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Figure 1: Illustration of topological nomenclature for mitochondria and pyramidal neurons in EM connectomics. Given the input 3D seg-

mentation, our proposed algorithm generates reduced graph representation to capture essential morphological structure and nomenclature

for concise scientific communication.

Abstract

One of the essential tasks in connectomics is the mor-

phology analysis of neurons and organelles like mitochon-

dria to shed light on their biological properties. However,

these biological objects often have tangled parts or com-

plex branching patterns, which make it hard to abstract,

categorize, and manipulate their morphology. In this pa-

per, we develop a novel topological nomenclature system to

name these objects like the appellation for chemical com-

pounds to promote neuroscience analysis based on their

skeletal structures. We first convert the volumetric repre-

sentation into the topology-preserving reduced graph to un-

tangle the objects. Next, we develop nomenclature rules

for pyramidal neurons and mitochondria from the reduced

graph and finally learn the feature embedding for shape

manipulation. In ablation studies, we quantitatively show

that graphs generated by our proposed method align with

the perception of experts. On 3D shape retrieval and de-

composition tasks, we qualitatively demonstrate that the en-

coded topological nomenclature features achieve better re-

sults than state-of-the-art shape descriptors. To advance

neuroscience, we will release a 3D segmentation dataset

of mitochondria and pyramidal neurons reconstructed from

a 100µm cube electron microscopy volume with their re-

duced graph and topological nomenclature annotations.

Code is publicly available at https://github.com/

donglaiw/ibexHelper.

1. Introduction

Recent advancements in large-scale electron microscopy

(EM) allows the generation of petabytes of serial images of

brain tissue at nanometer resolution [9, 20]. Machine learn-

ing methods have made automated 3D reconstruction pos-

sible for individual neurons [7] and intracellular organelles

such as mitochondria [2]. Intriguingly, 3D shapes of these

objects resolved at the nano-scale are far more complicated

than the classic depiction in the neuroscience textbooks.

Thus, novel morphology analysis tools are required to ad-

vance our understanding of the basic properties of neuronal

compartments (Fig. 1).

Nevertheless, there are three main challenges. First, the

branches and loops of a non-convex object can tangle to-

gether in the 3D meshes, which make it difficult for an

intuitive perception of the underlying topology. Second,

there lacks an intuitive and concise way to convey the shape

information of neurons and organelles in the neuroscience

community. Third, the goal of traditional descriptors of 3D



meshes is to compare objects with similar scales, which is

not suitable for the application on neurons and organelles

that have a wide range of spatial dimensions.

To tackle these challenges, we propose a topological

nomenclature system to abstract, categorize, and manipu-

late the 3D meshes of neurons and organelles (Fig. 1). We

first skeletonize them into vertexes and edges to untangle

the objects. We further prune them into a concise reduced-

graph while preserving the topological properties. To sys-

tematically name those objects, we propose a nomencla-

ture system borrowing ideas from nomenclature for organic

compounds. The primary aim of nomenclature in chem-

istry is to ensure that every name refers to a specific com-

pound without ambiguity. The naming systems, including

InChI [6] and SMILES, display more structural details but

is more cumbersome for scientific communication. There-

fore in this work, we follow the IUPAC rule [16] to gener-

ate the graph name that is more human-readable. To apply

the nomenclature system to shape analysis, we use the deep

learning model for self-supervised learning on graphs [11].

In comparison with traditional shape descriptors like heat

kernel signature (HKS) [14], one key characteristic of our

approach is that our graph representations are more intuitive

to understand than the HKS and allow for a simple shape de-

composition into primitives. Sundar et al. [19] explore the

idea of the skeleton-based 3D shape matching. They intro-

duce the concept of a topological signature vector - a low

dimensional representation of a graph that can be a mea-

sure of similarity. One difference from our approach is that

their scheme generates an acyclic skeletal graph that does

not capture cycles or multiple paths between two vertices.

To summarize, we present three main contributions in

this paper. First, we propose a shape abstraction method

that converts 3D meshes into 2D graphs using a novel com-

bination of skeletonization and graph reduction to improve

the morphological perception. Second, by using the nomen-

clature system, we not only make it more interpretable

by neuroscientists but also further compress the informa-

tion needed for graph reconstruction. Third, we implement

an unsupervised model to embed these graphs into vector

space for 3D shape retrieval and decomposition.

