
Low-Resolution Overhead Thermal Tripwire for Occupancy Estimation

Mertcan Cokbas, Prakash Ishwar, Janusz Konrad

Boston University

8 Saint Mary’s Street, Boston, MA 02215

[mcokbas, pi, jkonrad]@bu.edu

Abstract

Smart buildings use occupancy sensing for various tasks

ranging from energy-efficient HVAC and lighting to space-

utilization analysis and emergency response. We propose a

people counting system which uses a low-resolution thermal

sensor. Unlike previous people-counting systems based on

thermal sensors, we use an overhead tripwire configuration

at entryways to detect and track transient entries or exits.

We develop two distinct people counting algorithms for this

configuration. To evaluate our algorithms, we have col-

lected and labeled a low-resolution thermal video dataset

using the proposed system. The dataset, the first of its kind,

is public and available for download1. We also propose

new evaluation metrics that are more suitable for systems

that are subject to drift and jitter.

1. Introduction

Occupancy sensing is a key technology for smart build-

ings of the future [2], [10], [8]. The knowledge of where and

how many people are in a building enables, among others,

smart HVAC control to save energy, space management to

reduce rental costs and enhanced security, (e.g., fire, flood-

ing, active shooter) [4]. Over the years, several people-

counting systems have been proposed leveraging various

sensing modalities, e.g., surveillance cameras, MAC ad-

dress trackers, WiFi signal measurement, CO2 sensors and

thermal sensors [5], [6], each with its own deficiencies. For

instance, surveillance cameras may not be acceptable in sce-

narios where privacy is expected, MAC address trackers re-

quire people to carry a networked device, WiFi signal mea-

surement is sensitive to EM interference and unreliable for

crowds of people, while CO2 sensors have delayed reaction

times due to slow mixing of gases. On the other hand, ther-

mal sensors do not suffer from any of these issues.

To date, people-counting methods using low-resolution

thermal sensors have focused on assessing the state of a

room’s interior [2], [12], [1]. Such methods can be effec-
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Figure 1: Configuration of our virtual-tripwire door setup:

low-resolution thermal sensor mounted above a door and

facing down (left); and 32×24-pixel thermal frame captured

by the sensor when a person is leaving the room (right).

tive for small rooms, but in case of a large room the field of

view (FOV) of a low-resolution thermal sensor might not be

sufficient to capture all people in the room. In this scenario,

multiple sensors are needed but this increases the cost, com-

plexity of installation and requires complex processing to

avoid overcounts due to FOV overlap.

In contrast, we propose to count people using a sin-

gle low-resolution thermal sensor mounted above every en-

try/exit point of a room (Fig. 1) and develop a computa-

tional methodology to accomplish this. Regardless of room

size, such thermal tripwires can independently detect people

entering/exiting a room and jointly estimate the occupancy

(state) of the room. In contrast to past methods, our ap-

proach is not frame-based but event-based, that is a people

count is updated only upon the completion of a door event.

The approach we propose consists of three steps: back-

ground subtraction, event detection and event classification.

In the first step, we detect “warm” pixels via a probabilistic

background-temperature model based on Running Gaussian

Average [13]. Since this model does not leverage spatial co-

herence of temperature, we combine it with a Markov Ran-

dom Field (MRF) model [7] to produce high-temperature

blobs. In the second step, based on background/foreground

separation, we detect door events. In a baseline version,

we assume that one person passes through the door at a
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time and we treat all foreground pixels as associated with

this person. In order to handle wider doors and multiple

people, we develop an enhanced algorithm that identifies

high-temperature blobs and tracks them. In the third step,

we classify each event as an entry or exit based on the di-

rection of blob movement. To validate the performance of

our algorithms, we have collected and manually labeled a

dataset of thermal sequences covering various scenarios, in-

cluding challenging edge cases. This dataset, the first of its

kind, is public and available for download. We evaluate our

algorithms on this dataset and show that while both pro-

posed algorithms work equally well in normal scenarios the

enhanced algorithm outperforms the baseline algorithm on

edge cases.

