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Abstract

In this work, we present two new methods to overcome

the lack of annotated long-wavelength infrared (LWIR) data

by exploiting the abundance of similar RGB imagery. We

introduce a novel unsupervised adaptation to the cycleGAN

architecture for translating non-corresponding LWIR/RGB

datasets. Our ultimate goal is high detection rates in the

real LWIR imagery using only RGB labelled imagery for

training detection algorithms. In our first experiment, we

translate LWIR imagery to RGB, allowing us to use an

RGB trained detection algorithm. We, thereby remove the

need for labelled LWIR imagery for training detection algo-

rithms. Experimental results show that our adaption helps

to create synthetic RGB imagery with higher detection rates

across two different datasets. We also find that combining

the synthetic RGB and real LWIR imagery produces higher

F1 scores on the RGB trained detection network. In our

second experiment, we translate RGB to LWIR to fine-tune

a network for detection in real LWIR imagery. This method

produces the highest F1 scores out of the two methods with

detection reaching up to 85.6%.

1. Introduction

Despite recent advances in detection and translation al-

gorithms for RGB images, infra-red (IR) is still relatively

understudied due to the scarcity of the data. There is a se-

vere lack of labelled LWIR data, specifically for high per-

forming, high-resolution thermal sensors. Detection in IR

imagery is becoming increasingly important in the defence

and security domain for 24-hour capability because visi-

ble light is non-optimal in extreme weather situations (e.g.

fog/heavy rain/low light) and at night. Visible images cap-

tured by RGB sensors consist of reflected energy and pro-

vide information similar to what the human eye would pro-

cess. IR images consist of emitted energy from objects and

potential absorption/emission from the background. Long-

wavelength IR (LWIR, 8 – 12 µm) imaging can be partic-

ularly useful for the observance of living beings, which is

helpful in defence scenarios.

LWIR/RGB image translation could provide a solution

to the lack of annotated LWIR datasets by taking advantage

of a large corpus of existing labelled RGB data. One of

the significant issues regarding translation research is that

there exists very little work translating between modalities

(i.e. IR to RGB). Also, there are no studies which focus

on real-life non-corresponding (does not line up in space or

time) imagery taken in cluttered urban scenes. In this paper,

we present two approaches for detection in real LWIR and

synthetic RGB imagery in an unsupervised manner.

Our main contributions are summarised as follows:

• We propose an unsupervised adaptation to the cycle-

GAN network [32]. A novel loss is introduced to min-

imise the appearance between the object of interest de-

tections in the real and recovered RGB/LWIR imagery.

• We show LWIR to RGB translation is possible be-

tween non-corresponding datasets containing high res-

olution short-medium range targets (objects at 0-50

metres from camera) taken in real-life uncontrolled

cluttered urban scenes. Figure 1 shows some exam-

ples of our synthetic RGB imagery. The synthetic

RGB images can be used for detection in RGB trained

algorithms. Moreover, this paper is the first to fuse

synthetic RGB and real LWIR further improving F1

scores.

• We create synthetic LWIR and show, for the first time,

that this imagery can be used for effective training of



Figure 1: Thales synthetic RGB imagery (top row)

translated from real LWIR imagery (bottom row) using our

adapted cycleGAN network.

deep learning detectors for improved detection in real

LWIR data.

This paper develops a new research area which has

emerged from the need for detection in LWIR imagery and

would have a real impact on the applicability of modern

deep learning (DL) modelling in defence and security ap-

plications.

2. Related work

We review two main bodies of research relevant to our

work here, object detection in IR imagery and image trans-

lation networks.

