of the target 3D biomolecules. Reconstructing the 3D molecular shape requires the estimation of the orientation of the biomolecule that has produced the given 2D image, and the estimation of camera parameters to correct for intensity defects. Current techniques performing these tasks are often computationally expensive, while the dataset sizes keep growing. There is a need for next-generation algorithms that preserve accuracy while improving speed and scalability. In this paper, we combine variational autoencoders (VAEs) and generative adversarial networks (GANs) to learn a low-dimensional latent representation of cryo-EM images. This analysis leads us to design an estimation method for orientation and camera parameters of single-particle cryo-EM images, which opens the door to faster cryo-EM biomolecule reconstruction.

1. Introduction

Cryo-electron microscopy (cryo-EM) is one of the most promising imaging techniques in biology, as it produces 3D reconstructions of biomolecules at near-atomic resolution. However, raw cryo-EM images are only highly corrupted 2D projections of the target 3D biomolecules. The required reconstruction of a 3D molecular shape starts with the removal of image outliers, the estimation of the biomolecule’s 3D orientation that has produced each 2D image, and the estimation of camera parameters at acquisition. This paper proposes a neural network architecture with geometric regularization in order to perform these three tasks in the latent space of a variational autoencoder.

1.1. Cryo-EM 3D reconstruction

Over the years, protocols for cryo-EM data collection and data processing have matured into a well-defined pipeline [30, 13, 40]. We assume the following image formation model under the weak phase approximation [14]:

\[x_i = \text{PSF}_i \ast \left[P[R_i, V] + \eta_i \right], \quad i = 1, \ldots, n, \]

where \(x_i \) is a \(p \times p \) particle image, \(V \) is a 3D grid of \(p \times p \times p \) voxels whose projection is convolved with the camera’s point-spread function (PSF), and \(\eta \) is the remaining part of the signal, typically assumed to be uncorrelated noise. The operator \(P \) projects the 3D volume along the Z-axis, after the reference volume \(V \) has been subjected to rotation \(R_i \). We refer to \(R_i \) as the “orientation” of the particle. In general, the PSF is inherited from the micrograph from which the particle image was extracted, although it can also be further refined \(a \ posteriori \) [18, 46]. We refer to the PSF as the “camera parameters” that have generated the particle. We see that reconstructing \(V \) from the particle dataset amounts to estimating the rotation assuming they are all properly centered, and the PSF. Equivalently, this could be cast in a Bayesian formulation in a model with latent variables \(\phi = (R, \text{PSF}) \) [37].

In [37], the parameter \(V \) is learned through expectation maximization [11]. It iteratively refines the estimate of \(V \), that depend on the posterior probability of the orientation of each image, given the estimate of \(V \) at the previous step. This posterior probability is calculated numerically by systemically evaluating the agreement between each image and all possible orientation of the current model, at each iteration. This costly step has greatly benefited from paral-
elization using GPUs and hybrid clusters [23] or the implementation of a branch-and-bound algorithm [32] that rules out large regions of the search space, but it remains a computational bottleneck.

1.2. Related work

Deep learning techniques have started to penetrate the data processing pipeline, to speed-up traditional steps of cryo-EM processing and reconstruction [4]. Researchers have trained neural networks to perform fast automated particle picking [42, 45, 41, 5, 6], particle pruning [36], as well as validation and estimation of the resolution of cryo-EM 3D reconstructions [3]. These advances have targeted and accelerated steps before or after the 3D reconstruction itself. They have not addressed the computational burden of the joint orientation estimations and volume reconstruction.

Recently, [44] used a spatial variational autoencoder (VAE) [6] to capture the heterogeneity of 3D structures within a continuous latent space. However, the architecture keeps a computational bottleneck in the orientation estimation required for volume reconstruction. The orientation \(R \) is not estimated through the VAE, but with a global search using a branch and bound algorithm, similar to [32]. In contrast, this paper specifically targets the orientation estimation using a VAE architecture.

