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Abstract

In this work, we present two new methods to overcome
the lack of annotated long-wavelength infrared (LWIR) data
by exploiting the abundance of similar RGB imagery. We
introduce a novel unsupervised adaptation to the cycleGAN
architecture for translating non-corresponding LWIR/RGB
datasets. Our ultimate goal is high detection rates in the
real LWIR imagery using only RGB labelled imagery for
training detection algorithms. In our first experiment, we
translate LWIR imagery to RGB, allowing us to use an
RGB trained detection algorithm. We, thereby remove the
need for labelled LWIR imagery for training detection algo-
rithms. Experimental results show that our adaption helps
to create synthetic RGB imagery with higher detection rates
across two different datasets. We also find that combining
the synthetic RGB and real LWIR imagery produces higher
F1 scores on the RGB trained detection network. In our
second experiment, we translate RGB to LWIR to fine-tune
a network for detection in real LWIR imagery. This method
produces the highest F1 scores out of the two methods with
detection reaching up to 85.6%.

1. Introduction

Despite recent advances in detection and translation al-
gorithms for RGB images, infra-red (IR) is still relatively
understudied due to the scarcity of the data. There is a se-
vere lack of labelled LWIR data, specifically for high per-
forming, high-resolution thermal sensors. Detection in IR
imagery is becoming increasingly important in the defence
and security domain for 24-hour capability because visi-
ble light is non-optimal in extreme weather situations (e.g.
fog/heavy rain/low light) and at night. Visible images cap-
tured by RGB sensors consist of reflected energy and pro-

vide information similar to what the human eye would pro-
cess. IR images consist of emitted energy from objects and
potential absorption/emission from the background. Long-
wavelength IR (LWIR, 8 — 12 ym) imaging can be partic-
ularly useful for the observance of living beings, which is
helpful in defence scenarios.

LWIR/RGB image translation could provide a solution
to the lack of annotated LWIR datasets by taking advantage
of a large corpus of existing labelled RGB data. One of
the significant issues regarding translation research is that
there exists very little work translating between modalities
(i.e. IR to RGB). Also, there are no studies which focus
on real-life non-corresponding (does not line up in space or
time) imagery taken in cluttered urban scenes. In this paper,
we present two approaches for detection in real LWIR and
synthetic RGB imagery in an unsupervised manner.

Our main contributions are summarised as follows:

e We propose an unsupervised adaptation to the cycle-
GAN network [32]. A novel loss is introduced to min-
imise the appearance between the object of interest de-
tections in the real and recovered RGB/LWIR imagery.

e We show LWIR to RGB translation is possible be-
tween non-corresponding datasets containing high res-
olution short-medium range targets (objects at 0-50
metres from camera) taken in real-life uncontrolled
cluttered urban scenes. Figure 1 shows some exam-
ples of our synthetic RGB imagery. The synthetic
RGB images can be used for detection in RGB trained
algorithms. Moreover, this paper is the first to fuse
synthetic RGB and real LWIR further improving F1
scores.

e We create synthetic LWIR and show, for the first time,
that this imagery can be used for effective training of
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Figure 1: Thales synthetic RGB imagery (top row)
translated from real LWIR imagery (bottom row) using our
adapted cycleGAN network.

deep learning detectors for improved detection in real
LWIR data.

This paper develops a new research area which has
emerged from the need for detection in LWIR imagery and
would have a real impact on the applicability of modern
deep learning (DL) modelling in defence and security ap-
plications.

2. Related work

We review two main bodies of research relevant to our
work here, object detection in IR imagery and image trans-
lation networks.