To summarize, our paper makes several contributions.

First, we believe this is the first work to develop and system-

atically study the overhead virtual tripwire configuration of

a low-resolution thermal sensor for people counting. Sec-

ond, we develop and validate two distinct people-counting

algorithms based on low-resolution thermal data that are ca-

pable of handling challenging edge cases. Third, this work

makes available to the research community a dataset of ther-

mal sequences with manual annotations of entries into and

exits from a room. Finally, we propose new metrics that

provide a more meaningful evaluation of performance for

systems that suffer from jitter and cumulative errors due to

drift.

2. Related Work

Erickson et al. [3] proposed a people-counting system,

called POEM, for energy management in buildings using a

combination of video cameras in hallways and PIR sensors

in rooms. Data coming from the camera and PIR networks

are fused to estimate the people count.

ThermoSense [2] is the first system, to the best of our

knowledge, that uses thermal sensors for people count-

ing. However, unlike in our thermal-tripwire approach,

each of its sensor’s FOV must cover the whole room to

“see” all room occupants. ThermoSense estimates occu-

pancy for each frame in three main steps: background

subtraction, feature extraction, and people-count classifi-

cation. The background subtraction is similar to that of

ours; each pixel’s temperature is modeled by mean and stan-

dard deviation. A set of features are extracted from fore-

ground/background segmentation, namely: the number of

foreground pixels, the number of connected components,

and the size of the largest connected component. These fea-

tures are used to estimate occupancy by means of linear re-

gression, kNN classification or neural network. In addition

to thermal sensors, ThermoSense uses PIR sensors to de-

tect whether a room is empty or not. This helps smooth out

raw estimates and update the background model. Tyndall

et al. [12] proposed some improvements to ThermoSense.

They showed that entropy-measure classifiers such as K*

and C4.5 work better for their use cases. However, the sen-

sors that are used in these two studies are different. Ther-

mosense uses an 8× 8 Grid-Eye sensor, whereas Tyndall et

al. [12] use a 16× 4 Melexis sensor.

Amin et al. [1] proposed a people-counting system that

uses a video camera and a thermal sensor both pointed in-

side a room, unlike in our approach. The use of two imaging

modalities is meant to improve system robustness, e.g., in

case of illumination variations. The counts are estimated

separately using camera images and thermal frames and

then linearly combined into a final people-count estimate.

3. Methodology

In our approach, we analyze consecutive thermal frames

captured by a sensor mounted above a door (Fig. 1) in three

steps: (1) background subtraction to first detect the pres-

ence of one or more people in the FOV of the sensor; (2)

event detection to identify the beginning and end of entry

or exit events spanning multiple frames; and (3) event clas-

sification as an entry or exit (Fig. 2). These three steps are

discussed in detail below.

Figure 2: Block diagram of the proposed approach.

3.1. Background Subtraction

In this step, our goal is to separate the pixels that corre-

spond to a human body from those that belong to the back-

ground (floor, walls, other surroundings). Since the system

is designed for indoor people counting, it is reasonable to

assume that a person is warmer than the background. De-

spite the difference between body temperature and room

temperature, a single global threshold cannot reliably distin-

guish between them due to natural variations in people and

indoor environments. In our approach, instead of threshold-

ing temperature values, we model the background tempera-

ture of each pixel by a Gaussian pdf and apply a threshold

to the temperature probabilities. Let Tn[x] denote the tem-

perature value of a pixel at location x in frame n. We use

the Running Gaussian Average (RGA) model [9], [11] to

update the mean µn[x] at every background location x as

follows:

µn[x] = 1(Tn[x]ǫB)
[
αTn[x] + (1− α)µn−1[x])

]

+ 1(Tn[x]ǫF )µn[x] (1)

where the sets of background and foreground pixels are de-

noted by B and F, respectively, 1(·) is an indicator function,



and 0 < α < 1 is a weight controlling recursive update of

the mean. We model the probability that a pixel at x belongs

to the background as follows:

PB(Tn[x]) = N (Tn[x]− µn[x], σ) (2)

where N (·, ·) denotes the Gaussian distribution with stan-

dard deviation σ. We use the same fixed σ for all pixels and

perform background subtraction by means of the following

binary hypothesis test applied to PB(·):

PB(Tn[x])
B

≷
F

η (3)

where η is a fixed threshold, identical for all pixels. We re-

fer to this overall background subtraction model as Running

Gaussian Average based Background Subtraction (RGA

BS) and show a sample result in Fig. 3b.

