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Abstract

Human perception is limited to perceive the objects
beyond the range of visible wavelengths in the Electro-
magnetic (EM) spectrum. This prevents them to rec-
ognize objects in different conditions such as poor illu-
mination or severe weather (e.g., under fog or smoke).
The technological advancement in thermographic imag-
ing enables the visualization of objects beyond visible
range which enables it’s use in many applications such
as military, medical, agriculture, etc. However, due
to the hardware constraints, the thermal cameras are
limited with poor spatial resolution when compared to
similar visible range RGB cameras. In this paper, we
propose a Super-Resolution (SR) of thermal images us-
ing a deep neural network architecture which we refer to
as TherISuRNet. We use progressive upscaling strat-
egy with asymmetrical residual learning in the network
which is computationally efficient for different upscal-
ing factors such as ×2, ×3 and ×4. The proposed
architecture consists of different modules for low and
high-frequency feature extraction along with upsampling
blocks. The effectiveness of the proposed architecture in
TherISuRNet is verified by evaluating it with different
datasets. The obtained results indicate superior results
as compared to other state-of-the-art SR methods.

1. Introduction

The human visual system can perceive ae scene in
the visible spectrum which spans approximately from
380nm to 720nm. Built on the principles of the human
visual system, RGB cameras in principle sense the re-
flected energy from the objects in the scene to capture
an image. However, during night time or in severe
weather conditions, the limited visible light leads to a
captured image with almost no details when a regular

RGB camera is used. In such a situation, an external
illumination can be employed such that reflection can
be captured to a certain degree. While this is a reason-
able approach, the captured image may be sub-optimal
due to inherent limitations of quantum efficiency of the
regular RGB cameras.

Alternatively, to represent the objects beyond the
human’s perception capability and in extreme visibility
conditions, thermal imaging can be employed. Ther-
mal imaging enables the visualization during night-
time or even in the presence of fog or smoke. Thermal
cameras are passive sensors which sense the infrared
radiation emitted by all objects with a temperature
above absolute zero [9]. Due to this, they are invariant
against the complex conditions such as lack of illumi-
nation or severe weather conditions and also they do
not require any external source of illumination. The re-
cent technological advancement in thermal imaging has
made many real-world applications possible [9] such as
in military [11], medical [34], pedestrian & person de-
tection [16], visual odometry [3], maritime [15], etc.

Despite the ability to capture the image in chal-
lenging conditions, thermal cameras often come with
limited spatial resolution as compared to that of RGB
cameras which typically provide mega-pixels of reso-
lution. The spatial resolution of the thermal sensors
cannot be extended beyond a certain limit due to lim-
itations of Signal to Noise Ratio (SNR) of the sensor
area in the cameras. On the other hand, increasing
the size directly increases the cost making the tech-
nology non-affordable and thereby makes it difficult to
increase the spatial resolution. Furthermore, in order
to achieve accurate thermal measurement, infrared de-
tectors are normally encapsulated in individual vacuum
packages which is a time consuming and expensive pro-
cess [38]. Due to these constraints, the cost of a ther-
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mal camera is comparatively higher than the one with
similar resolution for visible imaging.

In order to deal with the limitations posed by
the hardware, it is necessary to supplement High-
Resolution (HR) thermal imaging with an algorithmic
solution. One direct implication is the efforts to super-
resolve the thermal images which are typically of Low-
Resolution (LR) in nature. A vast amount of work has
been reported for achieving super-resolved images from
classical RGB cameras [44]. Motivated by such works,
a set of recent works have focused on super-resolving
the thermal images [4, 2, 27, 29, 15]. In a continued ef-
fort in this direction, we present a new approach based
on deep learning (using Convolutional Neural Network
(CNN)) to super-resolve the LR images obtained from
the thermal camera. Our approach is motivated by the
promising results by CNNs coupled with availability of
large scale datasets and good computation capability.
In this work, we propose the Super-Resolution (SR)
architecture for thermal images using CNNs which is
computationally efficient with promising results. We
refer to proposed network as TherISuRNet in the re-
mainder of this paper. Unlike previous works, we use
a progressive upscaling strategy with residual learning
in order to obtain SR from an LR thermal image. Fur-
ther, in an effort towards generalization, we validate
the proposed architecture by training and testing on
disjoint datasets in order to evaluate the efficiency of
the proposed method. We present both the qualita-
tive and quantitative results by comparing the obtained
SR results with other state-of-the-art visible image SR
algorithms [22, 31, 24, 25, 47] as well as thermal SR
methods [4, 2]. The key contributions of this work can
be summarized as below:

• This work proposes a new network architecture for
super-resolving thermal images.

