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Abstract

We introduce the single-shot optical flow estima-

tion algorithm (SOFEA) to non-iteratively compute the

continuous-time flow information of events produced from

bio-inspired cameras such as the dynamic vision sensor

(DVS). The output of a DVS is a stream of asynchronous

spikes (“events”), transmitted at very minimal latency (1-

10 µs), caused by local brightness changes. Due to this un-

conventional output, a continuous representation of events

over time is invaluable to most applications using the DVS.

To this end, SOFEA consolidates the spatio-temporal infor-

mation on the surface of active events for flow estimation

in a single-shot manner, as opposed to iterative methods in

the literature. In contrast to previous works, this is also the

first principled method towards finding locally optimal set

of neighboring events for plane fitting using an adaptation

of Prim’s algorithm. Consequently, SOFEA produces flow

estimates that are more accurate across a wide variety of

scenes compared to state-of-the-art methods. A direct ap-

plication of such flow estimation is rendering sharp event

images using the set of active events at a given time, which

is further demonstrated and compared to existing works

(source code will be made available at our homepage af-

ter the review process).

1. Introduction

Neuromorphic sensors offer a complimentary approach

to visual sensing and are increasingly explored for various

applications, such as high-speed robotics [27, 28, 14, 9], ro-

bust feature detection and tracking [15, 19], object classifi-

cation and tracking in low-power settings [25, 26, 30, 1, 16],

conventional video synthesis [23, 7], space applications

[11, 10], to name a burgeoning few.

Event cameras react to brightness changes sensed by an

individual pixel, characterized by its location (x, y), times-

tamp t and polarity p. The polarity specifies the brightness

change direction as ON (increase denoted as +1) or OFF

(a) Reference image (b) 4ms (c) 1500 events

(d) Our method (e) 8ms (f) 3000 events

Figure 1: (a). The DVS is moved on a slider in front of ob-

jects at different depth [22]; (b) and (e). Time-slices of the

event stream resulting in spatially irregular event accumula-

tions; (c) and (f). Event-number slices which have the same

drawback; (d). Optical flow estimated using SOFEA can be

subsequently employed for lifetime estimation to produce

crisp event stream images (best viewed on monitor).

(decrease denoted as −1). Additionally, these events are

transmitted instantaneously with minimal latency in the or-

der of 1-10 µs. Thus, the output is a stream of asynchronous

spikes (events) as opposed to a set of images captured at a

constant rate by a standard CMOS camera. Due to this un-

conventional output, the design strategy of previous works

has been to either implicitly or explicitly buffer a certain

number of events for performing a given task.

A straightforward approach to processing DVS events is

to accumulate them over a fixed time interval and then ap-

ply suitable frame-based methods. For instance, an events-

to-frame approach was taken in [1, 30, 18] using contrived

time periods (ranging between 5–66 ms) and were applied

to specific scenarios of object tracking and stereo vision.

During this events-to-frame conversion that introduces ad-

ditional latency, the motion-dependent sensing aspect of

the event camera is a major hindrance for choosing a fixed

time-period for processing. Alternatively, a general way to
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deal with the event camera output is to implicitly choose

a time-period by buffering a certain number of past events

[25, 14, 27]. However, choosing an ideal number of events

to buffer while retaining critical image information is in-

tricately dependent on the apparent object motion, scene

complexity and spatial resolution of the sensor. Fig. 1 il-

lustrates the drawback of these two ways of processing the

event camera output.

In addition to the above ways of handling the event

camera output, a third class of existing event-based works

[23, 7] aim to render conventional video streams for tra-

ditional computer vision processing, albeit under challeng-

ing motion conditions where normal cameras fail to capture

crisp images. These methods unsurprisingly revert to one

of the main drawbacks of frame-based processing, i.e., high

power consumption [4].

