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Abstract

Unsupervised anomaly detection–which aims to identify

outliers in data sets without the use of labeled training

data–is critically important across a variety of domains in-

cluding medicine, security, defense, finance, and imaging.

In particular, detection of anomalous pixels within hyper-

spectral images is used for purposes ranging from the de-

tection of military targets to the location of invasive plant

species. Kernel methods have frequently been employed for

this unsupervised learning task but are limited by their sen-

sitivity to parameter choices and the absence of a validation

step. Here, we use reconstruction error in the kernel Princi-

pal Component Analysis (kPCA) feature space as a metric

for anomaly detection and propose, via batch gradient de-

scent minimization of a novel loss function, to automate the

selection of the Gaussian RBF kernel parameter, σ. In addi-

tion, we leverage an ensemble of learned models to reduce

computational cost and improve detection performance. We

describe how to select the model ensemble and show that

our method yields better detection accuracy relative to com-

peting algorithms on a pair of data sets.

1. Introduction

Typical (three-color) cameras lack the spectral sensitiv-

ity required for accurate material detection and/or identifi-

cation in remote sensing applications. Instead, imagers that

capture multispectral and hyperspectral imagery (MSI/HSI)

seek to generate finer samplings of the spectrum such that

useful information about observed materials is not averaged

out by the sampling process.

Given such data, the goal of a spectral anomaly detec-

tion method is to detect unusual samples within a data set

dominated by the presence of ordinary background pixels.

Anomalies are by definition rare and are often generated

by different underlying processes [1, 2] and, as such, un-

supervised techniques are used to detect such anomalies

in the absence of labeled training data. Numerous algo-

rithms have been devised for this goal, the results of which

have been applied to a variety of fields to improve upon

domain-specific, rule-based detection methods. Unsuper-

vised anomaly detection has applications in medicine, fraud

detection, fault detection, and remote sensing, among oth-

ers [1, 3, 4] and a recent, comprehensive review of the most

successful of these techniques and their applications can be

found in Goldstein and Uchidal [1].

We apply our algorithms here to improve the detection of

anomalies in hyperspectral images. In particular, we use re-

construction error in the kernel Principal Component Anal-

ysis (kPCA) feature space as a metric for anomaly detection

and demonstrate the use of a batch gradient descent mini-

mization of a novel loss function to automate the selection

of the Gaussian RBF kernel parameter, σ. In addition, we

describe how a data subsampling process reduces the com-

putational cost of developing a background model and ex-

ploits the assumed rarity of anomalous pixels to ensure the

model truly represents background data.

2. Background

The hyperspectral anomaly detection problem assumes

there is a rare pixel class within the hyperspectral image.

More concretely, given N data points, xi ∈ R
D, compris-

ing the data set, X ∈ R
D×N , the goal is to determine if

a test pixel, x′, drawn from X is anomalous. Due to the

rarity of anomalies, a common approach is to model back-

ground pixels and identify pixels which are poorly fit by the

model as anomalous. Essentially, the model fits abundant

examples and those that are poorly fit are interesting.

In the context of unsupervised learning, there is no dis-



tinction between training and test data which makes the total

number of parameters and their sensitivity crucial consider-

ations in model selection. Data-driven or theory-motivated

heuristics are often used for selecting parameters [1, 5] but

do not always produce satisfactory results. While tech-

niques to approximate accuracy without labels exist, they

are limited and computationally expensive [6]. Ultimately,

there is no guaranteed means for verifying that a specific

parameter selection is an optimal or even reasonable choice

and therefore methods that are insensitive to parameter se-

lection are desirable.

Statistical methods rely on the accuracy of assumptions

about the data distribution and seek to estimate the param-

eters of that assumed model. For example, in the remote

sensing literature, the global RX detector (GRX) introduced

by Reed and X. Yu [7] seeks to model the background using

a multi-variate Gaussian with mean, µ, and covariance, Σ,

calculated from all image pixels. Under this assumption the

Mahalanobis distance, DRX(x′) = (x′−µ)Σ−1(x′−µ)T ,

of a test pixel, x′, is used as a detection statistic. Pixels

with values of DRX that fall below a threshold, γ, are back-

ground while pixels with larger values are anomalous.