2.1. IR detection

When dealing with small datasets for training, transfer

learning (TL) followed by fine-tuning (FT) is the most com-

mon and successful strategy [23]. TL struggles to address

more radical differences between modalities meaning that

detection rates are low unless FT is implemented. However,

FT is not always possible due to lack of labelled data. Pa-

per [2] propose a novel architecture for LWIR detection in

an unsupervised manner for the first time. They use adap-

tation techniques (previously used within the RGB domain

for classification tasks) for creating modality invariant fea-

tures in a faster RCNN network for improving LWIR de-

tection. The work proposed in this paper uses the mean

squared error to reduce the distance between feature maps

produced from RGB and LWIR imagery. This is one of

only a small number of papers [4, 25, 1] which cover object

detection for defence scenarios compared with other appli-

cations, given the difficulty in acquiring appropriate data. In

addition to these methods, some researchers have explored

fusing IR with RGB [5, 20] and IR with depth imagery to

improve detection results [12, 8].

2.2. Image translation networks

For the last few years, researchers have looked at gener-

ative adversarial networks (GANs) to adapt source imagery

to a different target domain [6, 9, 18, 11, 15, 7, 16]. GANs

can be useful when there is only a small dataset available for

training classification algorithms as we can use synthetic

imagery for training purposes. These GAN architectures

currently produce the best results and can be categorized

into supervised and unsupervised. Supervised models use

paired images, lined up in time and space, which are very

difficult to collect in real scenarios. Unsupervised models

alleviate the difficulty of obtaining data pairs as unpaired

data is much easier to assemble. Many different architecture

choices are available for unsupervised methods [32, 29, 13].

Regardless of the architecture choices, these unsupervised

methods tend to struggle when significant differences be-

tween the domains need to be covered.

Another issue with translation methods is that in the past,

researchers have mainly focused on translation between two

domains in the RGB modality. However, recently several

researchers have had success with near-infrared (NIR) to

RGB translation [28, 27, 22, 17, 21, 26]. Also, CNN based

translation methods have translated IR images to RGB for

facial recognition [30, 24]. In addition, IR2VI [19] ad-

dresses mid-wave IR to grey-scale translation for detection

of long-range targets. They introduce a structure connection

to overcome the incorrect mapping problem and help trans-

late the background more accurately. Researchers [31, 3]

have had some success addressing a much harder problem

of LWIR to RGB translation using the Kaist dataset [14]

which consists of imagery taken in cluttered urban scenes.

Although the translation approaches described have had

positive outcomes, none of them have addressed unsuper-

vised translation between LWIR and RGB for object detec-

tion in cluttered scenes with short-medium range targets.

Translating imagery for detection with short-medium range

targets is a much more difficult task than for long range tar-

gets. This is because there are more discriminative details to

translate, which are crucial for the subsequent localization

and classification. We aim to address these gaps in research

and show that unsupervised translation between LWIR and

RGB for detection of short-medium range targets is possi-

ble.

In this paper, we propose to use a novel cycleGAN ar-

chitecture for image translation between LWIR and RGB



imagery. Our network is capable of specifically enhanc-

ing the translation of objects between LWIR and RGB in

an unsupervised manner using a detection algorithm trained

using only RGB labelled imagery. In addition to testing

the synthetic RGB imagery with an RGB trained detection

network, we also test the fusion of synthetic RGB and real

LWIR imagery. Furthermore, we fine-tune the RGB trained

network with synthetic LWIR imagery for detection in real

LWIR.

Section 3 details our technical approach, section 4 dis-

cusses the experiments and results, and we conclude with

section 5.

3. Unsupervised Object-specific CycleGAN

adaption

In this section we first describe the cycleGAN network

and then our novel unsupervised adaptation to enhance the

object quality in adapted images.

3.1. CycleGAN network

We aim to create synthetic RGB imagery and LWIR im-

agery using a non-corresponding dataset. This means that

the imagery is not lined up in time, viewpoint or space, as

shown in Figure 2. We use the cycleGAN as our baseline

architecture as it is unsupervised. The training is achieved

using two sets of n images IRGB
i

: i = 1, 2, .., n and IIR
i

:
i = 1, 2, .., n where IRGB

i
and IIR

i
are non-corresponding.