Estimating the orientation implies being able to disentangle it from other variables in the latent space of a VAE. State-of-the-art methods for disentangling variables often rely on modifying the VAE loss function. The \(\beta \)-VAE heavily penalizes the regularization factor in the VAE loss and achieves good disentanglement results on images [39]. However, it is unclear if this penalization works for all datasets. Other solutions choose to maximize the mutual information between a few latent variables and the observation (InfoGAN, [10]), an approximation of the total correlation (TC) \((\beta\text{-TCV AE}, [9])\), or the Hilbert-Schmidt Independence Criterion (dHSIC) [28] to enforce independence between the latent representations and arbitrary nuisance factors. Similarly, the variational fair autoencoder (VFAE) [29] uses priors that encourage independence between sensitive and latent factors of variation, to learn invariant representation.

Other solutions tackle disentanglement by encouraging a structure within the latent space of the VAE. FactorVAE [22] enforces independence by encouraging a factorial decomposition of the latent space. The Variationally Inferred Transformational Autoencoder (VITAE) proposes an architecture with two latent spaces to separate spatial transformation from visual style such as shape [12]. Likewise, the spatial VAE was designed to disentangle image orientation and translation from other latent variables [6], by introducing a geometric structure in the decoder. In contrast, our approach disentangles the variables by exploiting the specific geometric structure of the cryo-EM data set.

1.3. Contributions

We approach disentanglement of orientation and camera parameters by studying the geometric properties of the cryo-EM images projected in the latent space of a combination of a variational autoencoder and a generative adversarial network. We show that the projected images possess a structure of “orbits”, in the sense of Lie group theory. Such a structure is expected given the acquisition procedure of cryo-EM images. We use this observation to design an estimation method that computes the orientation and camera parameters of a given image, after outliers removal.

2. Elements of geometry

2.1. Cryo-EM images and the action of rotations

We consider 2D images with compact domain \(\Omega \subset \mathbb{R}^2 \). We adopt the point of view of images as square-integrable functions \(x \) over the domain \(\Omega \); i.e., we write \(x \in L_2(\Omega) \), where \(L_2(\Omega) \) is a Hilbert space. Cryo-EM images of a single particle, represented by a volume \(V \) in \(\mathbb{R}^3 \), form a subspace of \(L_2(\Omega) \). We first consider the ideal cryo-EM data space, written \(C_V(\Omega) \), which consists of hypothetical cryo-EM images acquired without noise and with constant camera parameters. This space is defined as:

\[
C_V(\Omega) = \{ x \in L_2(\Omega) | \exists R_x \in SO(3), x = PSF \ast P(R_x \cdot V) \},
\]

where \(SO(3) \) is the group of 3D rotations, \(R_x \) is the rotation corresponding of the particle volume’s orientation at acquisition time, \(P \) is a projection operator and PSF summarizes the camera parameters.

To understand the geometry of the space \(C_V(\Omega) \), we define the following action of the 3D rotations on cryo-EM images:

\[
\rho : SO(3) \times C_V(\Omega) \rightarrow C_V(\Omega),
\]

\[
(R, x) \rightarrow R \cdot x = PSF \ast P(R \cdot R_x \cdot V).
\]

Mathematically, \(\rho \) is called a Lie group action of the Lie group \(SO(3) \) on the space \(C_V(\Omega) \). We refer to [31, 1, 19] for details on Lie group actions.

Considering cryo-EM particles obtained from a single volume \(V \) with inplane rotations, we can define the subspace \(C_V^{2D}(\Omega) \) of \(C_V(\Omega) \) as:

\[
C_V^{2D}(\Omega) = \{ x \in L_2(\Omega) | \exists R_x \in SO(2), x = PSF \ast P(R_x \cdot V) \},
\]

where the axis of the rotation in \(SO(2) \) corresponds to the axis of the projection \(P \). The action \(\rho \) of the subgroup
$SO(2)$ on the subspace $C_V^{2D}(\Omega)$ is a restriction to $C_V^{2D}(\Omega)$ of the action ρ' of $SO(2)$ on 2D images, defined as follows:

$$\rho' : SO(2) \times L_2(\Omega) \to L_2(\Omega),$$

$$(R, x) \mapsto R \cdot x = x \circ R^{-1},$$

where the image’s domain is rotated by R^{-1}. From now on, we restrict our focus to the cryo-EM image subspace $C_V^{2D}(\Omega)$ within the image space $L_2(\Omega)$ equipped with the action ρ' of 2D rotations.