In contrast to the above works, we explicitly model

the set of active events in the spirit of [5] and com-

pute continuous-time flow information. Previous works

[5, 21, 2] employ iterative routines to estimate the visual

flow, which are relatively slow and resource intensive in

both software and hardware implementations for typically

high event rates from the DVS. Thus, the motivation of our

work is to devise a robust single-shot optical flow estima-

tion algorithm (SOFEA) that allows for a broader range of

downstream applications in a power-efficient manner. To

this end, the two main theoretical contributions of this pa-

per are:

• An efficient greedy algorithm to optimally select the

neighboring events associated to an incoming event for

accurate non-iterative local Surface of Active Events

(SAE) plane fitting (Section 4.2).

• A mathematically simpler description of the local pla-

nar SAE, for efficient computation in hardware or soft-

ware, is enabled by imposing an additional constraint

that the incoming event lies on it (Section 4.3).

Our framework estimates the optical flow of each event, and

thus, event stream images can be rendered at any given time

instant using lifetime estimation, as shown and evaluated

against [21] in the experiments section.

2. Related Work

The local plane fit approach is a widely adopted method

[5] for event-based optical flow estimation. The single plane

fit described in [29] is heavily prone to noise since it consid-

ers all neighbouring events with the same polarity. There-

fore, to discard outlying data points, performing plane fit-

ting iteratively is essential to improve accuracy [2, 21, 5].

The recent work [2] describes a hardware implementation

by placing a 3×3 spatial constraint on the size of the neigh-

borhood used for plane fitting, which limits the goodness-

of-fit. Additionally, the incorporation of noise filtering and

old pixel thresholds [2] further limits the maximum speed

of dynamics.

In contrast to the above plane fitting methods, [6] pre-

sented a variant of Lucas-Kanade flow estimation for event

cameras. More recent approaches for optical flow estima-

tion from event-based sensors include conventional block

matching on adaptive time-sampled event stream images

[20]. Reference [3] uses a variational approach that simulta-

neously estimates optical flow and image intensity as tem-

poral contrast is generated due to a combination of both.

Note that these methods are computationally intensive and

have limited applications under low-power settings or real-

time scenarios. In this regard, some works [17, 8] have ad-

vocated the use of spiking neural networks to process event-

based data. Nonetheless, this area of research remains fairly

unexplored and also requires dedicated hardware platforms.

Compared to the above works, our flow estimation

approach neither depends on a temporal window (peri-

odic/adaptive) nor is iterative [2, 21, 5]. Instead, we effi-

ciently select the optimal neighbours of the incoming event

and rely on a simple assumption that it lies on the local pla-

nar SAE for a single-shot flow estimation. Therefore, the

proposed approach has potential for performing under low

power settings in a small application specific IC, or to run

real-time in software, or in embedded systems.

The remainder of the paper is organized as follows. The

basic description of SAE and optical flow using plane fitting

is given in Section 3. Next, Section 4 presents our proposed

approach SOFEA for DVS. Section 5 presents the experi-

mental results and comparison to existing works. Finally,

the paper is concluded in Section 6.

3. Surface of Active Events and Optical Flow

An event e can be characterized by a 4-tuple (x, y, t, p),
where x, y represents the spatial location or position of the

event in pixel coordinates, t represents the time of occur-

rence of the event and p ∈ {−1,+1} represents the polarity

of the event. On top of that, the event stream can be defined

as a sequence of events (en)n∈N such that i < j =⇒ ti ≤
tj , where ei = (xi, yi, ti, pi), ej = (xj , yj , tj , pj).

Disregarding event polarity, each event carries informa-

tion in the three-dimensional xyt spacetime domain. Con-

sequently, the sequence of most recent events over the en-

tire spatial domain, which is a subset of the event stream

(en)n∈N, can be simply described by a spatio-temporal sur-

face Σe. The spatio-temporal surface Σe is better known as

the Surface of Active Events (SAE), as coined in [5]. The

mathematical definition of the SAE is given by:

Σe : R
2 → R

p 7→ Σe(p) = t
(1)

where p =
[

x y
]⊤

.



Figure 2: Spatio-temporal points on the Surface of Active

Events (SAE) of a stripe translating in the negative x-axis

direction. At a given time instant, the SAE can be used to

generate the event stream image (grey plane), which is a

binary representation of currently active pixels.