• The proposed approach is computationally effi-
cient needing only 3.91M parameters to a obtain
thermal SR image, and is also robust for different
upscaling factors such as ×2, ×3 and ×4.

• The work validates the generalizability and ro-
bustness of the proposed method by training it
on PBVS thermal training dataset [36] and test-
ing it on two disjoint datasets such as FLIR [1] and
KAIST [17] which are unseen during the training.

In the rest of the paper, Section 2 reviews different SR
methods for both thermal and visible images. Identify-
ing the limitations, we present the proposed approach
in Section 3 along with the experimental validation in
Section 4. With the extensive analysis of results in the
same section, we conclude the work in Section 5.

2. Related Work

The visible image SR is a classical problem, yet it is
a challenging and open research problem in the com-
puter vision community. The different SR techniques
can be broadly categorised as single-image SR (SISR)
and multi-image SR (MISR). The task of SISR is more
challenging as compared to MISR as it has one sin-
gle LR observation in order to perform the SR task.
The earlier works for SISR can be roughly classified as
interpolation-based SR, traditional SR and deep learn-
ing based SR.

Following the early work on SR approach by Tsai
and Huang [43], a number of traditional SR methods
have been proposed using the principle of reconstruc-
tion [7, 39]. It has to be noted that interpolation based
SR methods do not add any extra information in the
upscaled LR image making it of limited use in real-
life. A set of traditional SR works have employed the
concept of patch based self-similarity from LR and HR
images pairs [10]. Sparse representation was further
explored to create dictionaries for both LR and HR
images to achieve even better SR images [45]. Exploit-
ing the recent advancements in deep learning, a num-
ber of recent works have been employed deep learn-
ing approaches to obtain better SR results simply by
learning the mapping between LR and HR pairs from
available large datasets [5, 21]. This new direction has
motivated works explicitly in various domains such as
spectral imaging [32], medical imaging [26] including
the thermal imaging applications [4, 2, 27, 29].

Dong et al. [5] proposed the first CNN based SR
approach termed as Super-Resolution Convolutional
Neural Network (SRCNN). In a following work, VDSR
network [18] showed significant improvement over the
SRCNN by increasing the network depth from 3 to
20 convolutional layers. To achieve fast convergence
speed, VDSR method adopts the global residual learn-
ing paradigm to predict the difference between the
bicubic upsampled LR image and original ground truth
HR image instead of the actual pixel value. Inspired
by these works [18, 5], many works on image SR have
been published in [19, 41] which use bicubic interpola-
tion to pre-upsample input LR image and then apply a
deep network which increases the computational costs.

While other works are based on post-upscaling strat-
egy for upscaling of input LR observation [40, 6]. Deep
Laplacian Pyramid based SR Network (LapSRN) is
described by Lai et al. [21] in which the sub-band
residuals of HR images are progressively reconstructed
at multiple pyramid levels. Recently, many SR ap-
proaches using CNN such as SRFeat-M [31], MSRN
[24], EDSR [25] and RCAN [47] obtained state-of-the-
art performance for visible LR images. The Generative



Adversarial Networks (GANs) [12] are further used as
unsupervised learning models for achieving SR image
in the recent years. Ledig et al. [22] proposed single
image SR using GAN called as SRGAN which serves
as a new state-of-the-art with impressive performance
using a deep residual network (ResNet) with skip con-
nection [14]. Following the initial works, many works
on SR based on GAN model have been reported re-
cently in [48, 35].

