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Abstract

Autonomous radar has been an integral part of advanced

driver assistance systems due to its robustness to adverse

weather and various lighting conditions. Conventional au-

tomotive radars use digital signal processing (DSP) algo-

rithms to process raw data into sparse radar pins which

do not provide information regarding the size and orien-

tation of the objects. In this paper we propose a deep-

learning based algorithm for radar object detection. The

algorithm takes in radar data in its raw tensor representa-

tion and places probabilistic oriented bounding boxes (ori-

ented bounding boxes with uncertainty estimate) around the

detected objects in bird’s-eye-view space. We created a new

multimodal dataset with 102,544 frames of raw radar and

synchronized LiDAR data. To reduce human annotation ef-

fort we developed a scalable pipeline to automatically an-

notate ground truth using LiDAR as reference. Based on

this dataset we developed a vehicle detection pipeline us-

ing raw radar data as the only input. Our best performing

radar detection model achieves 77.28% AP under oriented

IoU of 0.3. To the best of our knowledge this is the first

attempt to investigate object detection with raw radar data

for conventional corner automotive radars.

1. Introduction

Object detection holds the key for achieving autonomous

driving. While camera and LiDAR have been the two major

sensory modalities in autonomous driving field, they both

have their own drawbacks. For example, 3D object detec-

tion from camera alone proves to be very challenging so far

despite recent progress [45], and LiDAR is inherently not

reliable in adversarial driving conditions [2, 22] and still too

expensive for mass production. On the other hand, radar, as

a widely-adopted sensor in traditional Advanced Driver As-

sistance Systems (ADAS), is very robust and reliable under

different weather conditions. Using radar for object detec-

tion can be of great help for increasing both redundancy and

robustness of perception in autonomous driving.
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Figure 1: An sample scene from our dataset, with radar,

camera, LiDAR, and radar-LiDAR overlaid data. The cam-

era image is only used for visualization and is not consis-

tently collected in our dataset. Radar is mounted at the front

left corner at bumper height and LiDAR on the rooftop. The

top left image is the radar data in data tensor representation;

top right is the corresponding camera image; bottom left

is the corresponding LiDAR data in bird’s-eye-view (BEV)

image; bottom right is the overlaid image from radar and

LiDAR data, for better understanding of the semantics. Ob-

jects in the scene are marked with colored stars in the cam-

era image, and colored boxes in the LiDAR image and over-

laid image.

Data from radar can take on different representations.

For conventional automotive radars, raw data are heavily

processed by digital signal processing (DSP) algorithms

and are reduced to sparse radar pins (normally only 10 to

50 points per frame). Under this representation, one object

is generally denoted by only one radar pin, without any size

and orientation information. One emerging revolution in the

industry is imaging radar, which can produce semi-dense

radar point cloud in a similar format to LiDAR point cloud

[34]. Compared with sparse radar pins, point cloud repre-

sentation requires fewer DSP modules and contains more

low-level information. However, similar to LiDAR sensors,

the imaging radar are more costly and not fully ready for

deployment in mass production cars.

Another trend in autonomous driving is the use of corner

radars for 360° surveillance. Compared with front radar, ob-



ject detection using corner radars has more challenges due

to multipath propagation and a shorter detection range. Fig.

1 shows what corner radar signal looks like under radar ten-

sor representation together with synchronized LiDAR and

camera data.

In this study, we choose to work with the widely avail-

able conventional (i.e., non-imaging) radar but with a novel

radar tensor representation. Under this representation, min-

imum radar DSP is applied to preserve maximum informa-

tion in the raw data. We leverage the recent advances in

object detection and Bayesian deep learning to extract in-

formation from the intrinsically noisy [43] radar data. Com-

pared with radar pins, radar tensor representation makes it

possible to predict additional information such as the class,

size, and orientation. This information is fundamental for

autonomous driving system and can be consumed directly

by downstream modules such as sensor fusion.