Note that Σe is a single-valued function of the event po-

sition p. In other words, each point on the spatio-temporal

surface indicates the occurrence or activation of an event

at the particular position and time instant, given by its
[

x y t
]⊤

coordinates. Thus, despite the asynchronous

nature of the event stream, the exact position of all active or

occurring events for any given time instant t can be easily

determined from the corresponding time slice of the SAE,

which we denote as an Event Stream Image. Figure 2 pro-

vides an illustration of a SAE and how an Event Stream

Image can be acquired from the corresponding SAE.

A simple expression for Σe can be obtained by approxi-

mating the SAE as a plane in a local spatial neighborhood.

In other words, the SAE is locally approximated by the first-

order Taylor series expansion of Σe as follows:

Σe(p+∆p) ≈ Σe(p) +∇Σe(p)
⊤∆p (2)

With the approximation above, the local planar SAE can

be sufficiently described by a set of plane parameters Π =
[

a b c d
]⊤

as follows:





p

t
1





⊤

Π = 0 (3)

From the equation above, a closed form expression for Σe

can also be derived as such:

Σe(p) =
[

−a
c
− b

c
−d

c

]

[

p

1

]

(4)

An interesting property of the SAE is that its spatial

gradient ∇Σe(p) =
[

∂Σe(p)
∂x

∂Σe(p)
∂y

]⊤

encodes informa-

tion of optical flow associated to the active events. For

a local planar SAE, ∇Σe(p) can be further defined as
[

−a
c
− b

c

]⊤
. For instance, suppose the stripe in Figure

2 was moving at half the speed, the magnitude of
∂Σe(p)

∂x

would be twice as large, while
∂Σe(p)

∂y
remains approxi-

mately zero. The mathematical relation of the normal flow

with respect to ∇Σe(p) of a local planar SAE is given as

such [29]:

v⊥ =
1

‖∇Σe(p)‖
∇Σ̂e(p) = −

c

a2 + b2

[

a
b

]

(5)

where ∇Σ̂e(p) =
∇Σe(p)

‖∇Σe(p)‖
is the unit vector of∇Σe(p).

With the above analysis of ∇Σe(p), the local planar ap-

proximation of the SAE, as made in Equation 2, also implies

an assumption of uniform normal flow across a local spatial

neighborhood. This method of estimating the normal flow

of events through the spatial gradient of its corresponding

local planar SAE, as devised in [5], is widely known as the

Local Plane Fit method [29].

4. Single-shot Optical Flow Estimation Algo-

rithm (SOFEA) for DVS

In this section, we will introduce the Single-shot Opti-

cal Flow Estimation Algorithm (SOFEA) for DVS in de-

tail. The motivation behind the algorithm is to devise a non-

iterative and robust optical flow estimation method for event

cameras that enables efficient hardware realization. This al-

lows for a broader range of downstream applications in a

power-efficient manner. Figure 3 shows the framework of

SOFEA, which is based on the Local Plane Fit method de-

scribed in Section 3.

The algorithm is executed for each incoming event from

the event stream, with the current event being processed de-

noted as the Event-of-Interest (EOI) eEOI . First, the EOI

passes through a refractory filter, which contributes to a

better conditioned SAE for subsequent processing. Then,

we greedily select past spatially neighboring events that are

(believed to be) associated to the EOI so that a local SAE

plane fitting can be performed in a fast and non-iterative

manner, while maintaining robustness of the plane fit. A

final noise rejection filter, based on the goodness-of-fit, is

employed before the normal flow estimate for the EOI is

released to downstream applications. In the following sub-

sections, we will address the details for each component of

the framework given in Figure 3.

4.1. Refractory Filter

The refractory filter employed in SOFEA is closely re-

lated to the refractory period following a neuron action po-
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Figure 3: Framework of Single-shot Optical Flow Estima-

tion Algorithm (SOFEA) for DVS.

tential [12]. As applied in [2, 25, 29], refractory filtering

is performed by suppressing incoming events within a pe-

riod of time after a past event has occurred at the same

position. The period of time mentioned is known as the

refractory period Trf . Mathematically speaking, an event

ei will be filtered out if there exists an event ej such that

xi = xj , yi = yj , ti > tj , ti < tj + Trf .

