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Abstract

We introduce a new real-time approach for human head

and shoulder detection from RGB-D data based on a combi-

nation of image processing and deep learning approaches.

Candidate head-top locations (CHL) are generated from a

fast and accurate image processing algorithm that operates

on depth data. We propose enhancements to the CHL al-

gorithm making it three times faster. Various deep learning

models are then evaluated for the tasks of classification and

detection on the candidate head-top locations to regress the

head bounding boxes and detect shoulder keypoints. We

propose three different models based on convolutional neu-

ral networks for this problem. Experimental results for dif-

ferent architectures of our model are discussed. We also

compare the performance of our models to other state of

the art methods in terms of accuracy of detections and com-

putational cost and show that our proposed models are on

par with the state of the art in terms of precision-recall of

head detection and precision of shoulders detection, with

the biggest advantage of our models being in terms of com-

putation time. We also analyze the effect of adding the depth

channel on the performance of the network.

1. Introduction

Deep learning has dominated the field of machine vision

in the last few years. The advancements in GPU technology

has allowed deep learning methods to become more feasible

as the computing power of GPU can be harnessed to train

and run deep learning models. The accurate detection of

humans in videos is a prominent challenge in machine vi-

sion with several applications ranging from pedestrian de-

tection in autonomous driving systems, to security and con-

gestion analysis in surveillance videos. There are several

approaches to human detection depending on the type of

application.

Some systems only need to detect the head bounding

boxes of humans in an image as head detection is sufficient

to achieve the desired task. Applications such as people

counting [5] and congestion analysis [6] are examples of

such systems.

Other systems work on detecting bounding boxes of the

entire human body in images. Pedestrian detection for au-

tonomous cars [11], person tracking and reidentification

[20] are examples of systems requiring the detection of the

full body of humans.

Human pose estimation is the process of detecting key-

point locations that define important joints of the human

body such as the shoulders, elbows, hips, and knees. Pose

estimation is used in applications relating to activity recog-

nition [10] and action prediction [13].

1.1. Challenges

Even with the great advancements achieved in the field

of human detection, certain challenges of object and key-

point detection still exist. The main two challenges are:

• Occlusion: It is difficult for a model to detect objects

that are fully or partially occluded. This is specially

true for congested scenes like a crowded street.

• Feature broadness: With deep learning, the perfor-

mance of a model is reliant on the size of the training

data. The more examples a model trains on, the better

it is expected to be in predicting test images. How-

ever, generating training data requires manual labour

for data annotations.

1.2. Contribution

We developed a system that is able to efficiently and re-

liably detect humans in indoor environments in real time

given limited computational resources. Our contributions

can be summarized as follows:

• We propose a system that combines traditional im-

age processing techniques to generate object propos-

als with deep learning. The proposed model efficiently



and reliably detects human heads and shoulders in in-

door environments. Our approach addresses occlu-

sion challenges and does not require a large amount

of training data.

• We introduce enhancements to the CHL algorithm [16]

that reduces its computational complexity by three

folds.

• We introduce three variations of our model and com-

pare our approach to other state of the art solutions in

the tasks of object and shoulder keypoint detection and

show that our model is more computationally efficient

while still performing well on the tasks of head and

shoulders detection.

The remainder of this paper is organized as follows. Sec-

tion 2 provides a review of the previous methods related to

our task. We introduce our approach in section 3. The ex-

perimentation results and analysis are given in section 4.

Finally, we conclude this paper in section 5.

2. Related Work

Spinello et al[14] propose the histogram of oriented

depth (HOD) descriptor which encodes the orientation of

depth changes from depth frames that is then stored in a 1D

histogram and the aggregation of blocks of those histograms

result in the HOD features.

In [8], the authors use local maximum height pixels

as plausible human head tops. A SVM (Support Vector

Machine) [4] is then trained with two sources of features

(height difference, and joint histogram of color and height)

SSD (Single Shot multibox Detector) [9] generates pro-

posals and classifies them in one network pass (single shot)

making it faster than Faster-RCNN [12]. Convolutional fea-

ture layers are added to the end of the base network that de-

crease in size to allow the detection of objects of varying

sizes. Default boxes of varying sizes and aspect ratios are

used to detect objects of different shapes and sizes.

Introduced in [17], selective search relies on heavy im-

age segmentation to generate bounding boxes around seg-

mented partitions representing object proposals. Segmented

partitions are grouped with their neighbours based on simi-

larity and bounding boxes are then created around the newly

merged partitions to generate bigger object proposals for

bigger objects. The process of combining neighbouring par-

titions to create bigger proposals continues until we end up

with one proposal around the entire image.