Figure 1 represents the space of images $L_2(\Omega)$ as the toy Hilbert space \mathbb{R}^2. It shows two cryo-EM images $x_1, x_2 \in C_V^{2D}(\Omega)$ from the same particle V, and another image x_3, as three points in this space. The action of $SO(3)$ is schematically represented there: the image x_1 is transformed into the image $x_2 = R \cdot x_1$ by the action of the rotation R.

![Figure 1. Action of 2D rotations on the space of images $L_2(\Omega)$, schematically represented as \mathbb{R}^2.](image)

2.2. Orbit and isotropy group

The orbit O_x of an image $x \in L_2(\Omega)$ by the action ρ' of $SO(2)$ is defined as the images reachable through the action of rotations on x: $O_x = \{ x' \in L_2(\Omega) \mid \exists R \in SO(2), x' = R \cdot x \}$. On Figure 1, the orbit O_{x_1} of x_1 is represented as the green dotted circle. From the definition, O_{x_1} is also the orbit of x_2 and the two images x_1, x_2 are points on the green dotted circle.

The isotropy group G_x of a image x by the action ρ' is defined as the subgroup of $SO(2)$ formed by the rotations that leave x unchanged: $G_x = \{ R \in SO(2) \mid R \cdot x = x \}$. G_x describes the intrinsic symmetry of the image x and the volume V: the more symmetric is x, the larger its isotropy group, where large is understood in the sense of inclusion.

The isotropy group of the images x_1, x_2 in Figure 1 is restricted to the identity I_2 of the group $SO(2)$. Only the identity leaves the images x_1 and x_2 unchanged. In contrast, the isotropy group of the image x_3 is the whole Lie group of 2D rotations $SO(2)$. Any rotation leaves this image invariant. The image x_3 shows more symmetry than x_1 and x_2, and thus has a larger isotropy group. The asymmetric details of x_1, x_2 are the sign of a smaller isotropy group.

As an intermediate example, consider an image exhibiting C_n symmetry, where C_n is the group of n-fold rotations corresponding to the set of $2D$ rotations with angles in $\frac{2\pi}{n}$. Such image has a greater isotropy group than x_1 and x_2 since $n - 1$ rotations leave it unchanged, on top of the identity I_2. But it exhibits a smaller isotropy group than x_3 since many rotations do affect it.

2.3. Ideal cryo-EM data space $C_V^{2D}(\Omega)$

We describe the geometry of the ideal cryo-EM data space with in-plane rotations $C_V^{2D}(\Omega)$, i.e. cryo-EM images acquired without noise and with constant camera parameters, using the orbit-stabilizer theorem. This theorem links the isotropy group (also called the stabilizer) and the orbit of an image.

Theorem 1 (Orbit-stabilizer Theorem) Consider a Lie group G acting on a space H. Let $x \in H$ be an element of this space. Then, the orbit and isotropy group of x are related by:

$$O_x \sim G/G_x \text{ where } \sim \text{ denotes an isomorphism and } / \text{ the quotient of groups.}$$

Theorem 1 states that an image with a large isotropy group - i.e. an image with a lot of symmetries - has a smaller orbit. On Figure 1, the images x_1, x_2 have a small isotropy group and a circular orbit. In contrast, the image x_3 has a larger isotropy group and its orbit is a single point: x_3 itself.

Using the definition of the space $C_V^{2D}(\Omega)$, we have the following result.

Proposition 1 The space of cryo-EM images $C_V^{2D}(\Omega)$ is isomorphic to $SO(2)/G_x$:

$$C_V^{2D}(\Omega) \sim SO(2)/G_x,$$

where G_x is the isotropy group of any image under the action ρ'.

The symmetries in the slice of volume V considered dictates the geometry of the space of the 2D cryo-EM images with inplane rotations.