The success of deep learning for SR of visible im-
ages was further extended for thermal and/or infrared
images. The first CNN approach for thermal SR re-
ferred as Thermal Enhancement Network (TEN) was
reported in [4] which was based on the SRCNN model
[5]. It has to be noted that the TEN method [4] em-
ployed RGB images in the training process due to un-
availability of large scale thermal image dataset. On
the similar idea, Marivani et al. [29] obtained SR of
Near-Infrared (NIR) images by using RGB images as a
auxiliary information. Furthermore, Rivadeneira et al.
[37] use the thermal images dataset in the training pro-
cess and conclude that performance of SR is better if
the CNN network is trained on the thermal images in-
stead of visible images as done in [4, 29]. Bhattacharya
et al. [2] propose two CNN models for denoising as well
as SR for maritime infrared images. Recently, He et al.
[15] use the cascaded CNN architectures in order to
obtain SR for upscaling factor ×8. They use two level
CNN architectures in their approach in which first level
was used to restore the structure related information
and second CNN network level was utilized to obtain
fine details in the thermal images. Lastly, Mandanici
et al.[28] obtained SR of thermal imagery using the
concept of multi-image SR (MISR) approach. In addi-
tion to thermal SR, many works also focus on enhance-
ment of the thermal images. For example, authors
in [8] use the CNN network to improve the contrast
between target and background in the testing image.
Additionally, Lee et al. [23] propose infrared image en-
hancement based on the brightness of the RGB images.
They trained their network on RGB images and obtain
the residual thermal image at the output of CNN net-
work. The final enhanced thermal image is obtained
after adding residual image with the input thermal im-
age as based on VDSR [18].

Inspired from SRGAN [22], Liu et al. [27] use GAN
model to obtain SR of given thermal image. The SR
thermal image in their approach was obtained by utiliz-
ing the different information such as resolution, scene
and field of view of corresponding RGB image in the
training process. Similarly, Guei et al. [13] use the
DCGAN model [35] to obtain SR of NIR and Long-
Wavelength Infrared (LWIR) images for upscaling fac-

tor ×4. In [20], authors utilize conditional GAN to
enhance contrast of given infrared image which is ca-
pable to remove background noise present in infrared
images. Furthermore, Rivadeneira et al. [36] released a
dataset of thermal image SR and perform SR of ther-
mal image using CycleGAN [48] for upscaling factor
×2.

2.1. Constraints Noted from Related Works

With the detailed review of different thermal SR
methods, we note the following constraints with ex-
isting works:

• All the present thermal SR methods (i.e., [4, 13,
15]) are fixed to a particular upscaling factor lim-
iting the applicability in real-life use cases.

• The approaches proposed for SR of thermal im-
ages are computationally inefficient due to large
amount of parameters (i.e., [15, 48]).

• The robustness of thermal SR methods has not
been tested in cross-database setting (i.e., [4, 37]).
Most of these works employ the same dataset
and split them in training and testing set lim-
iting the insights on generalizability of proposed
approaches.

3. Proposed Methodology

Noting the limitations, we present a new architec-
ture for the task of SR of thermal images specifically
targeting to generalizability and various upscaling fac-
tors. Fig. 1 depicts the architecture in which the ther-
mal LR image (i.e., ILR) is applied as an input to the
network to obtain it’s corresponding SR image for up-
scaling factors of ×2, ×3 and ×4 (i.e., ISR

×2 , I
SR
×3 and

ISR
×4 ). We specifically employ the progressive upscaling
with residual asymmetrical learning in the proposed
architecture. The LR thermal image is first passed
through feature extraction module to extract effective
features from the thermal image. This module is fol-
lowed by upsampling module for factor ×2. This pro-
cess is repeated in order to produce final SR image
with desired upscaling factor. The proposed network
consists following four modules which are designed for
specific tasks:
• Low-frequency Feature Extraction module (referred
as LFE),

• High-frequency Feature Extraction module-1 (re-
ferred as HFE1),

• High-frequency Feature Extraction module-2 (re-
ferred as HFE2)and

• Reconstruction module (referred as REC).



Figure 1: The network architecture design of the proposed model-TherISuRNet. Here, fea indicates the number
of feature maps.

Figure 2: The design of the residual block used in the
feature extraction module of the proposed model.

3.1. Low-frequency Details Extraction

The LR image is first passed through the LFE mod-
ule which has one convolution layer with kernel size of
7 and a feature maps of size 64 with the use of a stride
of 1. Here, Parametric Exponential Linear unit (PeLU)
is used as activation function in the proposed model.
As the parameters of PeLU are learned to make proper
activation shape at each convolution layer, learning of
activation at different layers using PeLU improves the
performance in our architecture [42]. The LFE module
extracts the low-frequency details from the LR thermal
image which can be represented as,

ILFE = fLFE(I
LR), (1)

where fLFE(·) denotes the operation of the LFE mod-
ule.