Tian et al[16] scan a depth image from the top-left cor-

ner to the bottom right corner, projecting every pixel to the

3D-plane and connecting pixels that have a Eucledian dis-

tance less than a threshold allowing for the fast generation

of connected regions in an image. The top pixel of every

connected region is taken as a candidate human head-top

location.

Zhang et al[19] propose the use of a cascade of three

CNN (Convolutional Neural Networks) for the task of fa-

cial landmark (keypoint) detection. Each stage refines the

predictions of the previous stage as a fully connected layer

outputs the coordinates of facial keypoint locations.

OpenPose [3] is a real-time method for pose estimation

proposed by Cao et al. The method consists of 2 stages.

The first stage consists of a feature extractor while the sec-

ond stage is composed of 2-branch multi-stage CNN that

generate confidence maps and part affinity fields.

3. Proposed Method

Our approach is composed of two stages. The first stage

involves the generation of object proposals using an im-

proved implementation of the CHL algorithm [16]. In the

second stage, generated object proposals are fed to a small

CNN that classifies them as heads or background. For pro-

posals classified as heads, the regressed head bounding box

coordinates and shoulder keypoint locations are generated.

Figure 1 shows an overview of our proposed system.

3.1. Generating Proposals

The CHL algorithm processes a depth image to generate

candidate head-top locations. The image is scanned from

the top left corner to the bottom right corner. The idea is

that pixels that belong to the same object would have con-

tinuous depth values and vary in a specific range. Each pixel

is projected to the 3D space and the euclidean distance be-

tween the pixel and its neighbouring pixels is calculated. If

the distance is within a certain range, the connected region

is expanded and the neighbours of the newly added pixel

are processed next to check if they also belong to the same

object. This continues until no more pixels are found that

belong to this object. Then, the next pixel in the queue is

processed to start searching for a new object until no more

pixels are left unprocessed. This generates a number of con-

nected regions. The top point (having the lowest y coordi-

nate) of every accepted region is chosen as the candidate

head top location. After generating the candidate head top

locations, bounding boxes should be generated from them

in order to be fed to the CNN. In the original CHL algo-

rithm, the bounding box is a rectangle of aspect ratio 3 : 4.

For our application, we found that the bounding box needed

to have a bigger width in order to assure that it contains the

shoulder keypoints. Hence, the bounding box generation

algorithm is altered to output square shaped objects. There

is a linear relationship between the size of the proposal and

the distance to the sensor. As the object is further away from

the sensor, the proposal box length is smaller.

We have introduced a few changes to the CHL algorithm

that allowed us to improve its speed by 3 times. The imple-



Figure 1: Complete overview of our system.

mentation of the CHL algorithm in [16] requires two passes

over all image pixels. In the first pass, the (x, y, depth)

values of a pixel are used to generate a pointcloud. In the

second pass, the 3D euclidean distance between neighbour-

ing pixels in the generated pointcloud is calculated and con-

nected regions are generated accordingly. In our implemen-

tation, we combine the processes of 3D euclidean distance

calculation and connected regions generation. Instead of

going through all image pixels in the first pass and project-

ing them to the 3D space, then go over the generated point-

cloud again to generate connected regions, we analyze the

image pixels only once where pixels being processed are

projected to the 3D space and their Eucledian distance is

calculated. Hence, although we are still projecting the pix-

els to the 3D space, the access to pixel values is happening

once instead of twice, significantly reducing computation

time. In addition, we do not need to store the generated

pointcloud in memory. In addition, we use pointer access to

retrieve the value of depth pixels at specific locations. Fi-

nally, we use Cython [2] to create a bridge between Python

and C to remove the overhead caused by the dynamic bind-

ing in Python. The enhanced CHL algorithm functions at

115 frames per second.

3.2. Feature Extractors

Since we already have proposals, there is no need to use

a complex, deep CNN. We propose three slightly different

CNNs for classifying head proposals and regressing bound-

ing boxes and shoulder locations. We employ multi-task

learning (multi-task: head classification, head bbox detec-

tion, shoulder location regression). The 3 architectures are

different variations of the proposed system and would work

independently of each other. The 3 architectures will be

referred to in the remaining of this paper as CNN4, CNN5,

and CNN6. The 3 models share a similar architecture that is

composed of convolutional and pooling layers where ReLU

(Rectified Linear Unit) is used as the activation function.