The background subtraction model discussed so far uses

temporal information to separate the foreground from the

background. However, all decisions are made indepen-

dently at neighboring pixels, thus leading to fragmented

body-temperature areas. In order to address this, one needs

to leverage the spatial contiguity of the human body by

applying spatial constraints to foreground estimates. For

this purpose, we use an approach proposed by McHugh et

al. [7]. They used a Markov Random Field (MRF) model to

ensure spatial estimate coherence within a binary hypothe-

sis test as follows:

PB(Tn[x])

PF (Tn[x])

B

≷
F

θexp
(QF [x]−QB [x]

γ

)
, (4)

where PF (Tn[x]) is the probability that Tn[x] belongs to

the foreground, QF [x] and QB [x] denote the number of

neighboring foreground and background pixels around lo-

cation x, respectively, while θ and γ are parameters. Unlike

PB(·), we assume PF (·) is a constant (uniform distribution)

because we observed that the foreground (body) tempera-

ture footprint characteristics can vary significantly depend-

ing on clothing, hairstyle and height of a person. Effec-

tively, the right-hand side of the binary hypothesis test (4)

is a spatially-adaptive threshold. Depending on the labels

of neighboring pixels, the threshold will change. If there

are more foreground pixels than background pixels in the

neighborhood of x, the threshold will increase, and, there-

fore, it will be more likely that the pixel is deemed as be-

longing to the foreground (and vice versa). Due to the vari-

able threshold, the MRF model increases spatial coherence

of foreground estimates, which can be seen in Fig. 3c. The

parameter γ can be used to adjust the degree to which the

MRF model impacts the threshold.

3.2. Event Detection

We propose two different event detection algorithms.

Our baseline algorithm assumes that no more than one per-

son will pass under a door at a given time. Our multi-person

(a) 32×24-pixel frame from Melexis MLX90640 sensor with per-

son passing through a door. Rows of the frame are aligned with

the door frame while columns are orthogonal to the door opening.

(b) Result of background subtraction using RGA BS algorithm.

(c) Result of background subtraction using RGA+MRF BS algo-

rithm.

Figure 3: Thermal frame and results of background subtrac-

tion for a single person passing through a door.

algorithm, however, is designed to handle multiple people

simultaneously passing through the door.

3.2.1 Baseline Algorithm

We define an event as a sequence of consecutive frames that

satisfy the following conditions: (1) the frames immediately

preceding and following the event are empty, i.e., have no

foreground pixels, (2) each frame in the event has at least

one foreground pixel, and (3) there is at least one frame in

the event with at least K foreground pixels, were K is a



parameter which can be adjusted to account for the height

at which the sensor is mounted above the door (smaller K
for greater heights).

(a) 32×24-pixel frame with two people passing through a door.

(b) Result of background subtraction using RGA+MRF BS al-

gorithm with centroid (green star) computed using the baseline

algorithm.

(c) Result of background subtraction using RGA+MRF BS algo-

rithm with two centroids (red and blue stars) computed using the

multi-person algorithm.

Figure 4: Thermal frame and results of background subtrac-

tion and centroid calculation for 2 people passing through a

door.

3.2.2 Multi-Person Algorithm

In the baseline algorithm, we assumed that only one per-

son passes under the sensor at a time. If multiple people

pass through the door within the same event, the algorithm

is incapable of distinguishing them (it calculates only one

centroid), thus resulting in an error (Fig. 4).