Data-driven methods often use distance measures

(nearest-neighbor), clustering techniques, or statistical mea-

sures independently or in some combination. These also

suffer from various limitations including parameter selec-

tion sensitivity and reliance on assumed, but often inac-

curate, statistical models [1]. Nevertheless, kernel-based

methods are a promising family of techniques motivated by

the idea that a better data model may be formed in a trans-

formed, non-linear, feature space, F , where a kernel func-

tion, κ(xi,xj), allows the efficient computation of inner

products between each datum Φ(xi) in F without explicit

calculation of the mapping xi → Φ(xi) from the ambi-

ent space to the feature space. The most popular amongst

these methods for anomaly detection is the One-Class Sup-

port Vector Machine (OC-SVM), which separates the data

from the origin in F [8].

Hoffmann [4] demonstrated, however, that the indepen-

dent treatment of samples within the OC-SVM framework

yields boundaries that do not to tightly model the data.

Hoffmann used kernel PCA (kPCA) [9] to better model the

preponderance of data and formulated an anomaly score as

the reconstruction error between a given datum and its rep-

resentation by a learned kPCA model in the feature space.

This reconstruction error demonstrates better generaliza-

tion, accuracy, and robustness over linear PCA, the Parzen

density estimator, and OC-SVMs on a number of real-world

and toy data sets.

Despite demonstrated success on anomaly detection

problems, kernel methods require calculation of a distance

(adjacency) matrix comprised of all pairwise similarity

measures between each of the N data points comprising the

data set. The cost of this calculation scales poorly, how-

ever, with increasing D and N which can be limiting for

many applications. Uniform sub-sampling of the data in or-

der to reduce the cost of calculating the adjacency matrix

has been proposed for both classification [10] and anomaly

detection [11] where out-of-sample data [12, 13] are repre-

sented in the model space learned from the sampled subset

using techniques such as the Nyström extension [14, 15].

Even with manageable computational cost, however, all

kernel-based methods are inherently sensitive to parameter

selection. For the Gaussian RBF kernel,

κ(xi,xj) = exp(−||xi − xj ||
2/(2σ2)), (1)

this parameter is the kernel bandwidth, σ. Although heuris-

tics exist for selecting an appropriate σ, they often fail to

generalize [5, 16, 1]. Here, we leverage Hoffmann’s kPCA-

based reconstruction error and a subsampling process to in-

troduce Unsupervised Ensemble Kernel Principal Compo-

nent Analysis (UE-kPCA)–a stable scheme for automating

selection of the kernel bandwidth via batch gradient descent

minimization of a custom loss function.

3. Anomaly Detection Using kPCA

To begin, we first review how kPCA is used to perform

PCA in the feature space and how the reconstruction error

is calculated from linear combinations of kernel functions

operating on pairwise distances among ambient data points.

3.1. Kernel PCA

The kPCA algorithm is designed to calculate the non-

linear mapping xi → Φ(xi) of a datum in X from the orig-

inal D-dimensional (ambient) space into the theoretically

infinite-dimensional (for an RBF kernel with infinite sup-

port) feature space F (although in practice the maximum

dimensionality is N ). After this non-linear mapping, the

data in F are centered via the transformation

Φ̃(xi) = Φ(xi)−Φ0, (2)

where

Φ0 =
1

N

N∑

n=1

Φ(xn). (3)

is the mean of the data distribution in F . Linear PCA is then

performed on the centered data to find the M -dimensional

subspace M ≤ N associated with the M principal compo-

nents representing the greatest variance of the data in F .

The principal components of X in F are the eigenvectors

corresponding to the largest eigenvalues of the covariance

matrix formed in F . More directly, we are interested in the

eigenvectors V = {V 1, V 2, . . . , V M} and corresponding



eigenvalues v1 ≥ v2 ≥ . . . ≥ vM of

Σ̃F =
1

N

N∑

i=1

Φ̃(xi)Φ̃(xi)
T . (4)