The incorporation of a refractory filter contributes to a

better conditioned SAE for plane fitting [29]. Apart from

achieving noise reduction, the refractory filter also induces

invariance of the SAE to the scene dynamic range, to some

extent, as it suppresses the burst of events following the first

that occurs at the same position due to a change in contrast.

However, this limits the maximum event occurrence rate at

a particular position, and hence the maximum speed of dy-

namics [2]. With that said, the optimal value of Trf depends

on the scene dynamics and the DVS used, and may be ap-

propriately set based on the intended application.

4.2. Greedy Selection of Associated Spatially Neigh­
boring Events

To estimate the parameter Π of the local planar SAE as-

sociated to the EOI, events in the L × L (L is odd) spatial

neighborhood are utilized to perform plane fitting. In con-

trast to [5], we only consider events occurred in the past,

including the EOI, for fitting the local planar SAE. This ap-

proach is also similarly adopted in [2, 21] so that no addi-

tional latency is introduced and no limits (both lower and

upper bound) are implicitly imposed onto the speed of dy-

namics. With that, it is not a trivial task to distinguish spa-

tially neighboring events of the EOI that truly belong to the

local planar SAE, as some of them belong to that of the past

event replaced by the EOI. Moreover, some events may be

solely attributed to noise. In order to perform robust local

SAE plane fitting in a single-shot manner, the set of spa-

tially neighboring events used N , where in practice is of a

fixed size Nnb , have to be selected based on some optimal-

ity criteria.

Although there are no definitive criteria for the optimal

set of neighboring events, which we will denote as N ∗, it

can be observed that edges and natural structures that induce

neighboring events eventually occur at time instants close to

that of the EOI. Secondly, the optimal neighbours occur at

positions that maintain spatial connectivity with the EOI,

as well as other associated events. In addition, associated

neighboring events usually have the same polarity as the

EOI. Hence, we adopt the following as the criteria for N ∗

of size Nnb :

1. Events in N ∗ have a common polarity with the EOI.

2. Events in N ∗ are located in the L × L spatial neigh-

borhood about the EOI.

3. The EOI is not an event in N ∗.

4. Each event in N ∗ is a 8-neighbor of the EOI or other

events in N ∗.

5. The maximum timestamp difference between the EOI

and events in N ∗ is minimized. In other words, the

minimum timestamp of events in N ∗ is maximized,

since the EOI has the largest timestamp.

6. Suppose Criterion 1 to 5 yield non-unique solutions,

N ∗ is then taken as one of them that gives the maxi-

mum sum of timestamps.

With the optimality criteria above, it can be proven by

mathematical induction that the following greedy heuristic

yields a locally optimal set of neighboring events N (proof

provided in the supplementary material):

At each stage, select the common polarity event

with the next largest timestamp in the L× L spa-

tial neighborhood about the EOI, which is also an

8-neighbor of the EOI or any previously selected

event.

Figure 4 provides a graphical illustration of the greedy

selection algorithm. An efficient implementation of the pro-

cedure is also given in Algorithm 1, which is an adaptation

of Prim’s algorithm [24] for finding the minimum spanning



Figure 4: SAE in the 5×5 pixel spatial neighborhood about

eEOI = (93 px, 80 px, 6.46697 × 105 µs,−1), which is

marked as a diamond. Events in L, as defined in Algorithm

1, are marked as a sphere. Each event is colored in red

or blue, indicating a negative or positive polarity respec-

tively. Numbers placed above the events in red, which have

the same polarity as eEOI , indicate their rank when sorted

based on their timestamp in descending order. The set of red

events circled in black represents the locally optimal set of

neighboring events N of size Nnb = 4 associated to eEOI .

Events in N are selected in the following order (each event

is denoted by their rank): 3→ 2→ 6→ 4. The grey plane

corresponds to the local planar SAE associated to eEOI , as

a result of non-iterative plane fitting with N and eEOI .

tree of a given connected graph. The heap data structure

can be used to perform the operation on Line 5 and 6 of

Algorithm 1 more effectively, as commonly done in imple-

mentations Prim’s algorithm. Simplified sorting networks

can also be used instead for efficient hardware realization.