The output of the last convolutional layer is flattened and

input to a fully connected layer (FC1). 3 different fully con-

nected layers (FC2, FC3, and FC4) are connected to FC1

and have the following functionalities:

• FC2: Has 2 outputs, used for binary classification of

the input. It outputs 1 if the proposal is a head, and 0

otherwise.

• FC3: Has 4 outputs Xmin, Ymin, Xmax, Ymax, the

bounding box coordinates of the head location in the

proposal.

• FC4: Has 4 outputs XLS , YLS , XRS , YRS , the coor-

dinates of the left and right shoulders of the person in

the proposal.

3.3. Dataset

The dataset we use was taken in four different indoor

locations at a restaurant. Every captured frame has an RGB

image and a corresponding depth image captured using



an Orbbec Astra1 3D camera. In total, we captured 1610
images from which 1449 images were randomly selected

for training, and 162 were selected for testing. However,

since the input to our models is proposals (resized to a

size of 48 × 48), the number of samples used for testing is

the total number of heads in all test images, and the same

applies for training images. This is because our system

trains on samples containing a human head and shoulder,

so the total number of train and test data is the total number

of humans present in the train/test set. Thereby, the total

number of training samples is 3212 positive samples

and 28921 negative samples, and the total number of test

samples is 357 positive samples and 3361 negative samples.

Data augmentation (rotation) is applied to increase the size

of the positive training samples to 16060. The dataset can

be downloaded from our website http://www.site.

uottawa.ca/research/viva/projects/head_

shoulder_detection/index.html, and the com-

plete thesis from this project is available at https:

//ruor.uottawa.ca/handle/10393/39448.

3.4. Training

The training was carried out on a machine with NVIDIA

GeForce GTX 1080 Ti Graphics card2. Binary cross en-

tropy loss is used for FC2 that classifies proposals, while

FC2 and FC3 that respectively regress the head locations

and shoulder keypoints within proposals use mean squarred

error as loss function. The training was conducted us-

ing a batch size of 200, with an initial learning rate of

0.001 that decays with a factor of 0.1 at 500, 1000, and

1200 epochs. The model is trained for 2000 epochs. The

source code for our work is available online at https:

//github.com/wassimea/hs_detection_cnn/.

4. Results and Analysis

4.1. Head Detection

When measuring the efficiency of a method in object de-

tection, it is important to take both precision and recall into

consideration. To generate the precision-recall curve, we

calculate the precision and recall of different models on dif-

ferent confidence thresholds ranging from 0.05 to 0.9. As

we increase the confidence of a model, we are decreasing

the recall but increasing the precision, and vice versa.

IoU (Intersection over Union) is a metric used to evalu-

ate the accuracy of a detection compared to its ground truth

box. It is calculated by dividing the overlapping area of the

detected box and the ground truth box by the union of the

areas of the two boxes (Equation 1). The conventional min-

imum IoU threshold to consider a human detection to be

1https://orbbec3d.com/product-astra/
2https://www.nvidia.com/en-us/geforce/products/

10series/geforce-gtx-1080-ti/

Figure 2: Precision-Recall curve applying 0.5 IoU criterion

using confidence thresholds between 0.05 and 0.9

correct is 0.5.

IOU =
AreaofIntersection

AreaofUnion
(1)

In our experimentation, two precision-recall curves are

calculated:

• Precision recall curve of our models compared to the

state of the art methods for object detection. In these

experiments, we set the IoU threshold to 0.5 in order

to consider a detection to be correct. These results are

shown in Figure 2.

• Precision recall curve of our models compared to Mo-

bilenet trained on the DMH (Depth map, Multi-order

depth template, and Height difference map) represen-

tation proposed in [16]. In these experiments, the pro-

posal box is evaluated instead of the regressed detec-

tion that is output by our models. Those experiments

are necessary to compare with the work done in [16]

that does not regress the head bounding box. It only

classifies a proposed box as either a head or back-

ground based on a confidence threshold. Hence, we

disregard the IoU of the proposal box with the ground

truth similar to what the authors of [16] do. If a pro-

posal box classified as a head contains a ground truth

head, the proposal box is considered a true positive, re-

gardless of the IoU value, and it is considered a false

positive otherwise. A proposal box is considered to

contain a ground truth if more than 50% of the ground

truth box is contained in the proposal box. The results

of those experiments are shown in Figure 3 and Figure

4.