But the covariance matrix, Σ̃F , and therefore the principal

components, V , cannot be explicitly computed, as Φ(xi)
is never available. Instead of explicitly finding V , the pro-

jections of Φ(xi) onto V are found. Because V
k is one

eigenvector of Σ̃F it can be expressed as a linear combina-

tion of points Φ(xi),

V
k =

N∑

i=1

α
k
i Φ̃(xi), (5)

where each of the αk
i is a component of a vector αk, which

is an eigenvector of the N × N kernel adjacency matrix

K̃ij = Φ̃(xi) · Φ̃(xj). Using the kernel trick, this matrix

may in turn be expressed solely as a function of ambient

data,

K̃ij = Kij −
1

N

N∑

q=1

Kiq −
1

N

N∑

p=1

Kpj +
1

N2

N∑

p,q=1

Kpq,

(6)

where Kij = κ(xi,xj). The eigenvectors α
k and cor-

responding eigenvalues λk are then found by the eigen-

decomposition of K̃ij ultimately yielding N eigenvectors

α = {α1,α2, . . . ,αN}. A scaling of each α
k is performed

so that each V
k has unit length, ||αk||2 = 1/λk. Additional

details may be found in Hoffmann [4].

3.2. Anomaly Score

The anomaly score for a point x′ is found by determining

the reconstruction error in F . Conceptually, the reconstruc-

tion error is

dE(x
′) = Φ̃(x′) · Φ̃(x′)−W Φ̃(x′) ·W Φ̃(x′), (7)

where W contains M rows of principal components V
k

corresponding to the M largest eigenvalues. The first term

is the spherical potential of x
′ found by taking the scalar

product

dp(x
′) = Φ̃(x′) · Φ̃(x′), (8)

which is simply the squared distance of Φ̃(x′) from the data

mean Φ0 in F . Again we avoid working with Φ̃(x′) di-

rectly and by substituting (3) into (8) and applying the ker-

nel trick we obtain

dp(x
′) = κ(x′,x′)−

2

N

N∑

i=1

κ(x′,xi)+
1

N2

N∑

i,j=1

κ(xi,xj).

(9)

Next we define fk(x
′), the projection of x′in F onto V

k,

as fk(x
′) = (Φ̃(x′) · V k). This projection can be written

as a function of only the ambient data by applying (5) and

the kernel trick,

fk(x
′) =

N∑

i=1

αk
i [κ(x

′,xi)−
1

N

N∑

q=1

κ(xi,xq)

−
1

N

N∑

q=1

κ(x′,xq) +
1

N2

N∑

p,q=1

κ(xp,xq)]. (10)

Finally, the reconstruction error-based anomaly can be di-

rectly computed by:

dE(x
′) = dp(x

′)−

M∑

k=1

fk(x
′)2, (11)

which is the reconstruction error between Φ̃(x′), the cen-

tered projection of x
′ into F , and its representation in F

as a projection onto the largest M principal components

of the PCA model learned from the data. If M = N
then dE(x) will be zero for all x because the represen-

tation of Φ̃(x) in PCA coordinates is identically Φ̃(x).
When M < N then dE(x) will remain smaller for non-

anomalous points because the learned PCA model better

represents the background and the error associated with

dropping low-eigenvalue eigenvectors will remain smaller

as M decreases.

4. Unsupervised Ensemble Kernel Principal

Component Analysis

In practice, it is difficult to implement kPCA for unsu-

pervised anomaly detection for two main reasons: 1) The

sensitivity to the parameter settings of the Gaussian kernel

2) the cubic time complexity of the eigendecomposition of

the kernel matrix, K̃ (6). We outline these issues and then

describe our proposed solutions in 4.1 and 4.2.

First, it is worth exploring parameter limits and general

properties of the kernel matrix as a function of the band-

width. To begin, a Gaussian kernel matrix will always have

a diagonal containing all ones, as the diagonal represents

the self distance term, e.i. ||xi−xi|| = 0. As σ approaches

an arbitrarily large value, the argument of the kernel for any

value of x‘ approaches 0 as the argument of the exponent in

(1) approaches negative infinity. Explicitly,

lim
σ→0

κ(xi,xj) = 0 (12)

In this case K̃ approaches the identity matrix. This indi-

cates that all data vectors in feature space become orthog-

onal to one another and the principal components become



meaningless. Alternatively, as the width of σ increases the

off diagonal tend toward 1,

lim
σ→inf

κ(xi,xj) = 1. (13)

In short, too small a bandwidth leads to over-separation

of points in F , a form of over-fitting. Conversely, too large

a bandwidth forces all points to be mapped to similar loca-

tions in F , a type of under-fitting [17]. Otherwise stated,

in the former case all points appear to be anomalous in F ,

while in the latter, all points appear normal. In the unsu-

pervised setting it is not possible to perform a parameter

search because there is no conventional sense of a hold-out

validation set given the lack of labels. Section 4.1 describes

a proposed solution to determining a nearly optimal kernel

choice in the unsupervised setting.