2.1. IR detection

When dealing with small datasets for training, transfer
learning (TL) followed by fine-tuning (FT) is the most com-
mon and successful strategy [23]. TL struggles to address
more radical differences between modalities meaning that
detection rates are low unless FT is implemented. However,
FT is not always possible due to lack of labelled data. Pa-
per [2] propose a novel architecture for LWIR detection in
an unsupervised manner for the first time. They use adap-
tation techniques (previously used within the RGB domain
for classification tasks) for creating modality invariant fea-
tures in a faster RCNN network for improving LWIR de-
tection. The work proposed in this paper uses the mean
squared error to reduce the distance between feature maps

produced from RGB and LWIR imagery. This is one of
only a small number of papers [4, 25, 1] which cover object
detection for defence scenarios compared with other appli-
cations, given the difficulty in acquiring appropriate data. In
addition to these methods, some researchers have explored
fusing IR with RGB [5, 20] and IR with depth imagery to
improve detection results [12, 8].

2.2. Image translation networks

For the last few years, researchers have looked at gener-
ative adversarial networks (GANS) to adapt source imagery
to a different target domain [0, 9, 18, 11, 15,7, 16]. GANs
can be useful when there is only a small dataset available for
training classification algorithms as we can use synthetic
imagery for training purposes. These GAN architectures
currently produce the best results and can be categorized
into supervised and unsupervised. Supervised models use
paired images, lined up in time and space, which are very
difficult to collect in real scenarios. Unsupervised models
alleviate the difficulty of obtaining data pairs as unpaired
data is much easier to assemble. Many different architecture
choices are available for unsupervised methods [32, 29, 13].
Regardless of the architecture choices, these unsupervised
methods tend to struggle when significant differences be-
tween the domains need to be covered.

Another issue with translation methods is that in the past,
researchers have mainly focused on translation between two
domains in the RGB modality. However, recently several
researchers have had success with near-infrared (NIR) to
RGB translation [28, 27, 22, 17, 21, 26]. Also, CNN based
translation methods have translated IR images to RGB for
facial recognition [30, 24]. In addition, IR2VI [19] ad-
dresses mid-wave IR to grey-scale translation for detection
of long-range targets. They introduce a structure connection
to overcome the incorrect mapping problem and help trans-
late the background more accurately. Researchers [31, 3]
have had some success addressing a much harder problem
of LWIR to RGB translation using the Kaist dataset [14]
which consists of imagery taken in cluttered urban scenes.

Although the translation approaches described have had
positive outcomes, none of them have addressed unsuper-
vised translation between LWIR and RGB for object detec-
tion in cluttered scenes with short-medium range targets.
Translating imagery for detection with short-medium range
targets is a much more difficult task than for long range tar-
gets. This is because there are more discriminative details to
translate, which are crucial for the subsequent localization
and classification. We aim to address these gaps in research
and show that unsupervised translation between LWIR and
RGB for detection of short-medium range targets is possi-
ble.

In this paper, we propose to use a novel cycleGAN ar-
chitecture for image translation between LWIR and RGB



imagery. Our network is capable of specifically enhanc-
ing the translation of objects between LWIR and RGB in
an unsupervised manner using a detection algorithm trained
using only RGB labelled imagery. In addition to testing
the synthetic RGB imagery with an RGB trained detection
network, we also test the fusion of synthetic RGB and real
LWIR imagery. Furthermore, we fine-tune the RGB trained
network with synthetic LWIR imagery for detection in real
LWIR.

Section 3 details our technical approach, section 4 dis-
cusses the experiments and results, and we conclude with
section 5.

3. Unsupervised Object-specific CycleGAN
adaption

In this section we first describe the cycleGAN network
and then our novel unsupervised adaptation to enhance the
object quality in adapted images.

3.1. CycleGAN network

We aim to create synthetic RGB imagery and LWIR im-
agery using a non-corresponding dataset. This means that
the imagery is not lined up in time, viewpoint or space, as
shown in Figure 2. We use the cycleGAN as our baseline
architecture as it is unsupervised. The training is achieved
using two sets of n images I8 ;i =1,2,..,nand I/ :
i =1,2,..,n where 795 and I'F are non-corresponding.
To translate 1 ZI R {0 its RGB version, we use a generator G
and to translate 7/'“P to IR we use generator F:

G:IR — RGB

F:RGB— IR

The synthetic RGB and IR images can be represented by
G(I]®) and F(IF9P) respectively. Each generator has a
corresponding discriminator, which seeks to tell the differ-
ence between the real and synthetic imagery:

Drep : distinguishes TP from G(I'®)
Dy : distinguishes 1'% from F(I7¢B)

The training is done using the two sets of images by solv-
ing the following adversarial losses:

1
Advioss(G, Drap, I'") = -~ > (1= Dras(G(I]™)))?

1
Advioss(F, Drg, I79P) = - > (1= Dir(F(I]1P)))?
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Figure 2: Examples of non-corresponding RGB (top row)
and LWIR (bottom row) imagery from the Thales dataset.

These two losses alone are not sufficient to produce good
quality images. The adversarial losses enforce the gener-
ated output to the appropriate modality. In other words,
a generator could output an RGB image that was an ex-
cellent example of that modality, but would not have the
structure or object classes of the input IR image. The cycle
consistency loss addresses this issue by comparing the real
image with the recovered image. The recovered image is
produced when the real image is converted to one modality
and then back again. The recovered image should be sim-
ilar to the original image and the cycle loss enforces that
G(F(IRGB)) ~ IR9B and F(G(I'R)) ~ I'E. The cycle
consistency loss is:

Cycleyyss (G, F, TREB [117) —
1 n
=~ [GEUIFE)) - I74P| 3)
i=1
HEGI) - 7]
The final cycleGAN loss is the adversarial losses added
to a weighted cycle consistency loss by hyper-parameter o
which is normally set to 10 [32].
CycleGAN,yss = Total Advss + aCycleyyss 4)

where Total Advi,ss = Advess(G, Dras, IIR) +
Advloss (Fv -DIRv IRGB)'
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Figure 3: Overall architecture of our proposed adapted cycleGAN framework. Note this illustration needs to be duplicated
for training in the cycleGAN framework with the RGB image as input.

3.2. Object-specific CycleGAN network

While the cycleGAN loses may be sufficient to adapt
to similar domains and/or corresponding images, we ob-
serve that they struggle to solve non-corresponding adap-
tation across modalities, particularly on the fine grain de-
tails of the objects of interest. We postulate that the im-
agery produced using the original cycleGAN architecture
does not translate the classes to a high enough standard to
be detected. In this scenario, we can constrain the adapta-
tion to focus on the objects of interest which will be later
detected, since detection is our final goal. The emphasis on
the object of interest regions during adaptation is made by
adding a new loss function, which we call Object Specific
Loss (OS Loss), and is minimised simultaneously with the
other losses.

Since we aim to find where the objects are in an unsuper-
vised manner, without requiring any label, we use the output
of the detection algorithm rather than ground truth. The real
LWIR and RGB images pass through an RGB-trained faster
RCNN network adapted for LWIR in an unsupervised man-
ner described in [2]. Although this network is adapted for
LWIR imagery, it maintains its RGB performance, so it can
be used in both modalities simultaneously. We use regions
of interest (ROI) produced by faster RCNN to locate areas
where objects are in the real image. We then use the ROIs to
minimise the difference between these areas in the real and
recovered images. This will help improve the translation of

these objects to the generated image. The L1 loss is used
to compare the pixel values of the bounding boxes areas for
the real and recovered images. Figure 3 shows the architec-
ture of our proposed network, which includes the original
cycleGAN network plus our new unsupervised loss based
on faster-RCNN network detections.

The L1 loss is multiplied by a hyperparameter A and
added to the original cycleGAN loss. The region of interest
function is given as ROI(). The total OS loss is given, as
shown:

OSloss = % Z |ROI(G(F(IZRGB))) _ ROI(IZRGB”

=1

1 - IR\\\ _ IR

+3 2 IROIF(GU{ ) = ROIUET)
()

Thus, the final loss function of our proposed approach is:

AdaptedCycleGAN,ss = Total Advyoss+

(6)
aCycleyoss + AOSoss

4. Experimental Results

In this section, we detail the datasets used, the exper-
imental setup and our two approaches for producing syn-
thetic RGB/LWIR imagery for detection.
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Figure 4: Overview of our LWIR to RGB translation for detection approach. The real LWIR image is translated to RGB
using generator G before being passed to the detector. In addition, we combine this generated image with the original LWIR
image for detection.