To translate IIR
i

to its RGB version, we use a generator G

and to translate IRGB
i

to IR we use generator F :

G : IR −→ RGB

F : RGB −→ IR

The synthetic RGB and IR images can be represented by

G(IIR
i

) and F (IRGB
i

) respectively. Each generator has a

corresponding discriminator, which seeks to tell the differ-

ence between the real and synthetic imagery:

DRGB : distinguishes IRGB from G(IIR)

DIR : distinguishes IIR from F (IRGB)

The training is done using the two sets of images by solv-

ing the following adversarial losses:

Advloss(G,DRGB , I
IR) =

1

n

n∑

i=1

(1−DRGB(G(IIRi )))2

(1)

Advloss(F,DIR, I
RGB) =

1

n

n∑

i=1

(1−DIR(F (IRGB

i )))2

(2)

Figure 2: Examples of non-corresponding RGB (top row)

and LWIR (bottom row) imagery from the Thales dataset.

These two losses alone are not sufficient to produce good

quality images. The adversarial losses enforce the gener-

ated output to the appropriate modality. In other words,

a generator could output an RGB image that was an ex-

cellent example of that modality, but would not have the

structure or object classes of the input IR image. The cycle

consistency loss addresses this issue by comparing the real

image with the recovered image. The recovered image is

produced when the real image is converted to one modality

and then back again. The recovered image should be sim-

ilar to the original image and the cycle loss enforces that

G(F (IRGB)) ≈ IRGB and F (G(IIR)) ≈ IIR. The cycle

consistency loss is:

Cycleloss(G,F, IRGB , IIR) =

1

n

n∑

i=1

[|G(F (IRGB

i ))− IRGB

i |

+|F (G(IIRi ))− IIRi |]

(3)

The final cycleGAN loss is the adversarial losses added

to a weighted cycle consistency loss by hyper-parameter α

which is normally set to 10 [32].

CycleGANloss = TotalAdvloss + αCycleloss (4)

where TotalAdvloss = Advloss(G,DRGB , I
IR) +

Advloss(F,DIR, I
RGB).



Figure 3: Overall architecture of our proposed adapted cycleGAN framework. Note this illustration needs to be duplicated

for training in the cycleGAN framework with the RGB image as input.

3.2. Object­specific CycleGAN network

While the cycleGAN loses may be sufficient to adapt

to similar domains and/or corresponding images, we ob-

serve that they struggle to solve non-corresponding adap-

tation across modalities, particularly on the fine grain de-

tails of the objects of interest. We postulate that the im-

agery produced using the original cycleGAN architecture

does not translate the classes to a high enough standard to

be detected. In this scenario, we can constrain the adapta-

tion to focus on the objects of interest which will be later

detected, since detection is our final goal. The emphasis on

the object of interest regions during adaptation is made by

adding a new loss function, which we call Object Specific

Loss (OS Loss), and is minimised simultaneously with the

other losses.

Since we aim to find where the objects are in an unsuper-

vised manner, without requiring any label, we use the output

of the detection algorithm rather than ground truth. The real

LWIR and RGB images pass through an RGB-trained faster

RCNN network adapted for LWIR in an unsupervised man-

ner described in [2]. Although this network is adapted for

LWIR imagery, it maintains its RGB performance, so it can

be used in both modalities simultaneously. We use regions

of interest (ROI) produced by faster RCNN to locate areas

where objects are in the real image. We then use the ROIs to

minimise the difference between these areas in the real and

recovered images. This will help improve the translation of

these objects to the generated image. The L1 loss is used

to compare the pixel values of the bounding boxes areas for

the real and recovered images. Figure 3 shows the architec-

ture of our proposed network, which includes the original

cycleGAN network plus our new unsupervised loss based

on faster-RCNN network detections.

The L1 loss is multiplied by a hyperparameter λ and

added to the original cycleGAN loss. The region of interest

function is given as ROI(). The total OS loss is given, as

shown:

OSloss =
1

n

n∑

i=1

|ROI(G(F (IRGB

i )))−ROI(IRGB

i )|

+
1

n

n∑

i=1

|ROI(F (G(IIRi )))−ROI(IIRi )|

(5)

Thus, the final loss function of our proposed approach is:

AdaptedCycleGANloss = TotalAdvloss+

αCycleloss + λOSloss

(6)

4. Experimental Results

In this section, we detail the datasets used, the exper-

imental setup and our two approaches for producing syn-

thetic RGB/LWIR imagery for detection.