Figure 2 shows that the best method in terms of

precision-recall is SSD-Inception-V3 [15] followed by

SSD-Inception-V2 [15]. This was expected as the inception

networks are among the best feature extractors. However,



Figure 3: Precision-Recall curve using the ground-truth in-

clusion criterion using confidence thresholds between 0.05
and 0.9 for our RGB models

Figure 4: Precision-Recall curve using the ground-truth in-

clusion criterion using confidence thresholds between 0.05
and 0.9 for our RGBD models

this impressive performance comes at a hefty computational

cost. This is elaborated in section 4.4. We see that our mod-

els perform relatively better than SSD Mobilenet [7], which

is the fastest feature extractor usually used as a backbone

for SSD.

The figure shows that our models that receive a RGB in-

put perform better than the models that operate on RGBD

input. This can be explained by the depth channel adding

confusion to the head classification task. The depth chan-

nel gives information that allows the differentiation of ob-

jects from background due to the distance disparity between

an object and the background. While this differentiation

proves to be beneficial for the precision of shoulder detec-

tion (discussed in section 4.2), it adds confusion to the clas-

sification task as depth does not give information that helps

in differentiating a human head from other objects.

We also observe that deeper models perform better.

CNN6 achieves the best recall (0.8) at the same precision

(0.88) of CNN5 and CNN4 (recalls of 0.79 and 0.77 respec-

Figure 5: PCKh of shoulder detection of different tested

models

tively). This is also an expected result as deeper models

extract better features that lead to better classification and

bounding box detection accuracy.

Figure 3 and Figure 4 respectively compare the per-

formance of our RGB and RGBD models with Mobilenet

trained on the 3 channel representation proposed in [16]

(DMH), which is generated solely from the depth image.

Our experimental results show that [16] achieves high pre-

cision, but its recall is lower than the other compared mod-

els. This can be explained by the fact that DMH does not

give a representation of the human head and shoulders re-

gion that is good enough to be distinguishable from other

proposed objects.

4.2. Shoulder detection

For measuring the precision of our shoulder detections,

we use the PCKh measure proposed in [1] which is inspired

by the PCK (Probability of Correct Keypoints) measure pro-

posed in [18]. The PCKh measure (h stands for head) deter-

mines a keypoint to be correctly predicted if the euclidean

distance between the predicted and the ground truth points

is less than a specific value, denoted as d calculated accord-

ing to formula 2 below:

d = α×max(h,w) (2)

Where α is a threshold that has a value between 0 and

1, h and w are respectively the height and width of the

ground truth head bounding box. The results of calculat-

ing the PCKh precision using different values of α on our

testing images are shown in Figure 5.

The results in Figure 5 show that OpenPose is by far the

best model in terms of shoulder detection precision. How-

ever, this excellent performance comes at a heavy computa-

tional cost (discussed in section 4.4). The results clearly

show that adding the depth channel always enhances the

accuracy of shoulder detection. This can be seen through



Figure 6: 4 sample detection results using CNN4 RGB.

Green represents ground truth data, red rectangles are re-

gressed head detections, blue rectangles are proposal boxes,

and yellow circles are predicted shoulder keypoint loca-

tions.

comparing models trained on RGB with the same models

trained on RGBD. This can be explained by the distance

disparity between an object and its background that is ex-

ploited by the depth channel. This disparity makes it easier

for the model to correctly predict the keypoint locations of

a proposal that has been classified as a head.

Figure 5 also shows that deeper models, in general, per-

form better in terms of shoulder precision. This is also ex-

pected as deeper models extract better features and are more

efficient in keypoint detection.

4.3. Bounding box IoU

Our approach includes the generation of the bounding

box of the exact location of the head within a proposal.

This allows us to have a higher IoU with the ground truth

bounding box. Table 1 shows the IoU of detected bounding

boxes with the ground truth of different models. It is clear

that our approach enhances the IoU of detections by more

than twice. This is because the work done in [16] does not

attempt to regress the bounding box location. The IoU is

calculated based on the overlap between the proposal and

the ground truth. For our methods, the IoU is calculated

from the overlap of the detected bounding box and the cor-

responding ground truth. Figure 6 shows sample detection

results from using CNN4 trained on RGB images.

4.4. Computational cost

To evaluate the computational cost of the different tested

models, we benchmarked them on two platforms:

• Desktop workstation: An advanced workstation with

powerful specifications and an NVIDIA GTX 1080 Ti

graphics card

• Jetson TX2: An embedded system platform devel-

oped by NVIDIA 3. Since we are building a model

that should ideally run on embedded systems with low

power consumption, we tested the models using the

Jetson TX2.