2.4. Observed cryo-EM data space

We extend the discussion to the space of observed cryo-EM with in-plane rotations, i.e., taking into account possible variations of the PSF and the noise model. The actual space of cryo-EM images is obtained by perturbing the space $C_V^{2D}(\Omega)$ and can be interpreted as a “noisy” version of $C_V^{2D}(\Omega)$, with a complex model of noise.

Locally at each cryo-EM image $x \in C_V^{2D}(\Omega)$, the space of 2D images decomposes as a sum: $L_2(\Omega) = T_xC_V^{2D}(\Omega) \oplus V_x$, where $T_xC_V^{2D}(\Omega) = T_xO_x$ is the tangent space of the orbit O_x and V_x is a supplementary space. The space V_x represents the variations in images that do not correspond
to 2D rotations, for example, the effects of camera parameters on the image intensity. Our objective is to learn a latent representation of the space of images where we can fit the space \(C^2_L(\Omega) \) by fitting a spherical subspace to our projected data. Then, decomposing the latent space of images as \(T_c C^2_L(\Omega) \oplus V_z \), we use the coordinate on \(T_c C^2_L(\Omega) \) to describe the image’s orientation, and the coordinate on \(V_z \) to describe the other parameters.

3. Methods
3.1. VAE-GAN architecture and training

3.1.1 Review of VAE
We detail the combination of VAE [25, 33] and GAN [17] used in this paper. Consider a dataset \(x_1, ..., x_n \in \mathbb{R}^D \). A VAE models each data point \(x_i \) as the realization of a random variables \(X_i \) generated from a nonlinear probabilistic model with lower-dimensional unobserved latent variable \(Z_i \) taking value in \(\mathbb{R}^L \), where \(L < D \), such as:

\[
X_i = f_\theta(Z_i) + \epsilon_i, \tag{3}
\]

where \(\epsilon_i \) represents i.i.d. measurement noise and follows a multivariate isotropic Gaussian: \(\epsilon_i \sim N(0, \sigma^2 I_D) \), and \(Z_i \sim N(0, I_L) \). The function \(f_\theta \) belongs to a family \(\mathcal{F} \) of nonlinear generative model parameterized by \(\theta \), and is typically represented by a neural network, called the decoder.

The VAE fits model (3) by training the decoder, while also training an encoder that simultaneously learns a distribution \(q_\phi(z|x) \), within a variational family \(\mathcal{Q} \) parameterized by \(\phi \), of the posterior distribution of the latent variables \(Z_i \). The VAE achieves its objective by minimizing an upper-bound of the negative log-likelihood, which writes as the sum of a reconstruction and regularization losses:

\[
\mathcal{L}_{\text{VAE}} = \mathcal{L}_{\text{rec}} + \mathcal{L}_{\text{reg}} = -\mathbb{E}_{q_\phi(z|x)} \log p_\theta(x|z)] + \text{KL}(q_\phi(z|x) \parallel p(z)),
\]

where KL is the Kullback-Leibler divergence.

From a geometric perspective, VAE performs manifold learning as it learns \(\theta \) to fit the manifold \(f_\theta(\mathbb{R}^L) \) to the data. The function \(f_\theta \) being continuous, VAEs can only learn manifolds homeomorphic to \(\mathbb{R}^L \). As a consequence, a VAE needs at least two latent dimensions to capture a circle. For the simulated dataset with in-plane rotations, we choose \(L = 3 \) to capture a circle and an additional dimension of defocus. For the experimental dataset with in-plane rotations, we choose \(L = 4 \) to capture a circle, a dimension of defocus, and we add a dimension to capture other parameters like nuisance variables.

3.1.2 Review of GAN
We enhance the VAE by adding a GAN [8]. A GAN is a method to fit a model using an adversarial process. The GAN jointly fits the generative model to best capture the data distribution, and a discriminative model \(D \) that estimates the probability that a \(x_i \) came from the training data rather than the generative model.