In addition, computational efficiency, both in terms of

time and space complexity, is an issue at several steps in

the conventional deployment of kPCA and a major limiting

factor for its applicability. Despite the demonstrated ability

of kernel methods to fit non-linear patterns in data, calcu-

lating a distance matrix comprised of all pairwise similarity

measures between each of the N data point in X is pro-

hibitive. Specifically, the calculation of the adjacency ma-

trix needed to form K, has O(DN2) tim e complexity and

O(N2) space complexity. Of even greater concern is the

O(N3) time complexity of the eigendecomposition of K̃
which is prohibitively expensive for large datasets. To ad-

dress this problem we outline a process that greatly reduces

computational cost without sacrificing detection accuracy in

Section 4.2.

4.1. Learning the Kernel

For unsupervised tasks, a conventional grid search of any

parameter space is not possible. Instead, a heuristic based

on the nearest-neighbor distance, or some other distance ad-

jacency metric is often used to select σ for kernel methods

[18, 19, 20] . These heuristics are usually sub-optimal and

tied to the dispersion of the data. Other methods such as

[21, 22] require iterative evaluations of the kernel matrix or

estimations of the error rate.

Evangelista and Embrechts [21] employ a powerful, gen-

eral heuristic for selecting a near optimal value of σ without

the need for labeled data. Their method is based on maxi-

mizing the coefficient of variance of the off-diagonal entries

in the kernel matrix. Our proposed method extends their

work to kPCA and significantly reduces the time and space

complexity.

In the full N × N kernel matrix there are N2 − N
off diagonal entries. Because of symmetry, half are du-

plicates, so there are only l unique off-diagonal entries,

l = (N2−N)/2. Evangelista suggests the following funda-

mental premise of pattern recognition, that suggests a good

model should follow,

κ(i, j)|(yi = yj) > κ(i, j)|(yi 6= yj), (14)

which simply indicates that points that are closer in the am-

bient space will produce larger kernel values than distant

points. For the Gaussian kernel, this can be seen as a con-

sequence of

lim
‖xi−xj‖→0

κ(xi,xj) = 1. (15)

For anomaly detection, most pair-wise comparisons are of

normal to normal data, i.e. yi = yj .

Algorithm 1: Batch Gradient Descent Optimiza-

tion for σ
input : X -globally min-max normalized data

Given: Nb -batch sampling size, P -patience, σ0

-initial σ
initialize β0;

initialize Lmin;

initialize t = 0 -batches since last Lmin update;

repeat
randomly draw Nb samples from X to form a

subsample Xb;

calculate Kb from Xb;

extract lb off-diagonal unique entries from Kb;

calculate L (17) ;

apply gradient descent to update β;

if L < Lmin then

Lmin = L;

t = 0;

else

t = t+ 1;

end

until t > P ;

output: σ̄ during P

At first glance one might assume that simply tuning the

matrix to take on high values will preserve the idea of

adjacency in F . This is misguided, however, and leads

to a situation where anomalies are not pronounced due to

under-fitting. Instead, the important metric is the disper-

sion of the data. Decomposing the “disperse” kernel matrix

yields eigenvectors that are most representative of neighbor-

ing points (as they have proportionally higher values) while

minimizing the impact of distant anomalies. This results in

a good, non-linear model of the data.

The index of dispersion,

D =
s2

µ
(16)

where s2 is the variance and µ is the mean, provides a nor-

malized measure of the spread of a distribution of values



relative to their mean (also called the coefficient of disper-

sion, coefficient of variation, relative variance, or variance-

to-mean ratio). By applying this measure, it is possible to

quantify the sparsity of the l off-diagonal kernel entries in

K̃. Furthermore, the index of dispersion of the off-diagonal

kernel entries exhibits a global maximum which is an ideal

objective to optimize when seeking to determine σ [21].