The greedy selection algorithm functions on a best effort

basis, because there is no guarantee that Nnb neighboring

events are selected at the end of the process. We make use

of this fact to perform additional noise rejection on the event

stream. In other words, we reject the EOI and consider it as

noise if less than Nnb neighboring events are selected for

plane fitting.

4.3. Non­iterative Local SAE Plane Fitting

After the locally optimal set of neighboring events N
have been determined, the local planar SAE associated to

the EOI can then be robustly fitted in a non-iterative man-

ner. By examining Equation 3, it can be observed that there

exists infinitely many Π that corresponds to the same par-

ticular plane. Hence, a unique set of parameters can be ob-

tained by imposing an additional constraint on Π. Equa-

Algorithm 1 Efficient Greedy Selection of the Locally Op-

timal Set of Neighboring Events N Associated to the EOI

1: L ← { e | e is in the L× L spatial neighborhood

about eEOI and e 6= eEOI }
2: C ← { e | e is an 8-neighbor of eEOI with the same

polarity }
3: N ← ∅

4: while |N | < Nnb and C 6= ∅ do

5: enew ← e ∈ C with the largest timestamp

6: C ← C ∪ { e | e is a 8-neighbor of enew with the

same polarity, e /∈ C ∪ N and

e ∈ L } \ enew
7: N ← N ∪ { enew }
8: end while

9: return N

tion 3 can be rewritten as follows, given by the constraint of

c = −1 [2]:

[

p

1

]⊤

Ω = t, Ω =

[

∇Σe(p)
d

]

(6)

With N and the EOI, the ordinary least squares estimate of

Ω, denoted as ΩLS , can be subsequently derived as follows:

ΩLS =







p1
⊤ 1

...
...

pNnb+1
⊤ 1







† 





t1
...

tNnb+1






(7)

where ei = (pi, ti, pi) ∈ N ∪ { eEOI }, i ∈ [ 1, Nnb + 1 ]
and † represents the Moore-Penrose pseudo-inverse opera-

tion.

Note that solving the equation above involves a (Nnb +
1) × 3 matrix pseudo-inverse as well as other relevant ma-

trix operations. Along with the fact that millions of events

are generated every second from the DVS, the operation be-

comes relatively slow and resource intensive in either soft-

ware or hardware implementations.

On the other hand, a mathematically simpler description

of the local planar SAE associated to the EOI can be em-

ployed for an efficient computation. It is obtained by im-

posing an additional constraint that the EOI must lie on the

fitted local planar SAE, which is synonymous to the follow-

ing constraint:

d = −

[

pEOI

tEOI

]⊤




a
b
c



 = −

[

pEOI

tEOI

]⊤ [

∇Σe(p)
−1

]

(8)

Substituting Equation 8 into Equation 6 gives the follow-

ing simple description of the local planar SAE associated

to the EOI, which only depends on the gradient ∇Σe(p) of

dimension 2:

∆p⊤∇Σe(p) = ∆t (9)



Figure 5: All 4 possible spatially collinear arrangements of

events, visualized for a 5× 5 pixel neighborhood. Each cir-

cle indicates a specific location in the local neighborhood,

where the EOI is located on the central circle. The color of

the circles (excluding white) reflect the particular collinear

arrangement it is associated to. Thus, the set of events inN
are collinear if and only if all of them are located on circles

of the same color, other than white.

where ∆p = pEOI − p and ∆t = tEOI − t.
The above simple description can also be similarly de-

rived from Equation 2 with p = pEOI . The ordinary least

squares estimate of∇Σe(p), denoted as∇Σe(p)LS , can be

obtained as follows:

∇Σe(p)LS = ∆P †∆t (10)

where:

∆P =
[

∆p1 . . . ∆pNnb

]⊤

∆t =
[

∆t1 . . . ∆tNnb

]⊤

ei = (pi, ti, pi) ∈ N , i ∈ [ 1, Nnb ]

For ∇Σe(p)LS to be valid, ∆P † must exist and hence

∆P must be of full rank (rank 2). This requires the set of

events inN to be spatially non-collinear. Since the events in

N must remain spatially connected to the EOI (Criterion 4),

collinearity can only take shape in 4 possible arrangements

for any L ≥ 3, as illustrated in Figure 5. With that, it can

be easily shown that collinearity of N can only happen if

Nnb ≤ L− 1.