A big obstacle for performing object detection on radar

data is the lack of public dataset. To the best of our knowl-

edge, for all autonomous driving datasets, only nuScenes

[4] provides radar data, but still under traditional radar pin

representation. Therefore, we built a new dataset collected

under realistic autonomous driving scenarios. This dataset

contains raw radar tensor and LiDAR point cloud as well,

which can potentially serve for multimodal detection pur-

poses. In this study we only focus on radar-based object

detection using convolutional neural networks (CNN), and

our goal is to predict object class, location, size, and orien-

tation with radar input only.

Our main contributions in this work are summarized as:

• Proposition of a radar tensor representation which is

more suited for CNN based object detection algorithm

compared to other traditional radar representations. To

the best of our knowledge this is the first attempt to

investigate object detection with conventional (non-

imaging) corner radar under this representation.

• Development of a scalable pipeline for data curation.

Ground truth is automatically generated using LiDAR

data to minimize human annotation effort. We also de-

signed some techniques such as LiDAR re-packing to

improve cross sensor calibration and label accuracy.

• Adaptation of CNN-based object detection algorithm

for radar data with uncertainty estimation for bound-

ing box localization. The feasibility of radar object de-

tection is demonstrated and an AP of 77.28% has been

achieved under oriented IoU threshold of 0.3.

2. Related Work

2.1. Object detection

CNN based object detector can be generally grouped

into two categories, multi-stage detectors [12, 39, 5] and

single stage detectors [26, 27, 38]. Multi-stage detec-

tors first generate proposals and then gradually refine de-

tection results to increase detection performance. Single-

stage detectors directly output final prediction in a single

stage and hence can achieve faster detection speed com-

pared with multi-stage detectors without sacrificing perfor-

mance too much. The good balance between speed and

performance makes single-stage detectors suitable in real-

time applications such as autonomous driving. On the

other hand, Single-stage detectors can be further catego-

rized into anchor-based [19, 48, 7] and anchor-free algo-

rithms [50, 24, 9, 20, 47]. Anchor-based algorithms use an-

chor boxes to facilitate the regression of object localization

information. The anchor-free algorithms formulate object

detection as a keypoint detection problem, so that it does

away with the ad-hoc heuristics and handcrafted design of

anchors and still demonstrated state-of-the-art performance

in the latest researches [49, 47].

2.2. Oriented Object Detection

Oriented object detection has been extensively inves-

tigated recently in text region detection [17, 30], remote

sensing [46, 28] and autonomous driving [35]. Commonly

used techniques include deformable convolutional neural

networks [8, 51] and spatial transformers [16]. Different

from the upright anchor boxes in general object detection,

oriented anchors are placed to assist the regression of ori-

ented bounding boxes [46, 28, 31]. In addition, the multi-

bin losses are usually used by combining classification and

regression for accurate orientation estimation [32, 35].

2.3. Probabilistic Object Detection

Uncertainty estimation in deep learning is first explored

by the seminal work [18], and then widely adopted in many

object detection algorithms [33, 6, 1, 15, 36]. There ex-

ist two different uncertainties, namely epistemic uncertainty

and aleatoric uncertainty. While epistemic uncertainty can

be explained away with more data, aleatoric uncertainty is

inherent in sensor data. In this paper, we will introduce the

probabilistic model to our detection algorithm to cope with

the inherent uncertainty in radar data [43].

2.4. Radar­based Object Detection

Range, azimuth, elevation and velocity are the common

attributes to be estimated during radar-based detection, and

traditionally this was solved purely by DSP algorithms. For

example, Multiple Signal Classification (MUSIC) [41] and

Estimation of Signal Parameters via Rotational Invariance

Technique (ESPRIT) [40] are the common methods for es-

timating Angle of Arrivals of an object, which is associ-

ated with azimuth and elevation information. And in addi-

tion, some other adaptive algorithms such as cell-averaging

CFAR [10, 21] will be used to detect objects of interest em-



bedded in noise and cluster. However, radar “object detec-

tion” by these DSP algorithms simply reveals the location

(and optionally, velocity) of objects, and should be differed

from object detection in computer vision.