To address this, we detect blobs among foreground pixels

in each frame and track their movement. A blob is defined

as a connected component of foreground pixels of size L
or more. We also define a blob track as a time sequence of

blobs, one in each frame, that are linked between consec-

utive frames via association described below. We consider

each blob track to be an event. Blob tracks start, grow and

end as described below.

Blob track birth: If there are more blobs in the current

frame than in the previous frame, a new blob track is cre-

ated. The decision as to which blob will be associated with

the new blob track is determined after data association in

the growth phase.

Blob track growth: If the number of blobs in the current

and previous frames is the same, then a one-to-one map-

ping is established between blobs in those frames thus lead-

ing to track growth. The track to which a previous-frame

blob belongs is grown by a current-frame blob with which

the previous-frame blob is associated. This association is

established based on the Euclidean distance between blobs’

centroids. First, for each blob in the current frame the clos-

est blob is found in the previous frame. Then, the blob

pair with the smallest centroid-to-centroid distance is said

to be associated with each other and removed from further

consideration. The procedure is repeated for the remaining

current-frame blobs. Other blob association methods could

be applied as well, e.g., minimization of the sum of dis-

tances for all blob pairs. However, sophisticated methods

may not work as well in our application context due to low

thermal sensor resolution, short duration of events and the

similarity of thermal footprints of different people.

Blob track termination: If there are fewer blobs in the

current frame than in the previous frame, a blob track is ter-

minated. The decision as to which blob is to be terminated

is determined after data association in the growth phase.

3.3. Event Classification

Both algorithms classify each event at its completion into

one of the following classes: (1) a person left the room or

(2) a person entered the room. This is accomplished by

analyzing the direction of movement of foreground pixels

throughout the event. Let Fn be defined as follows:

• baseline algorithm: a set of all foreground pixels at

time n,

• multi-person algorithm: a set of all pixels belonging to

a single blob at time n (part of a blob track).

We compute the centroid Cn at time n as follows:

Cn =
1

|Fn|

∑

x∈Fn

x.

Since columns of a thermal frame are orthogonal to the door

opening (Fig. 3a), we use the vertical component Cv
n of cen-

troid Cn = [Ch
n , C

v
n] to determine whether a person enters



or leaves the room. In particular, we examine whether or not

the centroid crosses the mid-line of the frame between two

consecutive time instants n− 1 and n. If Cv
n belongs to the

upper part of the frame (top 32 × 12 pixels of the Melexis

32 × 24 pixel sensor) whereas Cv
n−1 belongs to the lower

part of the frame (bottom 32 × 12 pixels) we predict that

the person is entering the room. Conversely, if Cv
n belongs

to the lower part of the frame whereas Cv
n−1 belongs to its

upper part, we predict that the person is leaving the room.

Based on this decision, the people count is updated.

During a hesitant entry/exit or in case of lingering, an

event might involve multiple mid-line crossings. We ex-

amine the first and last crossings within an event. If the

directions of these two crossings are the same, we decide as

described above. If the directions differ, we consider this to

be a case of lingering and do not update the people count.

4. Experimental Results

4.1. Dataset

We collected a dataset of thermal image sequences using

two Melexis MLX90640 32×24-pixel sensors running at 16

Hz mounted above two doors (Fig. 1) of a small classroom.

Compared to previous research [2], [12] our sensor has a

slightly higher spatial resolution, but still a person cannot

be visually recognized from the captured data (Figs. 3a, 4a).

Our dataset, called TIDOS (Thermal Images for Door-

based Occupancy Sensing), is publicly available2 and in-

cludes several types of door activity: single person enter-

ing/leaving the classroom, multiple people entering/leaving

through the same door, people lingering in the door, people

with backpacks, in thick clothing, carrying various items,

etc. Details of the dataset are provided in Table 1. We

manually annotated each frame in the dataset with a number

which equals the change in the people count (if any). Such a

change can only occur at the end of an event. During anno-

tation, an event is considered to have ended when a person

completely leaves the frame. We computed the ground-truth

people count in the room using our annotations and the ini-

tial people count in the room (Table 1).