The GAN achieves its objective by finding the binary classifier that gives the best discrimination between true and generated data and simultaneously encouraging the generator to fit the true data distribution. In practice, a GAN maximizes/minimizes the binary cross-entropy:

\[
\mathcal{L}_{\text{GAN}} = \log p_{\text{Dis}}(x) + \log (1 - p_{\text{Dis}}(\text{Gen}(z)))
\]

with respect to the discriminator or generator with \(x \) being a training sample.

From a geometric perspective, a GAN implicitly has to learn a complex similarity metric to discriminate actual data from generated data. For images, GAN usually produces reconstruction images of better visual quality. Learning an implicit metric is particularly interesting for cryo-EM images that are highly corrupted by noise.

3.1.3 VAE-GAN with geometric regularization
We add the GAN as a refinement to the reconstruction loss of the VAE. Our final architecture is shown on Figure 2. It differs from [8] in two ways: (i) we keep the VAE’s reconstruction term, implemented with a binary cross-entropy, (ii) we do not use the \(L_2 \) norm on the discriminator features. Finally, we add a geometric regularizer to encourage the latent variables to form a cone: \(L_{\text{cone}} = \left(z_1^2 + z_2^2 - z_3^2\right)^2 \), where \(z_1, z_2, z_3 \) are the first three dimensions of the latent space. Our loss writes:

\[
\mathcal{L}_{\text{VAEGAN}} = \mathcal{L}_{\text{rec}} + \lambda_{\text{reg}}\mathcal{L}_{\text{reg}} + \lambda_{\text{GAN}}\mathcal{L}_{\text{GAN}} + \lambda_{\text{cone}}\mathcal{L}_{\text{cone}}
\]

where \(\lambda_{\text{reg}}, \lambda_{\text{GAN}}, \lambda_{\text{cone}} \) are hyperparameters.

The implementation of the encoder consists of convolutional layers with batch normalization [20] and a fully connected layer to predict the parameters of the variational distribution. The implementation of the decoder consists of convolutional layers, padding, and batch normalization.

3.1.4 Model selection with hyper-parameter search
During training, the model is initialized with the standard heuristic [15]. For optimization, we use Adam [24] with standard parameters \(\beta_1 = 0.9, \beta_2 = 0.999 \). We use mini batches of size \(B = 16 \).

We tune the learning rate, the number of decoder’s layers, and the hyperparameters \(\lambda_{\text{reg}}, \lambda_{\text{GAN}} \) with Bayesian optimization using the Hyperopt algorithm [7] and the Asynchronous Successive Halving Algorithm as scheduler [26] optimizing the validation loss. We do not tune hyperparameter \(\lambda_{\text{cone}} \) which is set to \(1 \) as to represent our geometric constraint.
3.2. Exploratory Analysis and Estimations

After training of VAE-GAN, we project the cryo-EM dataset in the learned latent space. Section 2 established that the latent space decomposes, at a given cryo-EM image \(x \), as \(T_xO x \oplus V x \) where \(O x \) is the orbit of \(x \) and \(V x \) is a supplementary space. Taking \(V x \) orthogonal to the orbit, we capture variations in the image that are rotationally invariant (e.g., defocus or other camera parameters). In this subsection, we curate and interpret the latent space in terms of those subspaces.

3.2.1 Outliers detection

We curate the dataset projected in the latent space by removing outliers. We expect most of the dataset to correspond to non-outliers images that come from the generative model of Equation 1 and share strong similarities. As such, the projections of these images are clustered together tightly in the latent space. In contrast, outliers are not drawn from the generative model and are likely to differ substantially. Their projections locate themselves at a distance from the non-outliers data.

We use and compare outlier detection methods for the data projected in the latent space: robust covariance (RobCov) method [16], isolation forest (IF) method [27] and local outlier factor (LOF) methods [21]. They all assign a measure \(m_i \) to each data point \(i \), and a threshold \(m_{max} \) value that can be used to assign outlier status to a point when \(m_i > m_{max} \). For RobCov, the measure \(m \) is the Mahalanobis distance centered at the origin of the latent space and with parameters given by the Hessian of the data. For IF, the data is represented as a tree through recursive partitioning, and the measure \(m \) is related to the path length averaged over a forest of random trees. For LOF, the measure \(m \) is related to the local density of the data around each data point.