In recent years, deep learning based methods start to be

investigated on radar signal for object detection with seman-

tic meaning. In [11], an end-to-end CNN has been proposed

for automatic target recognition using SAR image. Deep

Radar Detector [3] directly uses 4D FMCW radar data con-

taining information of range, Doppler, azimuth, and eleva-

tion for object detection. In [37], CNN is applied to radar

spectrum regions-of-interest (ROI), whose location is de-

tected by traditional DSP algorithms. More deep learning

based methods remain to be investigated in radar object de-

tection area.

3. Radar Dataset Buildup

In this section, we will introduce the data collection

and curation processes for building our radar object detec-

tion dataset. As it is challenging to obtain object detection

ground truth from radar signal alone, we also collected Li-

DAR data for ground truth generation. We mounted the

radar at the front left corner of the vehicle at bumper height

and the LiDAR (Velodyne HDL-64E) on top of the roof.

Details about the dataset buildup are explained below.

3.1. FMCW Radar Signal and Radar DSP

Frequency Modulated Continuous Wave (FMCW) radars

are very popular for autonomous driving with the ability

to measure range (radial distance), velocity (Doppler), and

azimuth information. FMCW radars continuously transmit

chirp signal (a sinusoidal signal whose instantaneous fre-

quency varies linearly and periodically) and receive echo

signal reflected by objects. The transmitted chirp signal is

highly configurable and determines radar signal specifica-

tions. Table 1 shows the key configurations for our FMCW

radar. Due to limited data transfer bandwidth, there exists

a trade-off between the ability to measure velocity infor-

mation and the accuracy of range and azimuth measure-

ments. We decided not to collect velocity measurements in

our radar setting in order to achieve best range and azimuth

performance.

Raw data collected from radar are 2D array with size

Ns and Nch, where Ns represents the number of points

in analog to digital (A/D) sampling and Nch represents

the total number of receiver antennas. Two-dimensional

Fast Fourier Transformation (FFT) was then used to obtain

range-azimuth data [23]. Since range-azimuth data is un-

der polar coordinate system, coordinate transformation has

been implemented to generate pseudo image under Carte-

sian coordinates. Results before and after coordinate trans-

formation are shown in Figs. 2a and 2b. However due to

a relatively small number of receiver antennas (in our case,

(a) FFT

(data fft)

(b) FFT under Cartesian

(img fft)

(c) MUSIC

(data music)

(d) MUSIC under Cartesian

(img music)

Figure 2: Different formats of radar data. (a) and (c) are

shown in polar coordinate system, with horizontal axis rep-

resenting azimuth from −90° to 90° and vertical axis rep-

resenting range from 0 to 40 m. After coordinate trans-

formation into Cartesian coordinate system, (b) and (d) are

BEV images which span 40 meters in forward, leftward,

and rightward directions. By comparing results from the

two rows, we can easily find out that side lobes are greatly

suppressed after using MUSIC algorithm. Green arrows in

the plots point out a passing vehicle in front of our corner

radar. Red arrows point out the barrier of highway.

Table 1: Key configurations for our FMCW radar

Attribute Value

Maximum range 153.60 m

Range resolution 0.15 m

Maximum azimuth ±90°

Azimuth resolution 3.7°

Frame rate 50 Hz

32), the side lobes caused by FFT on azimuth dimension

are manifested as artifact (highlighted horizontal lines on

range-azimuth map and rings under Cartesian coordinates),

which obscure actual object locations as shown in the fig-

ures. In order to solve this problem, MUSIC [41] has been

used as a super-resolution algorithm to suppress side lobes,

with results shown in Fig. 2c and 2d.

By using different methods, four different formats of



radar data, namely, data-fft (with FFT only), img-fft (with

FFT and coordinate transformation), data-music (with MU-

SIC only), and img-music (with MUSIC and coordinate

transformation) are visualized in Fig. 2.

3.2. Calibration and Synchronization

As can be seen from Fig. 2, labeling with only radar in-

put is extremely difficult. Therefore, LiDAR data have to be

used as reference to obtain ground truth information. Suc-

cessful transfer of annotation from LiDAR to radar requires

good synchronization and cross-sensor calibration. We re-

fer to the aligned radar and LiDAR images as image pairs

hereafter.