2. Related Work

Chemical and Biological Nomenclature. Organic

molecules, which contain carbon as the backbone, exhibit

a variety of structures. Therefore a concise and intuitive

nomenclature system is crucial for informative scientific

communication. The primary aim of nomenclature in chem-

istry and biology is to ensure that every name refers to a

specific compound without ambiguity. The secondary aim

is that the name can (to some extent) reflects a substance’s

structure. There are two main streams of chemical nomen-

clature. The first stream that follows the IUPAC rule [16] is

relatively simple and more human-readable. Other systems,

including InChI [6] and SMILES, display more structural

details in the name but is more cumbersome for scientific

communication. For large organic molecules like proteins

that form a more complex spatial arrangement, Flower [5]

proposes to abstract the modules into graphs and name them

based on topology. Our work extends the nomenclature

to neurons and mitochondria morphologies in EM connec-

tomics that do not have well defined functional groups (e.g.,

benzene) and shape primitives (e.g., α− and β−helix of

proteins) as biochemical compounds.

3D Shape Analysis in Connectomics. Recent advances in

EM imaging have enabled connectomics research at nano-

scale resolution. For example, the 3D instance masks

of thousands of neurons and millions of intracellular or-

ganelles like mitochondria are available for analysis. How-

ever, earlier studies only conduct basic statistical analysis,

including the length, volume, and surface-to-volume ra-

tio [9]. Recent Kanari et al. [8] propose a topological mor-

phology descriptor of neuronal structures based on distance

transform to analyze the shape of pyramidal neurons. How-

ever, such a method is not intuitive for human perception as

the reduced distance maps can hardly reflect the topology

of the original instances.

3D Shape Descriptors. Matching and retrieval of 3D

shapes are mature disciplines, and various successful

schemes are out there. For example, Ovsjanikov et al. [14]

to create an isometry invariant shape retrieval system by

adopting a heat kernel signature (HKS) based deformation

invariant shape descriptor [18]. Sundar et al. [19] develop

the skeleton-based 3D shape matching algorithm and de-

fine a topological signature vector, which is a low dimen-

sional representation of a graph. These two methods are

different from our approach in two ways. First, our graph

representations are more understandable and intuitive com-

pared to HKS while allowing a simple shape decomposi-

tion into primitives. Unlike the existing skeleton-based 3D

shape matching scheme that generates an acyclic skeletal

graph, our algorithm is capable of capturing cycles or mul-

tiple paths between two vertices.

3. Method

In this section, we give a formal definition of our shape

abstraction and nomenclature system (Fig. 2). Given an in-

put 3D mesh, we first transform it into a reduced graph that

preserves its topological information with a novel skele-

tonization algorithm. We then determine its name in the

nomenclature system based on its category (e.g., mitochon-

dria) and graph structure. We also show how to compute the

object feature in the nomenclature embedding space for the

following manipulation.
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Figure 2: Overview of our topological nomenclature framework (first row) and nomenclature rules (second row). Best view in color.

Figure 3: Illustration of graph reduction. We modify the breadth-first search (BFS) traversal to consider only key nodes in the graph.

Unlike BFS which results in a tree, our traversal preserves loops within the graph to maintain the cyclic topology of some mitochondria

and pyramidal neurons that form loops. Please see more details in Algorithm 1.

3.1. Topology­Aware Reduced Graph Generation

Starting from the volumetric representation of a 3D

mesh, we convert it into a reduced graph which preserves

its topological structure, like the molecular graph [12], us-

ing the following three steps:

Graph Initialization. We use an off-the-shelf skeletoniza-

tion algorithm proposed in Kálmán [15] to extract a 3D

skeleton from the voxel representation. We can view the

extracted 3D skeleton as a weighted undirected graph G =
(V,E,W ) where V ⊂ Z

∗3 is the set of coordinates of skele-

ton nodes in the 3D voxel grid, E ⊂ V × V is the set of

edges, and W ⊂ R
+ is the set of edge weights.