To prevent the collinearity ofN when Nnb ≤ L− 1, the

following segment of pseudocode is inserted before line 7

of Algorithm 1 so that a collinearity check is incorporated:

1: if |N | = Nnb − 1 and all events in N ∪ { enew }
are collinear then

2: continue

3: end if

The collinearity check ofN can be performed efficiently

by ensuring that not all events are situated on locations as-

sociated to the same collinear arrangement. This effectively

causes the greedy selection algorithm to return the next best

locally optimal set of events, in terms of Criterion 5 and 6,

when all Nnb events selected are spatially collinear.

For an efficient hardware computation of∇Σe(p)LS , the

following can be done. From Equation 10, ∇Σe(p)LS can

be further expanded as follows:

∇Σe(p)LS

= (∆P⊤∆P )−1∆P⊤∆t

=
1

det(∆P⊤∆P )
adj (∆P⊤∆P )∆P⊤∆t

(11)

where:

∆P⊤∆P =









Nnb
∑

i=1

∆x2
i

Nnb
∑

i=1

∆xi∆yi

Nnb
∑

i=1

∆yi∆xi

Nnb
∑

i=1

∆y2i









∆x = xEOI − x

∆y = yEOI − y

Note that for a L × L (L is odd) spatial neighborhood

about the EOI, ∆x and ∆y is strictly within the range

[ −L 1

2

, L 1

2

], where L 1

2

= 1
2 (L − 1). With the above

constraint, each of the product terms ∆x2, ∆x∆y and

∆y2 in the entries of ∆P⊤∆P can be efficiently computed

with the use of a Lookup Table (LUT) which stores all
1
2 (L 1

2

+1)(L 1

2

+2) distinct pairwise products of integers in

the range [ 0, L 1

2

]. The sign of the product can be easily re-

covered from the signs of both operands. A total of 2L 1

2

+1
entries can also be reduced from the LUT since pairwise

products involving 0 and 1 can be trivially computed. With

that, only 1
2L 1

2

(L 1

2

− 1) entries are required for the LUT.

Therefore, each entry of ∆P⊤∆P can be computed with at

most Nnb − 1 addition operations.

Apart from that, det(∆P⊤∆P ) can also be calculated

just using adders in a similar fashion with the aid of a

LUT, suppose the range of values of the entries in ∆P⊤∆P
is sufficiently small. With that, (∆P⊤∆P )−1 can then

be computed with a divider, where adj (∆P⊤∆P ) can

be trivially deduced for a 2 × 2 matrix. Alternatively,

(∆P⊤∆P )−1 can be more directly obtained if it is practical

to use a LUT to store all possible values of (∆P⊤∆P )−1

corresponding to all possible combinations of N with size

Nnb , as similarly done in [2]. To minimize the number of

multiplication operations, ∆P⊤∆t is first computed, be-

fore it is multiplied by (∆P⊤∆P )−1 to give the gradient

of the local planar SAE ∇Σe(p)LS . Subsequently, the nor-

mal flow v⊥can be derived from ∇Σe(p)LS according to

Equation 5.



4.4. Goodness­of­Fit Noise Rejection

In Section 4.2, we greedily select past spatially neigh-

boring events that are believed to be associated to the EOI,

according to an optimality criteria. Although a preliminary

noise rejection is performed when less than Nnb events are

selected at the end of the greedy selection process of N , it

is still probable for the noisy EOI to evade such a measure

by chance, especially when Nnb is small. Therefore, a final

noise rejection is performed after local SAE plane fitting

to ensure only robust normal flow estimates are released to

downstream applications.