Spatial Calibration: Radar and LiDAR data are under

different coordinate systems due to different mounting po-

sitions. Calibration between radar and LiDAR are imple-

mented by using trihedral radar reflectors as landmarks and

calculating coordinate transformation parameters from the

correspondences of the landmarks in image pairs.

LiDAR Re-packing: Pronounced rolling shutter effect

is found in LiDAR data around the initial scan angle at each

LiDAR sweep. Fig. 3 displays an example of this effect,

where we can see a car is elongated at the initial scan angle,

inducing ambiguity of its position. This effect is common

when vehicles come from the opposite direction and thus

have higher relative velocity with the ego car. Due to time

delay caused by rotating 360° of LiDAR laser, passing ve-

hicles will have non-negligible position offset. When ini-

tial scan angle of a LiDAR sweep is within the radar field

of view, such ambiguity will complicate radar-LiDAR syn-

chronization process. To tackle this problem, we re-packed

the LiDAR sweeps to move initial scan angle out of the

radar field of view. The corresponding re-packed LiDAR

sweeps do not have this effect as shown in the figure.

Temporal Synchronization: After cross-sensor calibra-

tion and LiDAR re-packing, radar and LiDAR image can

be overlaid perfectly as long as two sensors are synchro-

nized, which is done by two steps. Firstly, after LiDAR re-

packing, new frames are generated with shifted initial scan

angle, thus timestamp for each new frame is re-calculated

by linear interpolation of the timestamps of two previous

neighboring frames. Secondly, due to internal clock differ-

ence, we manually find the time offset for each data collec-

tion to achieve a best match of overlaid radar and LiDAR

images. The radar and LiDAR data are collected at 50 Hz

and 10 Hz, and after temporal synchronization, they are as-

sociated as 10 Hz image pairs.

3.3. Data Auto Labeling

Obtaining ground truth for radar data requires tremen-

dous manual annotation effort by looking at image pairs. To

reduce the human annotation effort, we developed an auto-

labeling procedure, with two steps explained as follows.

Figure 3: An example for rolling shutter effect and its so-

lution. Here LiDAR point cloud data are rendered in BEV

space. Radar field of view is the top right half in each im-

age separated by the red line and indicated by the red arrow.

The green straight line originated from center of the image

is the initial scan angle of current LiDAR sweep. As can

be seen in the upper figure, the vehicle located at the green

line is abnormally elongated. After re-packing, the artifact

is removed.

The first step is to perform object detection on LiDAR

data with the goal to achieve as high detection recall as

possible. We combined two state-of-the-art LiDAR ob-

ject detection algorithms, namely ComplexYOLO [44] and

PointRCNN [42], and also used test time augmentation and

model ensemble to further boost detection performance.

For test time data augmentation, we combined 90-degree

rotation around z-axis (up-down) with horizontal mirroring

around y-axis (left-right with respect to ego car heading) in

LiDAR coordinates, yielding a total of eight different Li-

DAR frames from one frame. In combination of the two

detection models, 16 sets of detection results would be gen-

erated from one LiDAR frame. Soft NMS with threshold

0.9 is used to fuse those 16 sets into final prediction.

The second step is to transform LiDAR object detection

results into radar coordinate system, and filter out false pos-

itive detection results in order to increase precision. To re-

duce false positive detections, we calculated the strength of

radar signal response in each detection region, and discard

the detection with low responses. Concretely, we charac-

terized response strength by calculating the Area under the
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Figure 4: Spatial distribution of ground truth bounding

boxes.

Table 2: Scene distribution

Highway Local Crossing Parking-lot Other

22% 47% 22% 7% 2%

Curve (AUC) of the normalized cumulative density function

formed by values of all pixels in the region of each detec-

tion. The region was enlarged by 20% of the original de-

tected bounding box due to the fact that radar response of a

an object mostly happens on the boundary. With such auto-

labeling procedure, ground truth for radar object detection

can be generated for massive radar dataset in a scalable way.