One contribution of this work is to modify the objective

to avoid the O(iN2) computational complexity associate

with i iterative evaluations of the full kernel matrix. Instead

of deploying the simple hill-climbing optimization used in

[21], we instead formulate a loss function to fit the frame-

work of mini-batch stochastic gradient descent. To begin,

we uniformly draw Nb examples from X to form a batch,

Xb. We then apply the kernel to an adjacency matrix cal-

culated from the batch to form Kb. Given the kernelized

adjacency matrix for a batch, Equation 16 is inverted such

that the objective becomes,

L(Xb, σ) =
µb

sb2 + ǫ
, (17)

where s2b is the variance of the off-diagonal entries of Kb, µb

is the mean, and ǫ is a small term that prevents division by

zero. Over the course of an optimization, precise notation

would require that we indicate the i-th batch corresponding

to the i-th iteration, Xb,i, and all terms derived therefrom,

but we drop the index corresponding to the iteration for the

sake of simplicity and clarify if necessary.

The proposed sampling method is beneficial because the

full kernel matrix need never be computed or stored in

memory. Forming Kb in this way is equivalent to randomly

drawing a set of rows from K, applying the same indexing

to the columns, and saving the entries of intersecting rows

and columns. This process relies on the assumption that the

index of dispersion of the samples, Db, approximates the

D of all l entries, so that using iterative draws of Db as a

metric for tuning yields the same near optimal result for σ.

To prevent negative values for σ, the optimization is

instead performed relative to a bias, β, which is passed

through an activation function,

σ = log(1 + exp(β)), (18)

where an initial β0 is set to correspond to σ0 = 1. Early

stopping is performed by tracking the lowest value of the

loss. The number of training steps (batches) since the

recorded lowest loss is tracked and if the number exceeds

a set patience, P , training is halted, and the average band-

width over that period, σ̄, is returned. The Algorithm 1 out-

lines the steps for tuning σ and the correlation between the

minimum activation and the best performing bandwidth are

shown in Figure 1 for two test data sets.

The proposed extensions of [21] to the batch gradi-

ent descent framework allows for unsupervised, efficient,

and near-optimal kernel tuning on very large data sets.

The space complexity is reduced to O(Nb
2) space and

to O(ibNb
2) time complexity, where ib is the number of

batches drawn before convergences is declared. In practice,

batches as small as Nb = 100 are generally sufficient (see

Figure 3) and convergence typically occurs in under 2000
steps when applying a batch gradient descent optimizer with

momentum.

4.2. Skeleton Ensembles

Even with an efficient means of computing an appro-

priate global bandwidth, the cubic time complexity of

the eigenvalue decomposition of the K̃ makes performing

kPCA on larger data sets infeasible. Here, we describe an

alternative ensemble technique that avoids any full forma-

tions or decomposition of K. The key insight is that a rea-

sonably small sampling of a collection of points has approx-

imately the same principal components as the full data set.

Algorithm 2: Ensemble kPCA

input : X -globally min-max normalized data, σ
-rbf kernel parameter

Given: Ns -skeleton sampling size, Nm -number

of models in the ensemble

for model in Nm do
randomly draw Ns samples from X to form a

skeleton subsample Xs;

form Ks from Xs;

decompose Ks to extract αs;

unit-norm αs;

calculate dE(x) for all x ∈ X (11);

end

output: d̄E(x) -average anomaly score for each

example across all Nm models

The idea extends upon the concept of an out-of-sample

extension [14, 15, 12, 13, 23], that is, a datum that was not

originally used in the eigendecomposition of K can be still

be projected onto the set of learned principal components.

Some prior works have focused on finding a single good ap-

proximation of the kernel[11, 24] but in the unsupervised

setting this can be problematic, as an “unlucky” random

sampling may be strongly influenced by outliers. Our pro-

posed method mitigates this problem with an ensemble of

models that account for the errors produced by decompos-

ing a lower-rank K.

We begin by uniformly drawing Ns samples from X

to yield a skeleton, Xs, which is used to produce an ap-

proximate low-rank kernelized adjacency matrix, Ks, from

which the corresponding skeleton eigenvectors, αs, that

form an approximate model of the data are calculated.