We use the output of RELION to attribute the ground-truth label outlier/non-outlier to each datapoint [38]. Precisely, we consider the Z-score computed for each image in RELION, either at the 2D classification or 3D refinement steps, depending on the dataset considered, see Section 4. A data point is an outlier if its Z-score is larger than 2 in absolute value, it is a non-outlier otherwise. To assess the diagnostic ability of each outlier detection method, we measure the area under the curve (AUC) of the receiver operating characteristic (ROC) curve that is created by plotting the true positive rate (TPR) against the false positive rate (FPR) as \(m_{max} \) is varied for each method.

3.2.2 Estimation of defocus and orientation

We carry out principal component analysis (PCA) to identify the three dimensions bearing most of the variability: \(Z = U \Sigma V^T \), where \(Z \) is the design matrix of the data in the latent space. We call “reduced space” the space formed by the first two principal components of the PCA. The projection of the dataset in the reduced space is stored in the matrix \(U \Sigma \). We use the reduced coordinates \(U = (U_1, U_2) \) to yield defocus and orientation by converting them into polar coordinates:

\[
(U_{1,i}, U_{2,i}) \rightarrow (r_i = \sqrt{U_{1,i}^2 + U_{2,i}^2}, \theta_i = \arctan\left(\frac{U_{2,i}}{U_{1,i}}\right))
\]

We estimate the defocus of image \(i \) with the formula:

\[
\widehat{\text{def}}_i = (q_3 - q_1) \frac{r_i - q_1(r)}{q_3(r) - q_1(r)} + q_1,
\]

where \(q_1(r), q_3(r) \) are the first and third quartiles of the empirical distribution of radii, and \(q_1, q_3 \) are the corresponding quartiles of the uniform distribution on the known range of defocuses [0.5μm, 2.5μm]. We estimate the orientation of image \(i \) as the angle \(\theta_i \) given by the polar coordinates in the reduced space.

We evaluate the accuracy of this estimation procedure using the mean square error (MSE) between our predictions and the corresponding ground-truth, which is taken to be the defocus and orientation assigned by RELION. As we cannot expect to have the same origin of orientations nor the same orientation direction as RELION, we authorize a global shift \(\Delta \) and a global change of sign when evaluating the MSE in orientations.

Furthermore, keeping in mind the cryo-EM downstream task that uses orientation estimates to reconstruct the 3D molecular shape, we allow the possibility of down-weighting each estimate, based on their assumed quality or precision. At reconstruction time, we can down-weight the
associated images accordingly. We use the estimated defocus to build the weight as \(w_i = e^{\text{def}_{i}} - 1 \). The weight \(w_i \) reflects the level of confidence in the corresponding orientation estimate for image \(i \): we are less confident in the orientation estimate corresponding to images with high defocus, i.e., blurry images.

Finally, the MSE formulas used to evaluate the accuracy of the defocus and orientation estimates write:

\[
\text{MSE}_\theta = \arg\min_{\Delta, \pm} \left(\sum^n_{i} w_i \left(\theta_i + \Delta - \theta^\text{true}_i \right)^2 \right)
\]

\[
\text{MSE}_{\text{def}} = \frac{1}{n} \sum^n_{i} \left(\text{def}_i - \text{def}^\text{true}_i \right)^2.
\]

4. Datasets

4.1. Simulated dataset

We first created an ideal simulated dataset for which the simulation of micrographs was carried out using a transmission electron microscopy (TEM) simulator [35]. The TEM simulator simulates the process of cryo-EM images acquisition. We detail below the values of the parameters used required by the simulator. We used a single structural model of the human 80S ribosome [2]. We chose disks of diameter 1200 nm for the simulated grid holes, with an even ice thickness of 100 nm. We set the acceleration voltage of the simulated electron beam at 300 kV, with an energy spread of 1.3 V. We set the electron dose per image to 100 e/\(\text{nm}^2 \).