Graph Reduction. Based on the degree of incident edges,

we can divide the skeleton vertices V into junctions J =
{n ∈ V : degree(n) > 2} and endpoints E = {n ∈ V :

degree(n) = 1}. We aim to reduce the skeleton graph G
to a graph GS whose set of vertices is J ∪E (referred to as

the key nodes), and which preserves topological features of

G such as paths and distances (along with the 3D skeleton)

between any pair of key nodes. Further, we also require GS

to preserve any cycles present in the skeleton graph G and

to preserve multiple paths between any two key nodes.

For graph reduction, we modify the Breadth-First-

Search traversal algorithm, as outlined in Algorithm 1. At

each step of the traversal, we only enqueue key nodes to our

traversal queue. We initialize the queue with any key node,

and while visiting a key node v, we only enqueue (1) any

key nodes which are adjacent to v, and (2) any other key

nodes which are connected to v by a path in G comprising

only of non-key nodes (referred to as a simple path). We

define the “thickness” of an edge as the average of distance
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Figure 4: Illustration of extracting the longest path for the nomenclature assignment of undirected acyclic graphs (UAG) (Sec. 3.2).

Although the longest-path problem in an arbitrary graph is NP -complete, the problem can be efficiently solved by running the breadth-

first search (BFS) algorithm twice for UAGs. The first pass starts from an arbitrary leaf point (b), while the second pass starts from the

farthest point found in the first round (c).

Table 1: Prefixes and suffixes in our nomenclature system. We use Greek numeral prefixes to indicate the number of nodes

on the longest path in an acyclic graph or on the rings, and use suffixes to categorize different type of instances.

Prefixes (number of key points) Suffixes (type)

1 2 3 4 5 6 7 8 9 10 Mitochondira Pyramidal Cell

mono- di- tri- tetra- penta- hexa- hepta- octo- ennea- deca- -ito -idal

transforms of its two vertices, and the “thickness” of a path

can be calculated as the mean of the thickness of each edge

on the path weighted by edge lengths. During the traversal,

we keep track of two metrics for every pair of key nodes

connected by a simple path: (1) sum of lengths of all edges

in G on that simple path, and (2) mean thickness of that

simple path. An illustration of the graph reduction scheme

is shown in Fig. 3.

Graph Post-procession. In the biological systems, larger

structures (e.g., large synapses with more vesicles and

higher post-synaptic densities) usually contribute more to

the overall functionality. Therefore to further simplify the

graph without the distraction caused by numerous small

structures, we can remove edges and cycles whose path

length is small relative to the total length of edges in

GS . Thus, we contract all edges with a length lower

than a threshold value of τ . With bigger τ , we obtain a

coarser-level representation of the graph. In the experiments

(Sec. 5), we perform ablation studies to demonstrate how

the threshold τ affect the quality of the reduced graphs in

terms of the agreement with human perception.

3.2. Topological Nomenclature Rules

Our nomenclature system for EM connectomics is mod-

ified upon the IUPAC nomenclature of organic chemistry,

which is not only invariant to the deformation and the graph

indexing order but also easily convertible back to the graph

representation. We add suffixes -ito and -idal to mitochon-

dria and pyramidal neurons, respectively.

Acyclic Graph. An acyclic graph is a graph having no cy-

cles. A reduce graph can be entirely a tree structure or con-

tain tree branches. The nomenclature rule for a tree is first

to count the longest chain of vertexes, and assign a prefix

based on the number of vertexes. For example, the longest

chain with n = 5 vertexes has a prefix penta (Table 1). Find

the longest path in a general graph has been shown to be a

NP -complete problem [3], but find the longest path in an

undirected tree graph can be solved efficiently by running

the breadth-first search (BFS) algorithm twice (see Fig. 4

for detail). Therefore such a rule makes sure that for acyclic

graphs, not only computer programs but also human users

can efficiently drive the corresponding topological nomen-

clature. Then every vertex on the longest path is assigned

a location number from 1 to n. For a branch, we use the

location index as prefix and name the branch recursively

based on the rules. For simplicity, we combine the prefix of

branches with the same structure and omit the description

for branch topology if a branch only contains one node. An

example of the naming of the acyclic structure is shown in

Fig. 2.