3.2. High-frequency Details Extraction

While low-frequency details are handled by LFE,
high frequency details pertaining to edges and struc-
tures from the feature maps are obtained by passing the
output from LFE module which has two high-frequency
feature extraction modules (i.e., HFE1 and HFE2).
Both modules consist of a feature extraction module
and upsampling block. The feature extraction module
has several residual blocks connected via concatenation
operation and one long skip connection (see Fig. 1).
The design of the residual block used in feature extrac-
tion module is depicted in Fig. 2. It employs one con-
volution layer with kernel size of 1 which is followed by
three parallel branches of concatenated blocks. These
concatenated block consist of several convolution layers
and Channel Attention (CA) modules. Inspired by [47],
the CA module is adopted to re-scale the channel-wise
features adaptively. Such structure of concatenated
block helps to learn features of the thermal image in
an effective manner. The obtained feature maps from
three parallel concatenated blocks are further concate-
nated and then passed through one convolution layer
with kernel size of 1 which acts as transition layer and
produces the desired number of feature maps. After
each residual block, a short skip connection is used to
reduce the vanishing gradient problems.

We use different number of residual blocks in each
feature extraction module in order to perform an asym-
metrical learning. First feature extraction module
comprises four residual blocks while second feature ex-
traction module uses only two residual blocks. The
feature maps from the feature extraction module is
passed to upsample block in order to upscale the fea-
ture maps to the desired scale factor. We use different
upscaling strategies in upsample blocks. In case of ISR

×2



(i.e., SR with factor 2), only single upsample block 1
is used which is made up of sub-pixel convolution op-
eration with factor 2 (i.e., as depicted in Fig. 1) while
for ISR

×3 (i.e., SR with factor 3), the sub-pixel convo-
lution with factor 2 and resize convolution with factor
1.5 are used in upsample block 1 and upsample block 2,
respectively. Here, use of resize convolution in second
upsample block is to perform overall upscaling of factor
3 for the given thermal LR observation. In the case of
upscaling factor ×4 (i.e., ISR

×4 ), we use sub-pixel con-
volution in both upsample blocks. The output feature
maps of the HFE2 module is represented as,

IHFE2
= fHFE2

(fHFE1
(ILFE)). (2)

Here, fHFE1
and fHFE2

denote the function of the
HFE1 and HFE2 modules.

3.3. SR Image Reconstruction

Given the feature maps of the LR image obtained
through LFE, HFE1 and HFE2 modules, the final ther-
mal SR image is reconstructed through the reconstruc-
tion module (REC). Specifically, this module has two
convolution layers to obtain the residual SR image and
it can be indicated in Equation (3) as,

ISR
residual = fREC(IHFE2

), (3)

where, fREC indicates the reconstruction function of
the REC module.

Additionally, we also implement the Global Resid-
ual Learning (GRL) in which input LR observation
(i.e., ILR) is passed through a bicubic interpolation
layer followed by three convolution layers with kernel
size of 1 which produce the super-resolved image ISR

GRL.
Here, the LR observation is interpolated with factor
of 2, 3 and 4 as per the corresponding SR operation.
Such learning (i.e., GRL) helps the network to learn
the identity function for ILR and it also stabilizes the
training process. Finally, the network generates the SR
image (ISR) at an upscaling factor ×2,×3,×4 as given
in Equation (4) as,

ISR
×2,×3,×4 = ISR

residual + ISR
GRL. (4)

4. Experimental Analysis

In order to validate the proposed method, differ-
ent experiments1 have been conducted and it’s detailed
analysis is presented in this section.

1All the experiments are performed on a computer with Intel
Xeon(R) CPU E5-2620 v4 processor @2.10GHz ×32 running on a
128GB RAM and two NVIDIA Quadro P5000 with 16GB GPUs.