4.2. Performance Analysis

We evaluated the performance of our algorithms on TI-

DOS using the following algorithm parameters: α = 0.05
σ = 0.4 and η = 0.015 in the RGA model, θPF (Tn[x]) =
0.015 (a constant for all x) and γ = 0.2 in the MRF-based

hypothesis test, and blob-size threshold of K = L = 100
for both baseline and multi-person algorithms. The values

of α, σ, η, γ, θPF were selected heuristically. However, the

values of K and L are motivated by the typical size of a

human body’s projected image onto the sensor. Based on

physical constraints of our setup (55◦ × 35◦ sensor FOV,
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2.4m installation height, 1.7m average human height), we

concluded that a body’s projection typically occupies 200–

250 pixels and this agrees with our observation of recorded

data. We used 100 as our threshold to avoid misses in case

of shorter people, especially children.

Since both algorithms estimate transitions in the state of

a room (people-count changes), in order to estimate the state

of the room (people count) an initial state of the room is

needed. In our experiments, we used the true initial people

count in each room reported in Table 1.

We use three metrics to evaluate the performance of our

algorithms. The first two metrics assess the raw people-

count estimation performance and are based on Mean Ab-

solute Error (MAE). Our third metric addresses the drift

problem, that leads to error accumulation, and temporal

misalignments between ground-truth and estimated people-

count changes.

4.2.1 Basic Metrics for Count Estimation

Our basic performance metric is the MAE between the true

and estimated people counts averaged across all N frames

of a thermal sequence. The value of MAE is unaffected

by the initial count. However, it scales with the number of

people entering/leaving a room which confounds the com-

parison of MAE values across different occupancy-density

scenarios. Thus, we propose another evaluation metric

which accounts for the number of people in a room, namely

the Per-Person Mean Absolute Error MAEPP , defined as

follows:

MAEPP =

N∑
n=1

|ŷn − yn|

N∑
n=1

yn

, (5)

where yn and ŷn are the ground truth and estimate of the

number of people in a room at time n, respectively, and N is

the total number of frames in the recording. While, in prin-

ciple, the denominator in (5) could be zero, recordings with

no people entering/leaving a room are not interesting for al-

gorithm assessment and are absent from our dataset. We

show the performance of our algorithms in terms of MAE
and MAEPP in Table 2 and in terms of frame-wise peo-

ple count in Fig. 5. Unlike MAE, the value of MAEPP is

influenced by the initial state of the room since that affects

the denominator of Eq. (5). Moreover, for all recordings

in TIDOS, the denominator of Eq. (5) is larger than N , the

number of frames in a recording. This causes the MAEPP

value to be consistently smaller than the MAE value for

the same algorithm applied to the same video.

Baseline algorithm: The baseline algorithm has high

MAE and MAEPP values for “Lunch Meeting 1”, “Lunch

Meeting 3”, “Edge Cases” and “High Activity” recordings.

This is due to multiple-person events that the algorithm



Table 1: Details of TIDOS (Thermal Images for Door-based Occupancy Sensing) dataset. Each 32×24-pixel frame was

acquired by Melexis MLX90640 sensor at 16 fps. Data was collected by 2 sensors, one over each door of a small classroom.

Thermal

Recording

Number

of frames

Number

of entries

and exits

Initial

people

count

Challenges (scenario)

Lecture 7,520 2 9 Lingering in doorway (only single-person events)

Lunch Meeting 1 37,536 25 0
Wearing a coat; carrying various items;

multiple people passing through at the same time

Lunch Meeting 2 9,344 8 12 Carrying a backpack (only single-person events)

Lunch Meeting 3 28,128 69 7

Lingering in doorway; wearing a hoodie or carrying a back-

pack; two people standing in a door and handshaking;

multiple people passing through at the same time

Edge Cases 13,120 24 6

Long lingering in doorway; one or two people standing in a

door while another person is passing through;

multiple people passing through at the same time

High Activity 22,560 133 4

Wearing a hoodie or thick coat; carrying a backpack; push-

ing a chair through doorway; leaning against a closed door;

one person standing in a door while another one is passing

through; multiple people passing through at the same time

Table 2: Performance comparison of the proposed algorithms on TIDOS dataset using three metrics. The lowest values for

MAE and MAEPP and the highest value for CCRWCC for each recording are shown in boldface.