Cyclic graph. If the reduced graph has circles, then we as-

sign a higher priority to the circles and name the graph ac-

cordingly. For the graph structure with one circle, the prefix

is cyclo. We then name branches use parentheses contain-

ing relative location on the ring together with the branch de-

scription described before. For a bicyclic graph where two

circles share at least one vertexes, the root numeral prefix

of the graph name depends on the total number of vertexes

in all rings together[4]. The prefix bicyclo denote the shar-

ing of at least two vertexes, while spiro denote the sharing



Algorithm 1 Skeleton Graph Traversal

1: procedure REDUCEGRAPH

2: Q← Any v ∈ (J ∪ P )
3: VS , ES ,WS ← {}, {}, {}
4: GS ← (VS , ES ,WS)
5: visited[v]← False ∀v ∈ V
6: while not Q.isEmpty() do

7: src← Q.dequeue()
8: visited[src]← True

9: adj list← KEY NEIGHBORS (G, src)
10: for trg ∈ adj list do

11: if not visited[trg] then

12: weight← PATH LEN(src, trg)
13: if (src, trg) /∈ ES then

14: GS ← ADD EDGE(GS , (src, trg), weight)
15: else ⊲ True if multiple paths exist between src and trg
16: mid← NEW KEY NODE()

17: GS ← ADD EDGE(GS , (src,mid), weight/2)
18: GS ← ADD EDGE(GS , (mid, trg), weight/2)
19: end if

20: if trg /∈ Q then

21: Q← Q.enqueue(trg)
22: end if

23: end if

24: if src == trg then ⊲ True if G has a cycle.

25: mid1← NEW KEY NODE()

26: mid2← NEW KEY NODE()

27: GS ← ADD EDGE(GS , (src,mid1), weight/3)
28: GS ← ADD EDGE(GS , (mid1,mid2), weight/3)
29: GS ← ADD EDGE(GS , (mid2, trg), weight/3)
30: end if

31: end for

32: end while

33: end procedure

of only one vertex. In between the prefix and the suffix, a

pair of brackets with numerals denotes the number of ver-

texes between each of the bridgehead ones. These numbers

are arranged in descending order and are separated by pe-

riods. For example, a graph with a 3-vertex circle and a

5-vertex circle share two vertexes (one edge) will be named

bicyclo[3, 1, 0]hexito (Fig. 2). Such rules can be easily ex-

trapolated into graphs with more than three circles. How-

ever, in practice, we notice rare cases in the mitochondria

and pyramidal neurons with more than two circles.

3.3. Topological Nomenclature Embedding

In this subsection, we describe how to extract fea-

tures from the reduced graphs to estimate the commonal-

ity/dissimilarity between them. To represent a graph as a

matrix, we construct an adjacency matrix, whose elements

are connectivities between nodes in a graph. We employ a

variational graph autoencoder (VGAE) [11], which is a neu-

ral network for unsupervised learning on graphs based on a

variational autoencoder [10], to extract features for each ad-

jacency matrix.

We first normalize the adjacency matrix using the sym-

metric normalization scheme, as done in VGAE [11]. Then,

we feed the normalized adjacency matrix into VGAE con-

sisting of two graph convolutions and one fully connected

layer to reconstruct that matrix at the output. The dimen-

sions of the two graph convolutions are 32 and 16, respec-

tively. We train the network for 200 epochs to minimize the

difference between the input adjacency matrix and the re-

constructed one and the Kullback-Leibler (KL) divergence

of the embedding. We use Adam optimizer with a learning

rate of 0.01. We exploit the embedding output of the graph

convolutions as the nomenclature embedding.



(b) JWR-Pyr30(a) JWR-Mito300

Figure 5: Samples in our JWR-Mito300 and JWR-Pyr30 datasets. (a) Unlike textbook illustrations, mitochondria can have complicated

3D shapes. (b) Pyramidal neurons exhibit great diversity in the spatial distribution of dendrites and their branching patterns.