4.1. Hyper-parameter Settings

The proposed method is trained on PBVS chal-
lenge training dataset [36] which has three training sub-
dataset modules called as Domo, Axis and GT for ×2,
×3 and ×4 upscaling factors, respectively. Each sub-
dataset module in PBVS challenge dataset consists of
951 training images. These images are augmented us-
ing horizontal flipping, 180o rotation and warp affine
operation. The LR thermal images in PBVS challenge
dataset are generated by adding Gaussian noise with
mean 0 and standard deviation 10 followed by down-
sampling operation via bicubic interpolation. The pro-
posed model is trained up to 5× 104 iterations with a
batch size of 16 and it is optimized using Adam opti-
mizer with an initial learning rate of 1×10−4. Further-
more, the proposed model is trained using the weighted
combination of three reconstruction loss functions: L1,
Structural Similarity Index Measure (SSIM) and Con-
textual (CX) [30] instead of single reconstruction loss
function as indicated by Equation (5).

LSR = 10L1 + 10SSIM + 0.1CX. (5)

The proposed model along with the other state-
of-the-art SR methods are tested on three different
datasets: PBVS challenge (i.e., Domo, Axis and GT)
[36], FLIR [1] and KAIST [17] validation datasets for
upscaling factor of ×2,×3 and ×4. The PBVS chal-
lenge validation dataset consists 50 number of validat-
ing images. However, the FLIR validation dataset [1]
comprises 1366 number of thermal images. The KAIST
validation dataset [17] is generated by randomly se-
lecting a number of 500 thermal images from their
complete testing dataset and then these images are
enhanced using adaptive histogram equalization tech-
nique [33]. The images of FLIR and KAIST datasets
correspond to a size of 640×512 which are resized into
640 × 480 as HR images. The corresponding LR pair
images of testing datasets for upscaling factors ×2, ×3
and ×4 are generated by adding Gaussian noise with
mean 0 and standard deviation of 10 followed by cor-
responding bicubic downsampling operation.

The qualitative and quantitative evaluations of the
proposed method are performed by comparing the ther-
mal SR results with the state-of-the-art visible image
SR techniques such as SRResNet [22], SRFeat-M [31],
MSRN [24], EDSR [25] and RCAN [47] as well as re-
cently proposed thermal SR approaches (TEN [4] and
[2]). For the fair comparison, the SR results of those
methods are generated by re-training them on the same
training dataset of the proposed method with same
training strategy. Furthermore, for quantitative anal-
ysis, we use different measures such as Peak Signal to
Noise Ratio (PSNR) and SSIM. These measurements



are calculated after removing the four boundary pix-
els of Y-channel images in YCbCr color space. Addi-
tionally, we also use Learned Perceptual Image Patch
Similarity (LPIPS) metric [46] which measures the per-
ceptual similarity between SR and HR images. A lower
value of LPIPS indicates a better perceptual quality of
SR image.

4.2. Result Analysis

In this sub-section, we present the detailed analysis
of the SR performance of the proposed model along
with other state-of-the-art SR methods on upscaling
factor of ×2, ×3 and ×4. First, we present the ablation
study on the proposed model and then SR performance
of the proposed model is described.

4.2.1 Ablation Study

In order to see the effectiveness of the proposed CNN
architecture, different experiments related to the selec-
tion of various components have been carried out and
are reported in Table 1. Here, we consider three cases:
loss functions, activation functions and network design.
The SR performance is compared in terms of PSNR,
SSIM and LPIPS measures on GT testing dataset for
upscaling factor ×4. First, in order to understand the
importance of the weighted loss function used to train
the model, the proposed model is trained with differ-
ent loss functions and it’s corresponding measurements
are mentioned in the Table 1. It can be noticed here
that the proposed model trained using the proposed
loss function (Equation (5)) obtains comparable PSNR
and SSIM measures with best LPIPS measures than
other similar loss functions. In order to understand
the importance of PeLU activation function [42], the
proposed model is also trained with PReLU and ReLU
activation functions. From Table 1, it can be observed
that the PeLU activation function helps the model to
obtain better PSNR, SSIM and LPIPS measures. Ad-
ditionally, we show the effectiveness of Channel Atten-
tion (CA) and Global Residual Learning (GRL) mod-
ules by conducting experiments on the proposed model
without CA module as well as without GRL and sim-
ple GRL (i.e., only bicubic interpolation layer) mod-
ules. From Table 1, one can observe that the proposed
model with CA module and proposed GRL justify in
terms of better PSNR, SSIM and LPIPS measures.