Baseline algorithm Multi-person algorithm

MAE MAEPP CCRWCC MAE MAEPP CCRWCC

Lecture 0.392 0.043 0.500 0.003 0.001 1

Lunch Meeting 1 0.812 0.167 0.880 0.319 0.065 0.888

Lunch Meeting 2 0.009 0.001 0.777 0.016 0.001 0.777

Lunch Meeting 3 0.973 0.137 0.826 0.052 0.007 0.905

Edge Cases 0.868 0.166 0.666 0.548 0.105 0.807

High Activity 1.431 0.239 0.651 0.945 0.158 0.753

cannot handle. As expected, the algorithm works well for

single-person events as confirmed by low error values for

“Lecture” and “Lunch Meeting 2” recordings.

Multi-person algorithm: The multi-person algorithm per-

forms very well on “Lecture” and “Lunch Meeting 2”

confirming its ability to handle single-person events. It

also performs well on “Lunch Meeting 1”, “Lunch Meet-

ing 3” and “Edge Cases” recordings that contain multiple-

person events. Admittedly, it mishandled one of the multi-

person events in “Lunch Meeting 1” (Fig. 5b, around frame

18,000). The multi-person algorithm does not perform

as well on “High Activity”, as it is the most challenging

recording in the dataset (see Table 1). Not only does “High

Activity” contain the largest number of events, its range of

challenges is also widest. Overall, however, the multiperson

algorithm significantly outperforms the baseline algorithm

in both MAE and MAEPP on all thermal recordings ex-

cept for “Lunch Meeting 2” for which the error is extremely

small anyway.

This performance improvement can be also seen in

frame-wise people-count plots (Fig. 5). While the base-

line algorithm suffers from count drift due to mishandling

multiple-person entries/exits (latter parts of “Lunch Meet-

ing 1” and “Lunch Meeting 3”), the multi-person algorithm

handles these cases correctly. Clearly, both algorithms

have some difficulty with the challenging “High Activity”

recording but the multi-person algorithm tracks the ground

truth more accurately than the baseline algorithm, which is

relfected in MAE and MAEPP values.

4.2.2 Metric Robust to Temporal Misalignments and

Error Accumulation

Despite a very accurate estimate of counts by both algo-

rithms in “Lunch Meeting 2” (Fig. 5), their MAE and

MAEPP values are not zero. This is due to the fact that

although all events have been correctly classified, the tim-

ings of a ground-truth event (marked at its completion) and

of its estimate may slightly differ. For instance, in the



(a) People counts estimated by the baseline algorithm.

(b) People counts estimated by the multi-person algorithm.

Figure 5: True (blue) and estimated (red) people-count plots for the proposed algorithms across all recordings in the TIDOS

dataset. To distinguish between the red and blue curves in frames where their values exactly coincide, we added a positive

vertical offset of 0.1 person to the blue curves. Note that since at each time instant two frames are collected (one by each

door sensor), the number of frames in these plots is one-half of the total number of frames in Table 1.

event definition of the multi-person algorithm, a person is

considered as “leaving” a frame if the associated blob has

less than L pixels. However, during our manual annota-

tion a person was considered as out of the frame if s/he

left the frame completely. These slight temporal misalign-

ments contribute non-zero values to MAE and MAEPP

for a few frames. We can ignore the effects of small tem-

poral misalignments during performance assessment by ex-

amining whether the estimated count change occurs within

a small temporal window w around the time that the true

count change takes place.