4. Dataset

By inspecting the shape of pyramidal cells and mito-

chondria at nanometer resolution, we found hundreds of

structures that are very different from textbook illustrations,

which usually display simple spherical or tubular structures.

To further advance shape analysis in EM connectomics, we

build a dataset of non-trivial objects to exhibit the complex-

ity of neuronal structures and test our topological nomen-

clature system. We will release the dataset publicly.

Data Acquisition. We imaged a tissue block from Layer

II/III in the primary visual cortex of an adult rat at a res-

olution of 4 × 4 × 30 nm3 using a multi-beam scanning

electron microscope (EM). After stitching and aligning the

2D images using multi-CPU clusters, we obtained a final

3D image stack of 100 µm cube.

3D Object Segmentation. Annotating the instances manu-

ally from scratch is not feasible. However, the accuracy of

existing automatic segmentation algorithms can not gener-

ate object masks that are qualified enough for downstream

morphological analysis. To have a good tradeoff between

segmentation quality and efficiency, we first adopt the 3D

U-Net model [17] for initial automatic neuron and mito-

chondria segmentation. We then use a manual annotation

tool [1] to proofread and modify the segmentation results.

JWR-Mito300. We reconstructed all the mitochondria

found in the somata of 11 cells: one pyramidal neuron, six

interneurons, and four glial cells. Out of thousands of mito-

chondira, we selected 316 of them that have nontrivial topo-

logical structures with a volumetric size larger than 0.2 µm3

(Fig. 5a).

JWR-Pyr30. For this dataset, we randomly selected 30

pyramidal cells whose cell bodies are located in the cen-

tral volume with the presence of a significant portion (if not

full) of their basal dendrites. Individual pyramidal neurons

have one apical dendrite pointing to the pial surface and an

axon often extending in the opposite direction. Neverthe-

less, they all show distinct distributions of oblique and basal

Table 2: Ablation studies on graph reduction parameters on

JWR-Mito300 and JWR-Pyr30 dataset. We compute the av-

erage cosine similarity of the graph Laplacian eigenvalues

and the accuracy (correct if cosine similarity is bigger than

0.95) for different design choices.

Dataset Metric
BFS+Junction BFS+Junction+Loop

τ=0 τ=4 τ=0 τ=4

JWR-Mito300
Cosine 0.891 0.949 0.914 0.956

Acc. 0.376 0.785 0.493 0.854

JWR-Pyr30
Cosine 0.778 0.965 N/A N/A

Acc. 0 0.767 N/A N/A

dendrites (Fig. 5b).

5. Experiments

In this section, we first quantitatively evaluate our

nomenclature extraction results in terms of the agreement

with human perception on our JWR-Mito300 and JWR-

Pyr30 datasets. We then show qualitative results for two

applications of the extracted nomenclature feature, includ-

ing 3D shape retrieval and 3D shape decomposition.

5.1. Nomenclature Extraction

Experimental Setup. As there is no known previous work

that has similar experiments, we conducted ablation stud-

ies on different design choices of our proposed method.

To generate the reduced graph, we started from the base

method of the modified BFS, referred to as BFS+Junction,

and compared two design choices. One is the edge length

threshold τ for edge contraction and the other is to preserve

loop structure or not. Note that in the JWR-Pyr30 dataset,

pyramidal neurons usually do not form loops and we only

compare different τ values.

Evaluation Metric. To create ground truth nomenclature

extraction labels for JWR-Mito30 and JWR-Pyr30 datasets,

we asked neuroscientists to draw their perceived planar

graph representation when showing them with the original
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Figure 6: Shape retrieval using graph features. Given (a) an input graph representing the original 3D mesh, we show top-2 retrieval results

using (b) our topological nomenclature approach, (c) Heat Kernel Signature (HKS), and (d) spectral embedding. The structures retrieved

by our method are qualitatively more similar to the query sample.

3D object meshes. To quantitatively evaluate our automatic

nomenclature extractions, we use Cosine, the cosine simi-

larity of the graph Laplacian eigenvalues between the pre-

diction and the ground truth, as the metric. Empirically, we

found that human labeling results have around 0.95 cosine

similarity due to the inherent ambiguity for small branches.