Inference benchmarking (in milliseconds) of the different

models on the GPU (Graphical Processing Unity) and CPU

(Central Processing Unit) of the desktop workstation and

the Jetson TX2 are shown in Table 2 and Table 3.

The processing time of the CHL algorithm is constant

whether we are testing on the desktop GPU or CPU as it

runs solely on the CPU. The proposals algorithm can not be

parallelized as it functions on sequential analysis of pixels

from the top left corner to the bottom right corner. How-

ever, this is not an entirely a negative effect as this keeps

the system GPU free to only run inference.

The results show that the proposed models outperform

the state of the art by a considerable margin on both GPU

and CPU. On GPU, our slowest model CNN6 trained on

RGBD data, runs at 80.65 FPS (Frames Per Second). It is

more than two times faster than the closest competitor, SSD

with base network Mobilenet which runs at 38.46 FPS. On

CPU, the analytical results are the same as CNN6 trained

on RGBD runs at 7.37 FPS where the closest competitor

SSD with base network Mobilenet runs at 4.76 FPS. We can

see that our models are more affected when running on the

CPU compared to SSD Mobilenet. This is due to the fact

that Mobilenet is optimized to train on low end devices.

We see that deeper networks are more computationally

expensive and have a lower frame rate. In addition, the

type of input affects the processing time. Models trained

on RGBD input are slower than the same models trained

on RGB input. These two effects are expected as adding

more convolutions increases the computational cost and

affects speed. Adding an extra input channel has the same

effect of increasing the computational cost. However, the

results show that the difference in processing times isn’t

significant between variations of our proposed models

(around 4 FPS between our fastest and slowest models on

GPU and around 1 FPS on CPU). This is primarily due

to the small input size as all our proposals are resized to

48× 48.

Mobilenet trained on the DMH representation [16] runs

at 38.46 FPS on GPU and 4.76 FPS on CPU. The main

overhead in this method comes from the generation of the

DMH representation. Although the idea of relying solely

on depth information for human head detection is interest-

ing, the precision-recall performance of this approach (dis-

3https://developer.nvidia.com/embedded/buy/jetson-tx2



Proposals
CNN4

RGB

CNN4

RGBD

CNN5

RGB

CNN5

RGBD

CNN6

RGB

CNN6

RGD

Avg IoU 0.28 0.68 0.68 0.68 0.68 0.68 0.69

Table 1: IoU of detected bounding box with the ground truth of different models

Proposals Extra Inference Total time (ms) FPS

CNN4 RGB 8.7 0 3.1 11.8 84.75

CNN4 RGBD 8.7 0 3.1 11.8 84.75

CNN5 RGB 8.7 0 3.1 11.8 84.75

CNN5 RGBD 8.7 0 3.3 12 83.33

CNN6 RGB 8.7 0 3.5 12.2 81.97

CNN6 RGBD 8.7 0 3.7 12.4 80.65

MN DMH 8.7 12 (DMH Generation) 6.8 27.5 36.36

SSD MN NA 0 26 26 38.46

SSD INC V2 NA 0 30 30 33.33

SSD INC V3 NA 0 39 39 25.64

OpenPose NA 0 250 250 4

Proposals Extra Inference Total time (ms) FPS

CNN4 RGB 8.7 0 110 118.7 8.42

CNN4 RGBD 8.7 0 110 118.7 8.42

CNN5 RGB 8.7 0 116 124.7 8.02

CNN5 RGBD 8.7 0 117 125.7 7.96

CNN6 RGB 8.7 0 127 135.7 7.37

CNN6 RGBD 8.7 0 127 135.7 7.37

MN DMH 8.7 12 (DMH Generation) 286 306.7 3.26

SSD MN NA 0 210 210 4.76

SSD INC V2 NA 0 370 370 2.7

SSD INC V3 NA 0 580 580 1.72

Table 2: Processing times of different models on the desktop machine GPU (top) and CPU (bottom).

cussed in section 4.1), and the added overhead from the gen-

eration of the DMH representation make this approach not

feasible for reliably detecting humans in different environ-

ments.

For object detection models running using SSD, Mo-

bilenet proves the best feature extractor to be used as back-

bone for SSD in terms of processing speed followed by in-

ception V2 and inception V3. OpenPose runs at only 4 FPS

on the desktop GPU, which makes it unsuitable for embed-

ded systems.