Furthermore, MAE and MAEPP apply to people



counts and are sensitive to error accumulation because a

single miscount could potentially contribute an MAE of

1.0 irrespective of the recording duration N . Clearly, a new

evaluation metric, resistant to cumulative errors, is needed.

Such a metric should focus on changes in people counts

rather than the counts themselves.

Motivated by these dual considerations, we introduce

a new metric, Windowed Count-Change (WCC) Correct

Classification Rate (CCRWCC), that accounts for both

temporal misalignments and error accumulation, and is de-

fined as follows:

en = min
−w≤δ≤w

|(yn+1 − yn)− (ŷn+1+δ − ŷn+δ)|

δn = argmin
−w≤δ≤w

|(yn+1 − yn)− (ŷn+1+δ − ŷn+δ)|

N̂ =

N−1⋃

m=1

{m+ δm},

CCRWCC =
|{n : (yn+1 6= yn)

∧
(en = 0)}|

|{n : (yn+1 6= yn)
∨
(en 6= 0)}|+M

(6)

M = |{n /∈ N̂ : ŷn+1 6= ŷn}|

This metric measures the fraction of frames having count

changes in which the estimated count-change equals the

true count-change within ±w frames. However, it ignores

the frames for which both the estimated and true changes

are zero (no door event) which occur very frequently and

would skew the traditional definition of CCR. CCRWCC

is not only resistant to cumulative errors, but also to jit-

ter: even if a prediction is delayed by ±w frames compared

to ground truth, it can still be considered as correct. This

metric is essential for applications where misses and false

positives need to be minimized, for example monitoring of

entryways to a high-security area. A more detailed expla-

nation of CCRWCC can be found on our website.3

However, w needs to be judiciously selected; a large

w would unjustly boost CCRWCC . We have considered

two constraints on w, a physically-motivated one and a

statistically-motivated one. Given our door setup (sensor’s

55◦ × 35◦ FOV and 2.4m installation height) and a typical

speed of 1.2 m/sec for a person entering/exiting a room, we

concluded that this person will be at least partially captured

in thermal frames for about 1.3 sec. Therefore, w should

be less than 1.3 sec in order to ensure that the person im-

mediately following would not be considered as a poten-

tial match within ±w. We have also computed a histogram

of time differences between estimated and ground-truth en-

try/exit times for all events in TIDOS. Over 90% of these

time differences were within 1 sec. Consequently, in all ex-

periments we used w = 16 frames (1 sec).

The results of Table 2 show that both algorithms fare

equally well in terms of CCRWCC on “Lunch Meeting

3vip.bu.edu/projects/vsns/cossy/thermal

1” and “Lunch Meeting 2”, but the multi-person algorithm

clearly outperforms the baseline algorithm by a significant

margin on all other recordings. It is also interesting to

note that small MAE and MAEPP values need not im-

ply a higher CCRWCC value. Both baseline and multi-

person algorithms have lower MAE and MAEPP values

for “Lunch Meeting 2” than for “Lunch Meeting 1”, yet

their CCRWCC values for “Lunch Meeting 1” are much

higher than for “Lunch Meeting 2”. This phenomenon may

be partially attributed to the fact that in evaluation metrics

such as MAE and MAEPP , two errors that occur in op-

posite directions could cancel out each other. For example,

if an algorithm misclassifies one entry event and later mis-

classifies one exit event, the people count errors due to these

two misclassifications will “cancel” each other out resulting

in zero count errors beyond the second event.

It is clear from Table 2, that on “High Activity” the

multi-person algorithm outperforms the baseline algorithm

by a margin of 0.102 in terms of CCRWCC value. This

is a significant improvement because the “High Activity”

recording has the highest number of entry and exit events

and, therefore, a 0.102 fraction of events corresponds to

around 13 entries/exits. Moreover, CCRWCC of 0.753 sug-

gests that three out of four entries and exists were correctly

detected and classified within 1 sec of their true occurrence.

This is a very solid classification rate for a recording that is

mostly composed of very challenging entry/exit scenarios

(see Table 1).