Thus, we define a prediction accuracy metric, Acc., with

0.95 cosine similarity as a threshold for correctness.

Quantitative Results. As shown in Table 2, the choice of

threshold τ for small edge contractions is crucial, as the pre-

diction accuracy almost doubles with τ = 4.0 compared to

τ = 0. Although all design choices have similar average

cosine similarity, they have a different number of correct

predictions that are acceptable for downstream analysis. Es-

pecially for pyramidal cells from the JWR-Pyr30 dataset,

the post-processing parameter τ = 4 helps to remove many

small spine structures.

Preservation of loops seems to have a small impact on

overall performance, but it is still essential for preserving

the topology of cyclic mitochondria even if they do not ap-

pear often. With the best design choices, our automatic

nomenclature extraction method can capture the essential

topology of 3D complex shapes without producing disturb-

ing artifacts at around 80% accuracy.

Those results indicate that the graph extraction algorithm

in the nomenclature system produces high-quality represen-

tations that are consistent with human perception. Consid-

ering that the nomenclature rule is designed to ensure that

every name refers to a specific structure without ambiguity,

those results further support the informativeness and con-

ciseness of the assigned name for scientific communication.

5.2. Shape Retrieval

Experimental Setup. For a given query 3D shape, users

may want to find similar shapes from the entire dataset. To

this end, we perform 3D shape retrieval using our topologi-

cal nomenclature. The goal of this experiment is to find two

topological shapes that are most similar to a given query

3D shape. We use the JWR-Mito300 dataset and randomly

sample a query 3D shape from that dataset. We discover

two nearest neighbors of the query.

To compare two 3D shapes, we first measure pair-

wise differences between their nomenclature embeddings

by computing L2 distances. Then, we determine a simi-

larity between them as an average of matching costs. We

use Hungarian matching.

Qualitative Results. Fig. 6 shows 3D shape retrieval results

of our algorithm compared to both HKS [18] and spectral

embedding [13]. The results exemplify that our algorithm

is capable of discovering topologically similar 3D shapes.

In contrast, HKS finds 3D shapes that have visually sim-

ilar meshes but different actual neuronal or mitochondria

structures. Since the spectral embedding encodes the entire

graph, it fails to find relevant shapes.

5.3. Shape Decomposition Results

Experimental Setup. Decomposing topological nomencla-

tures into sub-graphs enables users to understand the struc-

tures of 3D shapes. To define sub-graphs, we construct a

dictionary of our nomenclature embedding features. Specif-

ically, we apply k-means clustering algorithm to embedding

features of junctions (defined in Section 3.1) to generate

words in the dictionary. We set k as 50 and 100 for the pyra-

midal neurons and mitochondria, respectively. Note that we

only use the junctions since end nodes have no local struc-

tures. In the inference phase of decomposition, we perform

matching between junctions in a query nomenclature and

the words in the dictionary. We first find a junction with

the minimum distance, and then remove it and its neighbor

nodes from the query nomenclature. We iterate this process

until there are no more junctions.

Qualitative Results. Fig. 7a visualizes dictionaries learned

on the JWR-Mito300 and JWR-Pyr30 datasets. It is observ-

able that the words in the dictionaries vary. Fig. 7b shows

decomposition results of our nomenclatures. Our method

precisely decomposes the nomenclatures into sub-graphs.

6. Conclusion

In this paper, we introduced the topological nomencla-

ture protocol to extract, name, and manipulate the morphol-
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Figure 7: 3D shape decomposition with topological nomenclatures. For mitochondrion (top row) and a pyramidal neurons (bottom row),

we show (a) the learned part dictionary and (b) greedy decomposition result for an input example.

ogy of biological objects in EM connectomics. We demon-

strated the effectiveness of our novel nomenclature system

through quantitative ablation studies. Moreover, our unsu-

pervised nomenclature embedding successfully performed

retrieval and decomposition of 3D shapes. We will make

the two datasets containing 316 mitochondria with complex

morphology and 30 pyramidal neurons publicly available.

For future work, we will apply our nomenclature scheme to

a large-scale dataset to understand the diversity and similar-

ity of biological structures.
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