3.4. Dataset Overview

We further downsample the synchronized radar and Li-

DAR data from 10 Hz into 2 Hz to reduce temporal cor-

relation between adjacent frames. The final radar dataset

contains 102,544 images in total. Fig. 4 shows the spa-

tial distribution of ground truth bounding boxes. Besides

the auto-labeling process described above, we also manu-

ally verified 25% of all images. Manually verified data were

categorized into different scenes and the distribution is dis-

played in Table 2.

4. Object Detection on Radar Data

We formulate the task of car detection with radar data

as a probabilistic oriented object detection problem. As

we do not distinguish different types of cars in our algo-

rithm, the task is hence formulated as class agnostic object

detection problem. We used single-stage anchor-based de-

tection algorithm in this study, for the sake of trade-off be-

tween detection performance and detection speed. Typical

single-stage anchor-based object detector usually consists

of a backbone, detection neck, and detection head. In our

study, for the backbone, the bottleneck block [14] was used

as the basic unit, and shortcut connections between encoder

and decoder blocks are also used to combine the low-level

and high-level features together. For the detection neck, we

simply used two 3×3 conv layers to connect the backbone

with the detection head. Fig. 5 illustrates the architecture of

the network. For the detection head, details are explained

as follows.

4.1. Detection Head

Anchors: Three different oriented anchors are placed

at each grid cell (i.e., pixel in the spatial dimensions) in

the network’s last feature map. The configuration of the

three anchors are determined by the statistics of all ground

truth bounding boxes (referred as gt bboxes hereafter) via

k-means clustering. Concretely, since the sizes of gt bboxes

are clustered at one peak position (due to BEV projection

and the unbalanced vehicle classes in our dataset), all an-

chors are set to be the same as the mean size of all gt boxes

(15×42 pixels). Similarly, instead of using multi-scale fea-

ture maps for predictions as in [25], we only used the last

feature map. The preset orientations of the anchors are set

to be the three clustered orientations of all gt bboxes (30,

115, and 136 degrees).

Predictions: Each of the three anchors per grid cell in

the network’s last feature map predicts an oriented bound-

ing box consisting of an objectiveness score (s), position (x,

y), size (w, h) and orientation (θ). The objectiveness score

s ∈ [0, 1] indicates the existence of a bbox from this an-

chor. During network training, one gt bbox is only assigned

to one anchor which matches the gt bbox best. The bbox lo-

calization information (x, y, w, h, and θ) will be regressed

from the anchor if it is assigned to a gt bbox.

4.2. Localization Regression

Position and Size: As for regressing the bbox position

and size information (x, y, w, and h), the direct outputs

from the network are the relative offsets (xo, yo, wo, and ho)

between the anchor and the corresponding gt box, the same

as the standard bbox parameterization from R-CNN [13].

After x, y, w and h of predicted bboxes are calculated from

the relative offsets, they are compared with corresponding

gt bboxes and supervised with smoothed L1 loss (SL1).

Orientation: The network regressed the relative angu-

lar offset between the anchor and the corresponding gt box.

We transform this angular offset (θo) into the correspond-

ing sine and cosine values (cos θo, sin θo) as the regres-

sion targets. During training the outputs from the network

are compared to the regression targets and supervised with

smoothed L1 loss. During inference, the orientation of the

bbox is recovered from the anchor’s orientation and the pre-

dicted angular offset calculated from arctan(cos θo, sin θo).



Figure 5: Network structure of our detection algorithm. The encoder of the network is adapted from ResNet-18 and has

five stages, where the first stage contains a conv7×7 layer, and each of the following four stages contains two bottleneck

blocks. The decoder has four stages with each stage consisting of two conv3×3 layers. The encoder and decoder are laterally

connected at each stage with a conv1×1 layer. Downsampling in the encoder is achieved by conv3×3 with stride size as

2×2, and the upsampling in the decoder is achieved by bilinear upsampling operation. The predictions are generated from

the last feature map followed by two conv3×3 layers.