As we have constrained the EOI to be a point on the lo-

cal planar SAE, we would expect quite a number of neigh-

boring events with the same polarity to lie far away from

the plane, given that the EOI is attributed to noise. There-

fore, the final noise rejection measure incorporated is based

on the assessment of the goodness-of-fit of the local planar

SAE, which is similarly applied in [2, 5, 21].

We use the ∆t residual of an event e = (p, t, p), which is

given by the following, to indicate the distance of the event

from the local planar SAE:

ǫ̂ = ∆t−∆t̂ = t̂− t (12)

where ∆t̂ = tEOI − t̂ = ∆p⊤∇Σe(p)LS .

A neighboring event is said to support the fitted local

planar SAE if the absolute of its ∆t residual |ǫ̂| is less

than a constant threshold E (i.e. |ǫ̂| < E). With that, the

local SAE plane fit, and hence the estimated ∇Σe(p)LS
and v⊥, are considered to be valid given that there are at

least Nsp neighboring support events with the same polar-

ity as the EOI in the L × L spatial neighborhood about

the EOI. More formally, the local SAE plane fit is valid if

|S| ≥ Nsp, where the set of neighboring support events

S = { e | |ǫ̂| < E, p = pEOI and e ∈ L }. As similarly

shown in [21], Nsp is usually taken to be the rounded value

of ε(L2 − 1)/2, where ε denotes the nominal neighboring

support ratio (inlier ratio) and (L2 − 1)/2 represents the

maximum neighboring support size.

5. Experiments

SOFEA is evaluated on various sequences used in previ-

ous works [21, 2, 20, 17] with ground truth flow estimates.

Two metrics are used to evaluate different aspects of flow

estimation, namely the Relative Endpoint Error EErel (mag-

nitude of error in estimated velocities with respect to the

ground truth in %) and Angular Error AE in space-time [29]

(as the endpoint error does not differentiate between change

in angle and speed). Sample mean and standard deviation

values are also reported for EErel and AE.

A baseline SOFEAbase is used to provide a very close

comparison to the benchmarks by matching parameters to

the respective plane fitting methods (Table 1), and thereby

Table 1: Parameters of baseline SOFEA model for close

evaluation to the respective plane fitting methods.

Sequence Trf (ms) L (px) Nnb E (ms) Nsp

stripes [21] 40 5 2 5 6

rotating bar [2] 40 5 8 8 8

Table 2: Performance comparison of optical flow estimation

methods on the stripes sequence.

Method EErel (%) AE (◦)

[21] 81.03 ± 255.56 5.76 ± 13.59

SOFEAbase 24.53 ± 73.50 5.27 ± 11.64

SOFEA 14.46 ± 31.92 2.42 ± 10.63

examine the advantages of selecting optimal neighbours.

The parameters used for the benchmark algorithms are

themselves recommended values in their works. On the

other hand, the full SOFEA model uses one set of parame-

ters on all sequences, with Trf = 40, L = 7, Nnb = 16,

E = 11, and Nsp = 15. Note that SOFEA baseline model

has not been used for the slider hdr far sequence as

comparison is to a broader set of methods.

5.1. stripes sequence

This planar scene sequence from [21] generates DVS

events at constant velocity, and thus ground truth can be ob-

tained by inspection of constant time-interval accumulation

of events for the stripes recording. Table 2 shows SOFEA

significantly outperforming [21], in terms of EErel and AE.

Similarly, the SOFEAbase has much better EErel compared

to [21] but with par results using the AE metric. For this se-

quence, [21] uses N = 5 (matched to L = 5 in SOFEAbase),

three events to fit (matched to Nnb = 2 + EOI), and m = 7
(matched to Nsp = 6 + EOI). Additionally, we statistically

analyze the estimated lifetimes in Figure 6. Clearly, SOFEA

has much closer correspondence to the ground truth life-

times.

In contrast to [21], SOFEA is non-iterative as outlier re-

jection is inherent in the greedy selection of optimal neigh-

bouring events to the EOI, and thus our method is less de-

pendent on noise rejection. Moreover, the event stream im-

age shows that critical visual information is retained by our

method, as shown in Figure 7.