Table 3 shows the benchmarking results on the Jetson

TX2. The analytical conclusions derived from benchmark-

ing on the desktop machine are verified by the Jetson bench-

marking. The interesting phenomenon is that SSD object

detection models are not affected as much as our models,

specially on the Jetson GPU. SSD with base network Mo-

bilenet runs at almost the same frame rate as our slowest

model (CNN6 trained on RGBD input). This can be ex-

plained through analysing how SSD works. SSD generates

proposals and classifies them in a single pass. In addition,

the number of default boxes evaluated by SSD does not rely

on the number of people in the image. For our methods, the

batch size is not constant. The proposals generated from an

image are batched and passed to our models for classifica-

tion, bounding box regression, and keypoint detection. In

addition, it should be noted that the Jetson TX2 has mod-

est CPU power, which significantly affects the generation

of proposals. It should also be noted that while SSD models

detect head locations only, our models detect head locations

in addition to shoulder keypoints.

4.5. Drawbacks and failure cases

Analysing the results of our methods, we notice a sig-

nificant drawback: bounding box regression and keypoint

detection can’t be separated from the proposal classifica-

tion. We rely on the classification result of FC2 in order

to generate the regressed bounding and predict the shoul-

der keypoints. Only when FC2 classifies the proposal as a



Proposals Extra Inference Total time (ms) FPS

CNN4 RGB 44 0 30 74 13.51

CNN4 RGBD 44 0 31 75 13.33

CNN5 RGB 44 0 32 76 13.16

CNN5 RGBD 44 0 32 76 13.16

CNN6 RGB 44 0 33 77 12.99

CNN6 RGBD 44 0 33 77 12.99

MN DMH 44 50 (DMH Generation) 50 144 6.94

SSD MN NA 0 77 77 12.99

SSD INC V2 NA 0 98 98 10.2

SSD INC V3 NA 0 130 130 7.69

OpenPose NA 0 5500 5500 0.18

Proposals Extra Inference Total time (ms) FPS

CNN4 RGB 44 0 300 344 2.91

CNN4 RGBD 44 0 300 344 2.91

CNN5 RGB 44 0 310 354 2.82

CNN5 RGBD 44 0 312 356 2.81

CNN6 RGB 44 0 330 374 2.67

CNN6 RGBD 44 0 333 377 2.65

MN DMH 44 50 (DMH Generation) 645 739 1.35

SSD MN NA 0 500 500 2

SSD INC V2 NA 0 1190 1190 0.84

SSD INC V3 NA 0 1850 1840 0.54

Table 3: Processing times of different models on Jetson TX2 GPU (top) and CPU (bottom).

Figure 7: Sample failure cases

positive are the head bounding box and shoulder keypoints

generated. In addition, two shoulder keypoints will always

be generated, even if a part of the person is not visible or

occluded and only one shoulder is visible. Finally, although

our models can perform well when trained on RGB images

only, the proposals algorithm operates solely on depth im-

ages. This makes it reliant on the quality of the depth im-

ages and adds range constraints. Not to forget that off the

shelf depth sensors perform poorly in outdoor environments

and our models trained on RGB input would not perform

well at night. Figure 7 shows two samples where our sys-

tem fails as it detects non human objects are humans, and

generates a head bounding box and shoulder keypoint loca-

tions for those objects.

5. Conclusion

In this paper, we introduced a new method that is ac-

curate and computationally efficient for human head and

shoulders detection that uses a combination of image pro-

cessing and deep learning techniques and is suitable for em-

bedded systems. Object proposals are generated using an

enhanced version of the CHL algorithm. Proposals are then

fed to a small CNN for classification and regression of the

head bounding box and shoulder keypoint locations. We

show the effect of adding the depth channel on the accuracy

of head and shoulder detections. We compare our work to

state of the art methods in terms of speed and accuracy and

show that our approach surpasses the current state of the art

in both terms. Our approach that utilizes the CHL algorithm

for generating object proposals solves the problem of occlu-

sion to a decent extent. Our system would fail to propose

the presence of an occluded person only if this person is

within 15cm in 3D space from the person/object occluding

him/her. In the future, our work can be expanded by detect-

ing more body joints in a bottom up approach. In addition,

introducing multi-threading to the CHL algorithm by divid-

ing an image to a number of regions where each region runs

the CHL algorithm on a separate thread can be investigated.
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