4.3. Probabilistic Detection

Due to the noisy nature and inherent ambiguity in radar

signal [43], it is impractical to require neural network to

make accurate predictions. However, unlike the objective-

ness score which lend itself to probabilistic interpretation

and uncertainty estimation, bbox localization predictions

(x, y, w, h, θ) are deterministic values with no uncertainty

estimation. To address this problem, we make the network

learn the aleatoric uncertainty for its localization prediction

based on [18]. Specifically, the network will predict the

individual variance for each of the the position predictions

(xo, yo), the size predictions (wo, ho), and the orientation

predictions (cos θo, sin θo). And the loss function for each

of them is expressed as:

La =

N
∑

i=0

(

1

σa

SL1(a
pred − agt) + log σa

)

(1)

where a represents the prediction of xo, yo, wo, ho, cos θo,

and sin θo; σa is the variance of its prediction; and N is the

total number of bounding boxes in a image.

4.4. Network Loss

The total loss Ltotal of the network consists of the ob-

jectiveness loss Lobj and the localization loss Lloc. For ob-

jectiveness loss, we used focal loss [26] with alpha of 0.25

and gamma of 2. The localization loss consists of a smooth

L1 loss attenuated by a learned variance and a regulariza-

tion term proportional to the logarithm of the variance, as in

Equation 1. And total loss is a weighted sum of the objec-

tiveness loss and the localization loss.

Ltot = Lobj + w0

∑

a

La (2)

where a ∈ {xo, yo, wo, ho, cos θo, sin θo}, and
∑

a La de-

notes the localization loss. We set w0 to be 100 in our im-

plementation.

4.5. Training and Inference

The network was trained in a single NVIDIA GeForce

RTX 2080 Ti, with batch size to be 4 using Adam opti-

mizer for 500,000 iterations. The learning rate was set to be

0.0005 initially, and cosine learning rate scheduler [29] was

used to adjust the learning rate with a period of 100,000 it-

erations. During inference, prediction confidence score was



Figure 6: Performance of our detection algorithm

thresholded by 0.5 and non-maximum suppression was used

with IoU threshold as 0.0001, because no two cars should

overlap in BEV projection in reality. We evaluated the per-

formance of our algorithm by average precision (AP) with

three IoU scores at 0.3, 0.5, and 0.7.

5. Experiments and Discussion

Fig. 6 shows the average precision (AP) result evaluated

on highway scene. The best performance of AP as 77.28%

is achieved in our study (IoU at 0.3). Qualitative examples

are shown in Fig. 7. Ablation studies were also conducted

to investigate the effectiveness of different parts of the net-

work.

5.1. Radar Data Formats

As mentioned in Fig. 2, four different radar data for-

mats can be obtained from radar DSP, namely data-fft, data-

music, image-fft, and image-music. We conducted experi-

ments to find which data format is best suited for neural

network to make prediction upon. For the data-fft and the

data-music formats, as the data are in polar coordinate sys-

tem where it is difficult for neural network to decode the

shape of cars directly, we inserted a deterministic coordi-

nate transformation layer right after the network backbone

to transform feature map into Cartesian coordinate system

before bbox prediction. The comparison results are shown

in Table 3, where we can see that the image-music format

achieves the best performance. This result indicates that

neural network prefers more explicit (Cartesian coordinate

system) and less noisy (with MUSIC processing) data for-

mat to perform object detection upon, which is in line with

our expectation.

Table 3: Comparison of radar data format

Format AP@IoU = 0.3/0.5/0.7

data-fft 64.60/49.90/23.75

data-music 68.21/49.16/19.61

image-fft 73.66/57.56/29.80

image-music 76.66/65.63/31.39

Table 4: Data augmentation and auto-labeling data

Training data AP@IoU = 0.3/0.5/0.7

human-labeled data only 70.66/52.75/26.45

+ data augmentation 73.76/53.88/29.19

+ auto-labeling data 77.28/65.36/34.33

5.2. Data Augmentation and Auto­labeling Data

Only a small portion of the dataset are human-labeled

with good labeling quality, and the rest is auto-labeled by

LiDAR object detection algorithms with relatively noisy

ground truth information. Though the massive auto-

labeling data can bring the benefit of big data, the noisy

ground truth could also potentially hamper the performance.