Figure 4: Overview of our LWIR to RGB translation for detection approach. The real LWIR image is translated to RGB

using generator G before being passed to the detector. In addition, we combine this generated image with the original LWIR

image for detection.

4.1. Datasets

Two datasets are used to validate our approach, namely,

Thales and FLIR [10]. The Thales dataset contains 233

LWIR images and 233 RGB images, which are non-

corresponding. The RGB camera has a resolution of

1024x768 and Thales LWIR imager has a resolution of

640x480. The background remains constant, and people

move in and out of the field of view of the camera. Oc-

clusions do occur, and there is little clutter. This dataset has

only person class labels. The dataset was recorded during

the day in Glasgow UK with observation distances from 1-

50 metres.

In our second dataset, we choose 200 LWIR of size

640x512 and 200 RGB of size 1280x1024 from the FLIR

online dataset. The RGB and LWIR images are taken with

FLIR BlackFly imager and FLIR IR Tau2 imager respec-

tively. The FLIR dataset is recorded using a dashboard

camera on a vehicle driving the streets of Santa Barbara

CA and, therefore has a constantly changing background

with high numbers of objects per frame present and clut-

tered scenes. We take a selection of daytime imagery and

use object classes person and vehicle. The RGB and LWIR

imagery is corresponding; however, we do make use of this

in our paper as we aim to replicate a realistic scenario.

4.2. Experimental setup

In this paper, we aim to achieve detection; thus, it is

possible to assess our different methods by performing ob-

ject detection and comparing F1 scores. We choose faster

RCNN with VGG16 network trained on 70% of RGB im-

agery from the dataset as our baseline detection network.

We train the cycleGAN networks using 70% of the im-

ages in the dataset; the remaining 30% is used for testing.

The LWIR image, which has one channel, is used three

times to create a three-channel image to match the number

of channels in the RGB image. We resize the images to size

300x300 and use batch size=1 for computational reasons.

We use hyperparameter values α = 10 and λ = 0.1 in equa-

tion 6 in all our experiments, which were empirically deter-

mined. All cycleGAN networks are trained using a learning

rate of 0.0002 and decay epoch of 100. The method was de-

veloped using the PyTorch deep learning toolbox. We used

an NVIDIA GeForce GTX 1080 Ti Founders Edition, an In-

tel Xeon E3-1620 v3 CPU (Quad-Core 3.5GHz) and 32 GB

of Memory.

4.3. Experiment 1: LWIR to RGB translation for
detection

Figure 4 shows our approach to the first experiment

translating LWIR to RGB for detection. After training the

RGB/LWIR translation network, we create synthetic RGB

imagery using the LWIR to RGB generator network G. We

then pass this imagery through an RGB trained detector to

produce an F1 score. Also, we propose an additional ap-

proach where we fuse the generated RGB with its origi-

nal LWIR image using a simple pixel per pixel approach.

We test these synthetic RGB images and their fusion with

real LWIR using our RGB trained detector to produce F1

scores. For comparison purposes, we validate the synthetic

imagery produced from our adapted cycleGAN versus the

synthetic imagery produced from the conventional cycle-

GAN and UNIT translation [13] networks, as well as the

use of real LWIR imagery as input.

Figure 5 displays some of the synthetic RGB images

created using the different GAN methods. Table 1 shows

the F1 scores produced when using the Thales and FLIR

dataset. Our cycleGAN adaptation network creates the best



Real LWIR cycleGAN Ours Fusion

Figure 5: Figure displaying real FLIR imagery, its translated RGB image (using cycleGAN and our adaptation) and the

fusion of the real LWIR and generated RGB image.

quality RGB imagery for detection and is consistent across

two different datasets with respect to the F1 score. We im-

prove the F1 score on average by 2.5% for the Thales dataset

and 1.9% for the FLIR dataset with respect to the original

cycleGAN network.