4.1. Datasets

Two datasets are used to validate our approach, namely,
Thales and FLIR [10]. The Thales dataset contains 233
LWIR images and 233 RGB images, which are non-
corresponding. The RGB camera has a resolution of
1024x768 and Thales LWIR imager has a resolution of
640x480. The background remains constant, and people
move in and out of the field of view of the camera. Oc-
clusions do occur, and there is little clutter. This dataset has
only person class labels. The dataset was recorded during
the day in Glasgow UK with observation distances from 1-
50 metres.

In our second dataset, we choose 200 LWIR of size
640x512 and 200 RGB of size 1280x1024 from the FLIR
online dataset. The RGB and LWIR images are taken with
FLIR BlackFly imager and FLIR IR Tau2 imager respec-
tively. The FLIR dataset is recorded using a dashboard
camera on a vehicle driving the streets of Santa Barbara
CA and, therefore has a constantly changing background
with high numbers of objects per frame present and clut-
tered scenes. We take a selection of daytime imagery and
use object classes person and vehicle. The RGB and LWIR
imagery is corresponding; however, we do make use of this
in our paper as we aim to replicate a realistic scenario.

4.2. Experimental setup

In this paper, we aim to achieve detection; thus, it is
possible to assess our different methods by performing ob-
ject detection and comparing F1 scores. We choose faster
RCNN with VGG16 network trained on 70% of RGB im-
agery from the dataset as our baseline detection network.

We train the cycleGAN networks using 70% of the im-
ages in the dataset; the remaining 30% is used for testing.

The LWIR image, which has one channel, is used three
times to create a three-channel image to match the number
of channels in the RGB image. We resize the images to size
300x300 and use batch size=1 for computational reasons.
We use hyperparameter values « = 10 and A = 0.1 in equa-
tion 6 in all our experiments, which were empirically deter-
mined. All cycleGAN networks are trained using a learning
rate of 0.0002 and decay epoch of 100. The method was de-
veloped using the PyTorch deep learning toolbox. We used
an NVIDIA GeForce GTX 1080 Ti Founders Edition, an In-
tel Xeon E3-1620 v3 CPU (Quad-Core 3.5GHz) and 32 GB
of Memory.

4.3. Experiment 1: LWIR to RGB translation for
detection

Figure 4 shows our approach to the first experiment
translating LWIR to RGB for detection. After training the
RGB/LWIR translation network, we create synthetic RGB
imagery using the LWIR to RGB generator network G. We
then pass this imagery through an RGB trained detector to
produce an F1 score. Also, we propose an additional ap-
proach where we fuse the generated RGB with its origi-
nal LWIR image using a simple pixel per pixel approach.
We test these synthetic RGB images and their fusion with
real LWIR using our RGB trained detector to produce F1
scores. For comparison purposes, we validate the synthetic
imagery produced from our adapted cycleGAN versus the
synthetic imagery produced from the conventional cycle-
GAN and UNIT translation [13] networks, as well as the
use of real LWIR imagery as input.

Figure 5 displays some of the synthetic RGB images
created using the different GAN methods. Table 1 shows
the F1 scores produced when using the Thales and FLIR
dataset. Our cycleGAN adaptation network creates the best
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Figure 5: Figure displaying real FLIR imagery, its translated RGB image (using cycleGAN and our adaptation) and the
fusion of the real LWIR and generated RGB image.

quality RGB imagery for detection and is consistent across
two different datasets with respect to the F1 score. We im-
prove the F1 score on average by 2.5% for the Thales dataset
and 1.9% for the FLIR dataset with respect to the original
cycleGAN network.

| GAN used: | Imagery tested | Thales | FLIR |
- Real LWIR 51.3 20.0
UNIT GAN Fake RGB 24.0 0.1
CycleGAN Fake RGB 64.6 7.7
Ours Fake RGB 67.1 9.5
Ours Fake RGB + Real LWIR 73.0 26.3

Table 1: F1 scores produced from LWIR to RGB
translation for detection experiment.