As a result, we conducted experiments to study effect of

adding more noisy training data. Experiments were con-

ducted by using human-labeled data alone, using human-

labeled data along with data augmentation (image jittering

and horizontal flipping), and using both human-labeled and

auto-labeled data with data augmentation. The result is re-

ported in Table 4, where we can see adding data augmen-

tation and auto-labeled data can largely improve the algo-

rithm performance, which reassures the power of big data

for boosting deep learning algorithm performance.

5.3. Variance Prediction for Bounding Box

To tackle the ambiguity in radar signal and potential

noise in ground truth information, we introduced proba-

bilistic model for bounding box localization regression. To

study the effectiveness of the method, we did ablation study

by removing the variance predictions so that the regression

loss is reduced to normal SL1 loss. As we can see in Table

5, adding variance prediction is able to improve the per-

formance of the object detector. The improvement is more

pronounced under more stringent IoU threshold of 0.7. It is

noteworthy that in autonomous driving, the uncertainty es-

timate itself is very useful for autonomous driving system’s

downstream components such as behavioral prediction and

motion planning.



Figure 7: Three examples of predictions from our detection algorithm. In each of the three examples, the lower image is the

radar image where the detector makes prediction upon, and the upper image is the corresponding LiDAR image for better

visualization. The green boxes indicate the ground truth and the red boxes indicate the predictions.

Table 5: Variance Prediction for Bounding Box Regression

Regression AP@IoU = 0.3/0.5/0.7

w/o variance 76.81/63.57/31.53

w/ variance 77.28/65.36/34.33

5.4. Discussion

Fig. 7 displays qualitative examples of the network’s

predictions on the test dataset. In the middle subfigure,

we can observe a false positive prediction caused by the

highway barrier (the leftmost one). The other two “false

positives” are actually caused by missing annotation in the

ground truth. In the right subfigure, the network success-

fully detected one vehicle (a large truck) that is missing in

the ground truth but failed to regress the correct size. This

could be attributed to the lack of big trucks in the training

dataset.

One remedy for the missing detection of minority classes

such as trucks could be improvement of LiDAR detection

pipeline and the use of more anchors of different sizes dur-

ing regression. Interestingly, though the network struggles

to regress the correct size of the vehicles, it still correctly

predicted the location of the back of the vehicle (i.e., nearest

point of collision). It works in the favor of a safety-critical

system such as autonomous driving.

Empirically, we found that the typical spatial extension

for the network to perform well is within 30 meters in ra-

dial dimension and from 30° to 150° in azimuth dimension.

Beyond this extension, due to the weak and noisy radar re-

sponse, the network tends to fail being able to detect ve-

hicles. A potential remedy could be utilizing hard-mining

strategy during network training.

As directions for future work, we can integrate velocity

measurement in our dataset as additional information to dis-

tinguish static and moving objects. This information could

be leveraged by neural network to make better predictions.

Another noteworthy point is that due to the strong location-

specific noise patterns in radar signal, the noise pattern in

transformed Cartesian image is not shift invariant. Naı̈ve

data augmentation in general object detection on natural im-

ages will not work. Instead we could also introduce DSP-

inspired data augmentation by introducing extra phase off-

set in frequency domain, which will lead to translational

offset in spatial domain after FFT.

6. Conclusions

In this work, we proposed a radar tensor representation

which is well-suited for CNN based object detection algo-

rithm, and developed a scalable method to build up a radar

dataset from scratch in such representation. A probabilistic

object detection algorithm was developed to perform object

detection directly on radar data. Average precision score

under IoU at 0.3 is obtained to be 77.28 %. Our results

showed that by combining the power of DSP, big data, and

convolutional neural networks, object detection based on

radar data only is feasible and promising.
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