5.2. rotating bar sequence

This sequence and the ground truth evaluations were re-

ported in [2, 17, 5]. We compare SOFEA to the latest bench-

mark result [2] with recommended parameters for their iter-

ative plane fitting method (Φoutlier = 10ms,Φevent = 6).

For close comparison, SOFEAbase uses L = 5, as [2] uti-



(a) SOFEA (b) Mueggler et al. [21]

Figure 6: Empirical distribution of the estimated lifetime

for the stripes sequence. The ground truth lifetimes cor-

responding to the close and far stripes are indicated by the

left and right red vertical lines respectively.

0 2 4 6 8 10 12 14 16 18 20

Lifetime (ms)

(a) SOFEA (b) Mueggler et al. [21]

Figure 7: Event stream image obtained via lifetime estima-

tion on the stripes sequence. Active events are high-

lighted with colors from red to blue indicating its estimated

lifetime.

Table 3: Performance comparison of optical flow estimation

methods on the rotating bar sequence.

Method EErel (%) AE (◦)

[2] 27.70 ± 33.23 14.92 ± 30.53

SOFEAbase 27.45 ± 55.35 7.02 ± 8.18

SOFEA 20.13 ± 26.62 6.21 ± 5.35

lizes a 5× 5 pixel neighborhood by splitting it into multiple

3× 3 regions for plane fitting.

Table 3 compares the performance of SOFEA against

the iterative plane fitting method [2]. The results clearly

demonstrate that the full SOFEA model produces much ac-

curate flow estimates compared to the benchmark. On the

other hand, SOFEAbase also has much better AE compared

to [2] but with par results using the EErel metric. This in-

dicates the strength of the greedy selection process while

keeping all other parameters closely matched.

Table 4: Performance comparison of optical flow estimation

methods on the slider hdr far sequence.

Method EErel (%) AE (◦)

LP [5] 109.39 ± 83.82 16.99 ± 24.41

DS [13] 63.77 ± 58.91 21.46 ± 39.13

EBLK [6] 66.65 ± 17.59 13.52 ± 25.51

SOFEA 42.30 ± 87.57 16.73 ± 18.09

5.3. slider hdr far sequence

This sequence is a part of the Event Camera Dataset

[22] consisting of a moving camera viewing a high-dynamic

range scene. Note that since the DVS has a higher dynamic

range of 120 dB (vs. 60 dB of standard camera), this se-

quence is of particular importance for evaluation. The fo-

cus is on comparison to the standard Local Plane Fit (LP)

[5], and two other approaches, namely Direction Selective

flow estimation (DS) [13] and Event-Based Lucas-Kanade

(EBLK) [6].

Table 4 compares SOFEA against the above state-of-the-

art works with standout results in terms of EErel. As for

AE, EBLK performs the best while Local Plane Fit meth-

ods (SOFEA and LP) have a similar performance. Overall,

SOFEA is still better than the EBLK method [6] due to the

lower AE standard deviation. Note that SOFEA baseline

model has not been used for this sequence as comparison is

to a broader set of methods including LP works. In other

words, SOFEA’s plane fitting is better due to the simpler lo-

cal planar SAE model and the optimal selection of spatial

neighbours using the greedy selection (Section 4.2).

6. Conclusion

We introduced SOFEA – a non-iterative and robust algo-

rithm to estimate the optical flow of events. One of the main

contributions of SOFEA include a simpler local planar SAE

model by placing an additional constraint on the incoming

event. Moreover, plane fitting was carried out in a single-

shot manner by greedy selection of associated neighbour-

ing events using an adaptation of Prim’s algorithm. In con-

trast to previous works, this is the first principled method

for finding an optimal set of neighboring events for plane

fitting. Our method consistently outperformed the state-of-

the-art works across a wide variety of scenes using both the

EErel and AE metrics. A direct application of such flow esti-

mation is the rendering of crisp event stream images, which

was demonstrated to retain critical information of the scene

using SOFEA compared to a seminal work in the neuromor-

phic vision domain.
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