GAN used: Imagery tested Thales FLIR

- Real LWIR 51.3 20.0

UNIT GAN Fake RGB 24.0 0.1

CycleGAN Fake RGB 64.6 7.7

Ours Fake RGB 67.1 9.5

Ours Fake RGB + Real LWIR 73.0 26.3

Table 1: F1 scores produced from LWIR to RGB

translation for detection experiment.

The Thales dataset produces the best quality synthetic

RGB imagery out of the two datasets with a maximum F1

score of 67.1%. This dataset has a constant background and

a maximum of 6 objects per frame which therefore helps

to produce better quality imagery. The FLIR dataset pro-

duces a much lower overall F1 score of 9.5% as this dataset

has many more objects, clutter, occlusions and constantly

changing backgrounds. Fusing both the synthetic RGB and

real LWIR image together for detection in the RGB trained

network helps improve detection in the Thales dataset to

73.0% and 26.3% in the FLIR. Fusing these images together

helps to maintain the structure of objects present in the im-

age and thereby, improves F1 scores.

4.4. Experiment 2: Fine tuning with synthetic
LWIR

Figure 6 explains the approach to our fine-tuning with

synthetic LWIR experiment. We create synthetic LWIR im-

agery using the RGB to LWIR generator F. This allows us to

use LWIR-wise imaginary while reusing the RGB labelling

since the objects remain on the same locations after adapta-

tion. The RGB trained detection network is fine-tuned with

70% of the synthetic LWIR with RGB ground truth labels.

We train using the person class for the Thales dataset and

person and vehicle for the FLIR dataset. We test 30% of the

real LWIR imagery. The RGB trained network is also fine-

tuned with real LWIR for comparison purposes only since



Figure 6: Overview of our fine-tuning with synthetic LWIR experiment. Real RGB is translated to synthetic LWIR using

generator F. These synthetic LWIR are used for fine tuning the RGB trained detection algorithm for testing real LWIR

imagery.

it requires extra manual annotation from us.

Figure 7 and 8 and show some examples of syn-

thetic LWIR imagery produced using the Thales and FLIR

datasets. The F1 scores produced using the two datasets

are shown in Table 2. When testing the Thales and FLIR

real LWIR imagery, we achieve F1 scores of 85.6% and

45.6% respectively. These results are comparable to the

F1 scores produced when fine-tuning with real LWIR im-

agery but with the crucial advantage of not requiring ex-

tra annotation in LWIR. This method produces higher F1

scores than those in the LWIR to RGB translation for de-

tection approach and shows how accurately we can detect

in LWIR imagery using no real LWIR images or labels for

training our detection algorithms.

Network FT with: Imagery tested Thales FLIR

Synthetic LWIR Real LWIR 85.6 45.6

Real LWIR Real LWIR 94.2 59.8

Table 2: Fine-tuning with synthetic LWIR F1 scores.

5. Conclusion

In this paper, we achieve high detection rates in LWIR

imagery in a completely unsupervised manner using only

RGB labels for training detection algorithms. Firstly, we

translate LWIR imagery to RGB, to make use of RGB

trained detection networks. Our object-specific adapted cy-

cleGAN produces better quality RGB imagery for detection

than the original cycleGAN, producing F1 scores of up to

67.1%. In addition, we show that the fusion of the RGB

generated image and the real LWIR image can further en-

hance detection to up to 73.0%. Secondly, we fine-tune an

RGB trained detector with synthetic LWIR and test with

real LWIR. This method produces the best F1 performance

of up to 85.6% and confirms that our synthetic LWIR im-

agery is of high quality.

To summarise, for the first time, we produce synthetic

RGB/LWIR imagery using our unsupervised adapted cycle-

GAN, which ultimately leads to high detections rates using

non-corresponding and cluttered datasets. This work will be

of great interest to those in the defence industry as we show

24-hour detection is possible in real-life scenarios when lit-

tle or no labelled datasets are available for training.



Figure 7: Thales synthetic LWIR imagery (top row)

translated from RGB imagery (bottom row).

Figure 8: FLIR synthetic LWIR imagery (top row)

translated from RGB imagery (bottom row).
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