In terms of image acquisition parameters, we set the magnification to 81000 with spherical and chromatic aberrations set at 2.7 mm. The aperture diameter was set at 50 \(\mu \text{m} \), the aperture angle at 0.1 mrad, and the focal length at 3.5 mm. The detector was defined as an array of 5760x4092 pixels, each of physical size 5 \(\mu \text{m} \), thus setting the pixel size in the images to 0.62Å. The simulation of noise was turned off, and the detector transfer function was assumed to be perfect. Micrographs were simulated assuming no motion of the particles, that were precisely placed in the field of view, while randomly rotated around the axis perpendicular to the grid plane (in-plane rotation). Micrographs were generated for each of the defocus values in the series going from 0.5 to 3.0 \(\mu \text{m} \) in steps of 0.5 \(\mu \text{m} \). Each micrograph contains 48 images of the ribosome particle, extracted with size 648x648.

After this processing, we get a simulated dataset of \(n = 2,544 \) cryo-EM images that we downsampled to size 128x128. In this dataset, (i) there is one biomolecule’s shape: the chosen structural model of the human ribosome 80s, (ii), this molecule is rotated in a plane, (iii) the camera parameters are restricted to a set of 6 different defocuses by design, (iv) there is no noise. Images randomly sampled from this dataset are shown on the first line in Figure 3.

<table>
<thead>
<tr>
<th></th>
<th>AUC</th>
<th>Angle (degr.)</th>
<th>Defocus ((\mu \text{m}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sim.</td>
<td>N/A</td>
<td>1.72</td>
<td>0.18</td>
</tr>
<tr>
<td>Exp. (view 93)</td>
<td>0.79</td>
<td>37.38</td>
<td>0.44</td>
</tr>
<tr>
<td>Exp. (view 39)</td>
<td>0.86</td>
<td>18.61</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Table 1. AUC and weighted MSE for angle and defocus estimations, for the simulated dataset and the experimental datasets of views 93 and 39. AUC values are given for (isolation forest; \(Z=2 \)).

4.2. Experimental datasets

We added experimental datasets created from samples of human 80S ribosomes. These samples were prepared and imaged, yielding 7664 micrograph movies. We use RELION 3.0 [46] to process the micrographs. Preprocessing steps involved motion correction [43] and CTF estimation [34]. Particle picking was carried out using RELION’s “Autopick” tool, yielding more than one million particles extracted as images rescaled to 180x180 with pixels of size 2.052 Å.

The resulting set of images was subjected to three successive rounds of 2D classification in RELION, yielding a final dataset of 279,261 particles. We have extracted class 93 from the second round of 2D classification, as well as classes 30 and 39 from the third round. We compute the z-scores assigned to each image by running RELION’s “Particle sorting” tool on the respective 2D classification jobs: the z-score is a confidence score in the attribution of the given 2D class to the corresponding data point.

As a result of this processing, we have three experimental datasets of cryo-EM images, that we downsampled to size 128x128. In each of these datasets, (i) there is one biomolecule shape: the human 80S ribosome, (ii), this molecule is rotated in a plane. The first experimental in-plane dataset (view 39) has \(n = 8 \), 119 images. The second (view 93) has \(n = 8 \), 278 images. The third (view 30) has \(n = 4 \), 917 images.

5. Results

5.1. Training VAE-GAN learns successive orbits

We train VAE-GAN on the simulated dataset and the three experimental datasets. Figure 3 shows the reconstructed images at different epochs during training, for the simulated dataset and the experimental dataset with view 93.

We observe that VAE-GAN successively learns the different Fourier components of the images. From a geometric perspective, VAE-GAN starts with a prior distribution on the latent variables that concentrates at the origin of the latent space, which represents the most symmetric image. During training, VAE-GAN expands this prior distribution
to populate the different orbits of the action of the rotations. Starting from the origin of the latent space, it grows circles of increasing radii. Therefore, rotational symmetries successively disappear, as images find their place on their respective orbits.