The Thales dataset produces the best quality synthetic
RGB imagery out of the two datasets with a maximum F1
score of 67.1%. This dataset has a constant background and
a maximum of 6 objects per frame which therefore helps
to produce better quality imagery. The FLIR dataset pro-

duces a much lower overall F1 score of 9.5% as this dataset
has many more objects, clutter, occlusions and constantly
changing backgrounds. Fusing both the synthetic RGB and
real LWIR image together for detection in the RGB trained
network helps improve detection in the Thales dataset to
73.0% and 26.3% in the FLIR. Fusing these images together
helps to maintain the structure of objects present in the im-
age and thereby, improves F1 scores.

4.4. Experiment 2: Fine tuning with synthetic
LWIR

Figure 6 explains the approach to our fine-tuning with
synthetic LWIR experiment. We create synthetic LWIR im-
agery using the RGB to LWIR generator F. This allows us to
use LWIR-wise imaginary while reusing the RGB labelling
since the objects remain on the same locations after adapta-
tion. The RGB trained detection network is fine-tuned with
70% of the synthetic LWIR with RGB ground truth labels.
We train using the person class for the Thales dataset and
person and vehicle for the FLIR dataset. We test 30% of the
real LWIR imagery. The RGB trained network is also fine-
tuned with real LWIR for comparison purposes only since
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Figure 6: Overview of our fine-tuning with synthetic LWIR experiment. Real RGB is translated to synthetic LWIR using
generator F. These synthetic LWIR are used for fine tuning the RGB trained detection algorithm for testing real LWIR
imagery.

it requires extra manual annotation from us.

Figure 7 and 8 and show some examples of syn-
thetic LWIR imagery produced using the Thales and FLIR
datasets. The F1 scores produced using the two datasets
are shown in Table 2. When testing the Thales and FLIR
real LWIR imagery, we achieve F1 scores of 85.6% and
45.6% respectively. These results are comparable to the
F1 scores produced when fine-tuning with real LWIR im-
agery but with the crucial advantage of not requiring ex-
tra annotation in LWIR. This method produces higher F1
scores than those in the LWIR to RGB translation for de-
tection approach and shows how accurately we can detect
in LWIR imagery using no real LWIR images or labels for
training our detection algorithms.

’ Network FT with: \ Imagery tested \ Thales \ FLIR ‘

Synthetic LWIR Real LWIR 85.6 45.6
Real LWIR Real LWIR 94.2 59.8

Table 2: Fine-tuning with synthetic LWIR F1 scores.

5. Conclusion

In this paper, we achieve high detection rates in LWIR
imagery in a completely unsupervised manner using only
RGB labels for training detection algorithms. Firstly, we
translate LWIR imagery to RGB, to make use of RGB

trained detection networks. Our object-specific adapted cy-
cleGAN produces better quality RGB imagery for detection
than the original cycleGAN, producing F1 scores of up to
67.1%. In addition, we show that the fusion of the RGB
generated image and the real LWIR image can further en-
hance detection to up to 73.0%. Secondly, we fine-tune an
RGB trained detector with synthetic LWIR and test with
real LWIR. This method produces the best F1 performance
of up to 85.6% and confirms that our synthetic LWIR im-
agery is of high quality.

To summarise, for the first time, we produce synthetic
RGB/LWIR imagery using our unsupervised adapted cycle-
GAN, which ultimately leads to high detections rates using
non-corresponding and cluttered datasets. This work will be
of great interest to those in the defence industry as we show
24-hour detection is possible in real-life scenarios when lit-
tle or no labelled datasets are available for training.



Figure 7: Thales synthetic LWIR imagery (top row)
translated from RGB imagery (bottom row).

Figure 8: FLIR synthetic LWIR imagery (top row)
translated from RGB imagery (bottom row).
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