4.2.2 Parameters and Computational Effi-
ciency

In order to check the computational efficiency of the
proposed method in terms of number of parameters

Table 1: The comparison of proposed methods on GT
(×4) validating dataset with three different scenarios.
Here, the best values are mentioned in bold font text.

PSNR↑ SSIM↑ LPIPS↓

Loss Function
CX 22.7004 0.2613 0.743
L2 34.4211 0.9055 0.199
L1 34.5325 0.9077 0.200
SSIM 34.4120 0.9113 0.194
L1 + SSIM 34.5299 0.9099 0.193
TherISuRNet (Equation (5)) 34.4956 0.9101 0.190

Activation Function
PReLU 34.4101 0.9091 0.187
eLU 34.4348 0.9094 0.191
TherISuRNet PeLU 34.4956 0.9101 0.190

Network Design
Without CA 34.4445 0.9094 0.191
Without GRL 34.4572 0.9101 0.193
Simple GRL 34.4782 0.9101 0.190
TherISuRNet GRL 34.4956 0.9101 0.190

with respect to SSIM, we plot the number of parame-
ters vs SSIM in Fig. 3 for Domo, Axis and GT testing
datasets for upscaling factor of ×2, ×3 and ×4, re-
spectively. Here, one can observe that the proposed
method obtains better SSIM measures with large mar-
gin for Domo and GT testing dataset than that of other
existing state-of-the-art SR methods with considerable
reduction in the number of parameters. In case of Axis
testing dataset, the proposed model obtains compara-
ble performance with that of EDSR model. However,
the proposed model sets such performance with ap-
proximately 90% less number of training parameters
than that of EDSR model.

4.2.3 Fidelity of Thermal SR Images

The quantitative comparison in terms of PSNR, SSIM
and LPIPS measures obtained for the state-of-the-art
along with the proposed methods are presented in Ta-
ble 2 for PBVS challenge, FLIR and KAIST datasets
for upscaling factor of ×2, ×3 and ×4. Here, the high-
est value of PSNR and SSIM metrics is highlighted with
red color font while the second highest values are with
blue color font. Since lower value of LPIPS indicates
better perceptual quality, the same is indicated with
red colored font while the second lowest value is rep-
resented with blue color font in the Table 2. From
this table, one can notice that the proposed model
obtains better PSNR, SSIM and LPIPS measures in
most cases of upscaling factor ×2, ×3 and ×4 for three
different testing datasets with large margin than that
of other models except that of the EDSR model [25]
where it obtains comparable performance. However, it
is also worth to mention that the proposed method ob-
tains this SR performance with approximately 35% to
90% reduction in the trainable parameters than that



Figure 3: The effect of SSIM value vs. number of training parameters required to train different methods for
Domo, Axis and GT testing datasets for upscaling factor of 2, 3 and 4, respectively.

Table 2: The quantitative comparison of the proposed method along with other state-of-the-art methods on different
validation datasets in terms of PSNR, SSIM and LPIPS metrics.

Dataset Metrics Bicubic SRResNet MSRN SRFeat EDSR RCAN TEN Prop. in [2] TherISuRNet

PSNR 32.1229 33.0817 33.1215 33.1253 33.5248 33.3144 33.1919 33.5272 33.6559
SSIM 0.8751 0.8905 0.8927 0.8916 0.8983 0.8955 0.8915 0.8964 0.9014Domo
LPIPS 0.201 0.158 0.147 0.163 0.142 0.152 0.155 0.162 0.145

PSNR 34.3019 34.8267 34.9860 34.9806 35.2352 35.0518 35.0352 35.2632 35.2955
SSIM 0.8488 0.8651 0.8665 0.8660 0.8698 0.8684 0.8657 0.8687 0.8720FLIR
LPIPS 0.276 0.232 0.222 0.244 0.219 0.235 0.236 0.260 0.221

PSNR 37.1974 37.3715 37.5627 37.5051 37.7663 37.5993 37.5356 37.8287 37.7233
SSIM 0.9319 0.9444 0.9449 0.9458 0.9467 0.9462 0.9455 0.9473 0.9474