At the end of the training, the images reconstructed from the simulated dataset are visually almost indistinguishable from the original images, see Figure 3. Each low-dimensional latent variable has captured the information specific to its image, while the decoder’s parameters have captured what is invariant across the images: the shape of the ribosome. The images reconstructed from the experimental dataset show a molecular shape that we recognize as the ribosome, see Figure 3. The VAE-GAN has performed denoising, an indication that we have captured the space \(C_2^{\mathbb{R}^D}(\Omega) \) introduced in Section 2.

5.2. Latent space of the simulated dataset

We perform an exploratory analysis in the latent space of the simulated dataset. Figure 4 shows the data projected on the first two components of the principal component analysis, colored by defocus and orientation’s angle. We observe that the latent space has learned the structure of orbits from the original space of images \(L_2(\Omega) \), and has disentangled the camera parameter (defocus) from the ribosome’s orientation. In polar coordinates, the defocus is related to the radius, while the ribosome’s orientation is given by the angle, as shown in Figure 4. We had six values of defocuses in the simulated dataset, yet we observe that the last three have not been satisfactorily clustered. The defocus levels had made the corresponding images indeed not distinguishable at the resolution chosen after downsampling.

5.3. Latent space of inplane experimental datasets

We perform an exploratory analysis in the latent spaces of the experimental datasets with in-plane rotations.

5.3.1 Outlier detection

Figures 5 shows the data projected in the latent space of the experimental datasets with view 39, which is the view corresponding to the simulated dataset. We observe the same patterns as in the simulated case, with the addition of outliers that correspond to the corrupted images. The ROC curve of Figure 5 shows the results of the outliers detection methods, which efficiently reveal the outliers. For example, we report a AUC of 0.86 for the isolation forest method, see Table 1. The outlier detection methods perform equivalently well for the other experimental datasets, as shown in Table 1.

5.3.2 Orbits in the absence of symmetry

We perform an exploratory analysis in the latent space of the first two experimental datasets (views 39 and 93), for which the 2D projection of the ribosome shape has no apparent symmetry. The numerical results are presented in Table 1. We show the principal components of the latent space for view 39 in Figure 6.

As the images in view 39 do not show any obvious sym-
metry, each orbit is isomorphic to S^1 as per Proposition 1. We observe a stratification of the latent space in concentric circles. As in the simulated case, the geometry of the group action leads to a natural disentanglement of the camera parameter (defocus) from the orientation’s angle, which can be extracted by polar coordinates, see Figure 6. Table 1 summarizes corresponding rMSEs. We record similar rMSEs for the view 93, see Figure 8 (B). These results indicate that (unsupervised) estimation of defocus and orientations are possible using the latent space learned by VAE-GAN.

5.3.3 Orbits in the presence of symmetry

We perform an exploratory analysis in the latent space of the third experimental datasets (view 30). In this dataset, the 2D projection of the ribosome’s shape exhibits symmetry, at the scale of the quality of the image reconstructions by the decoder, see Figure 7 (b). The symmetry can be described by the cycle group of 3-fold rotations, written C_3, which consists of the set of 2D rotations of angles $0, 2\pi/3, \text{and} \ 4\pi/3$. As a consequence, each orbit is isomorphic to S^1/C_3 as per Proposition 1.

We observe that the latent space has captured this geometry, which is revealed in Figure 8 (D, left) by the periodicity on the horizontal axis. A polar angle α in the latent space maps to α, or $\alpha+2\pi/3$, or $\alpha+4\pi/3$ in terms of the “true” angle. Additionally, we observe symmetry in reflection, corresponding to the symmetry on the vertical axis. From a mathematical perspective, it is remarkable that VAE-GAN has captured the geometry of the orbit S^1/C_3.

6. Conclusion

We have combined variational autoencoders (VAEs) and generative adversarial networks (GANs) to learn the latent space of cryo-EM images. This new avenue to cryo-EM reconstruction would potentially unlock issues in scalabilities that traditional methods are starting to encounter in front of the fast-growing rate of data collection.
References

[34] Alexis Rohou and Nikolaus Grigorieff. CTFFIND4: Fast and accurate defocus estimation from electron micrographs. *Journal of Structural Biology*, 2015. 6