5. Conclusions

In this work, we developed and systematically studied an

overhead virtual tripwire configuration for people counting

using a low-resolution thermal sensor. We believe this is

the first comprehensive study of its kind encompassing sen-

sor system design and deployment, dataset collection and

annotation, algorithm development, design of new perfor-

mance metrics, and performance evaluation of developed

algorithms. The achieved results indicate that typically 80-

90% entry and exit events are correctly classified for sce-

narios with a wide range of extreme challenges, while in

simpler, less-active scenarios even 100% correct classifica-

tion can be reached. We hope that this work and the new

publicly-available dataset will stimulate further research.

6. Acknowledgement

The authors would like to thank Mr. Yu Xiao, a for-

mer Master’s student in our group, for developing a dataset

annotation tool and for labeling a large portion of the TI-

DOS dataset. This research project was supported by the

Advanced Research Projects Agency – Energy (ARPA-E),

within the US Department of Energy, under agreement DE-

AR0000944.



References

[1] I. Amin, A.J. Taylor, F. Junejo, A. Al-Habaibeh, and R.

Parkin. Automated people-counting by using low-resolution

infrared and visual cameras. Measurement, 41:589–599, 07

2008. 1, 2

[2] A. Beltran, V. L. Erickson, and A. E. Cerpa. Ther-

mosense: Occupancy thermal based sensing for hvac con-

trol. In Proceedings of the 5th ACM Workshop on Embedded

Systems For Energy-Efficient Buildings, BuildSys’13, page

1–8, New York, NY, USA, 2013. Association for Computing

Machinery. 1, 2, 5

[3] V. L. Erickson, S. Achleitner, and A. E. Cerpa. Poem: Power-

efficient occupancy-based energy management system. In

2013 ACM/IEEE International Conference on Information

Processing in Sensor Networks (IPSN), pages 203–216,

April 2013. 2

[4] K. Hashimoto, K. Morinaka, N. Yoshiike, C. Kawaguchi,

and S. Matsueda. People count system using multi-sensing

application. In Proceedings of International Solid State

Sensors and Actuators Conference (Transducers ’97), vol-

ume 2, pages 1291–1294 vol.2, June 1997. 1

[5] W. Jung and F. Jazizadeh. Human-in-the-loop HVAC

operations: A quantitative review on occupancy, com-

fort, and energy-efficiency dimensions. Applied Energy,

239(C):1471–1508, 2019. 1

[6] J. Kalikova and J. Krcal. People counting by means of wi-fi.

In 2017 Smart City Symposium Prague (SCSP), pages 1–3,

May 2017. 1

[7] J. M. McHugh, J. Konrad, V. Saligrama, and P. Jodoin.

Foreground-adaptive background subtraction. IEEE Signal

Processing Letters, 16(5):390–393, May 2009. 1, 3

[8] T. A. Nguyen and M. Aiello. Energy intelligent buildings

based on user activity: A survey. Energy and Buildings,

56:244–257, 2013. 1

[9] M. Piccardi. Background subtraction techniques: a review.

In 2004 IEEE International Conference on Systems, Man and

Cybernetics (IEEE Cat. No.04CH37583), volume 4, pages

3099–3104 vol.4, Oct 2004. 2

[10] Sruthi M. S. Iot based real time people counting sys-

tem for smart buildings. International Journal of Emerging

Technology and Innovative Engineering, 5, 2019. 1

[11] C. Stauffer and W. E. L. Grimson. Adaptive background

mixture models for real-time tracking. In Proceedings. 1999

IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (Cat. No PR00149), volume 2,

pages 246–252 Vol. 2, June 1999. 2

[12] A. Tyndall, R. Cardell-Oliver, and A. Keating. Occupancy

estimation using a low-pixel count thermal imager. IEEE

Sensors Journal, 16(10):3784–3791, May 2016. 1, 2, 5

[13] C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pent-

land. Pfinder: real-time tracking of the human body. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

19(7):780–785, July 1997. 1