×2

KAIST
LPIPS 0.205 0.105 0.101 0.100 0.098 0.098 0.107 0.113 0.098

PSNR 30.3577 32.5174 33.1015 32.4329 33.1278 32.8011 33.1311 32.2217 32.9803
SSIM 0.8032 0.8913 0.9031 0.8894 0.9035 0.8965 0.8824 0.8843 0.9036AXIS
LPIPS 0.415 0.157 0.156 0.175 0.154 0.161 0.166 0.165 0.147

PSNR 30.3373 32.2763 32.4962 32.2582 32.5487 32.3345 32.0931 32.1912 32.3202
SSIM 0.7475 0.8273 0.8331 0.8263 0.8342 0.8307 0.8215 0.8232 0.8332FLIR
LPIPS 0.663 0.331 0.334 0.334 0.331 0.328 0.414 0.337 0.338

PSNR 32.3202 34.0937 34.1822 33.7220 34.3233 34.1102 33.9656 34.1729 34.1499
SSIM 0.8332 0.8971 0.8978 0.8905 0.8991 0.8972 0.8958 0.8950 0.9000

×3

KAIST
LPIPS 0.477 0.237 0.274 0.264 0.266 0.256 0.250 0.243 0.243

PSNR 32.6657 33.1240 34.4718 34.1245 34.4852 34.4200 33.6230 33.7723 34.4956
SSIM 0.8625 0.9018 0.9076 0.9007 0.9068 0.9072 0.8910 0.8938 0.9101GT
LPIPS 0.383 0.229 0.194 0.210 0.202 0.204 0.221 0.221 0.190

PSNR 30.1153 30.3533 30.7161 30.7513 30.8986 30.8275 30.5943 30.6758 30.8108
SSIM 0.7467 0.7551 0.7702 0.7683 0.7730 0.7728 0.7625 0.7656 0.7769FLIR
LPIPS 0.533 0.399 0.395 0.404 0.397 0.402 0.410 0.418 0.401

PSNR 32.4649 32.0788 32.9730 32.8661 33.0546 32.9962 32.5402 32.7842 32.6999
SSIM 0.8707 0.8652 0.8799 0.8773 0.8795 0.8804 0.8758 0.8758 0.8790

×4

KAIST
LPIPS 0.355 0.259 0.274 0.278 0.278 0.282 0.280 0.287 0.273

of MSRN [24] and SRFeat-M [31], RCAN [47] and
EDSR [25] SR methods. In the case of comparison
with other thermal SR methods (i.e., [4, 2]), the pro-
posed TherISuRNet model outperforms to these meth-
ods with large margin except for the case of KAIST
validation dataset where SR method in [2] performs
slightly better.

Finally, to see the qualitative improvement achieved
in the proposed method, we display the SR results ob-
tained using the proposed and other existing state-of-
the-art visible SR methods ( i.e., SRResNet [22], SR-
Feat [31], MSRN [24], RCAN [47] and EDSR [25]) and
thermal SR methods (i.e., [4, 2]) in Fig. 4 for the up-
scaling factor of ×2, ×3 and ×4 of a single image of
PBVS challenge validation dataset and for upsclaing
factor ×4 of single image of FLIR and KAIST vali-

dation thermal datasets due to space constraint. The
quantitative measurements (i.e., SSIM and LPIPS val-
ues) corresponding to that sample image are also de-
picted at the bottom of each SR results. From Fig. 4, it
can be observed that the proposed model obtains better
high frequency details along with better quantitative
measures than that of the other competing methods
for all testing datasets.

5. Conclusion

In this paper, we proposed a computationally effi-
cient SR approach for thermal images using CNN ar-
chitecture. We use progressive upscaling with asym-
metrical strategy and residual learning in the proposed
architecture for different upscaling factors such as ×2,
×3 and ×4. The potential of the proposed method is
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Figure 4: The qualitative comparison on PBVS challenge validation dataset on scaling factor ×2, ×3,×4, FLIR
and KAIST validation datasets on scaling factor ×4.

verified by conducting different experiments on various
datasets, specifically in cross-dataset settings as a step
towards generalizability. The proposed approach has
clearly shown an improvement over other competitive
state-of-the-art SR methods in terms of both qualita-

tive and quantitative assessments.
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