Given a single skeleton, the reconstruction error (11) for

all points in X are found using the global bandwidth found
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Figure 1: Detection performance (left vertical axis, blue

curve) as measured by AUC (area under the curve) of a

receiver operating characteristic (ROC) curve versus band-

width parameter, σ, for the 4-class synthetic (a) and Forest

Radiance (b) data sets. Value of the loss function given by

Equation 17 is shown by the red curve with values on the

right vertical axis. The loss function minimum (red vertical

line) is either near the best-performing bandwidth (vertical

blue line) for Forest Radiance or yields a bandwidth with

nearly equivalent performance (4-class).

in Algorithm 1 and an out-of-sample extension. This pro-

cess is repeated to form an ensemble of Nm approximate

low-rank models where the same global σ is used for each

model. The reconstruction errors across all Nm skeletons in
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Figure 2: Receiver Operating Characteristic (ROC) curves

showing true positive rate (TPR) versus false positive rate

(FPR) for UE-kPCA (red) and GRX (black) on the 4-class

(a) and Forest Radiance (b) data sets. Parameters were

Nb = 100, Ns = 256, and Nm = 100 for each UE-kPCA

curve. 30 ensemble curves were calculated and the red

shading represents one standard deviation from the mean.

the ensemble are averaged for each example in X to form a

final anomaly score (although we note that other ensemble

aggregation rules beside the average are possible). Algo-

rithm 2 outlines the procedure.
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Figure 3: (a) Optimal kernel bandwidth (left axis, blue curve) and computation time (right axis, red) as a function of batch

size. (b) AUC (blue) and computation time (red) as a function of skeleton size with Nb = Nm = 100. (c) Ensemble ROC

curve (dark red) for Nm = 100 skeleton models with the ROC curve for each skeleton model (light red) where Ns = 256.

(d) AUC (blue) and computation time (red) as a function of number of skeleton models with Nb = 100 and Ns = 256.

This procedure of model averaging, also known as boot-

strap aggregation or bagging, is an ensemble method that

has been primarily been primarily developed for decision

tree methods, such as Isolation Forest [25, 26, 27]. Notably,

this type of sampling does not work as well for many other

anomaly detection methods such as OC-SVMs or distance-

based approaches. As opposed to kPCA, where the Prin-

cipal Components are comparable, the margins generated

by OC-SVMs and nearest neighbor rankings vary signifi-

cantly because the distance between the distances between

points are much larger in the sample. Similar methods have

applied KPCA ensembles to applications such as image de-

noising, however, this evaluation is the first to apply an en-

semble version as a general approach to the problem of un-



supervised anomaly detection.

This sampling process greatly reduces the computational

complexity of kPCA, even when accounting for the multiple

evaluations necessary in the ensemble. The computational

complexity of the eigendecomposition step is reduced from

O(N3D) to O(NmNs
3D). However, the scoring across all

models requires a O(NmN) time, but because only mod-

est values of Ns and Nm are necessary to approach the

accuracy of the full rank evaluation, the ensemble method

quickly becomes the preferred approach as the cardinality

increases (see Figure 3). Furthermore, each model’s score

can be calculated in parallel to reduce computation time.

5. Experimental Description and Results

5.1. Data

We use two datasets to compare performance betweem

our algorithm and GRX: an HSI scene from the Forest Ra-

diance I collect and a synthetic “bag-of-pixels” with no spa-

tial information constructed from an AVARIS scene. Forest

Radiance pixels are comprised of D = 158 bands pulled

from a 600 x 300 segment of the original image (run05)

as described in [19]. Synthetic data from the AVARIS col-

lect (D = 191 bands) are generated by the subsample-and-

average procedure described in [28]. The final dataset has

100,000 generated pixels representing four classes with an

anomalous class abundance of 1.234%.

5.2. Results

We measure detection performance by calculating the

area under the curve (AUC) of a receiver operating charac-

teristic (ROC) curve. In essence, the ROC curve measures

how well we have separated anomalous pixels from back-

ground for all threshold settings associated with a given al-

gorithm. ROC curves corresponding to GRX and UE-kPCA

for both data sets are provided in Figure 2. Given the ran-

dom character of UE-kPCA we construct multiple ensem-

bles and show the variance associated with the ensemble of

ensembles as a shaded red region around the average en-

semble performance (dark red curve).

Our method has similar performance to GRX at very low

false positive rates for the 4-class synthetic data but achieves

100% detection at a false positive rate that is nearly two

orders of magnitude lower than that of GRX. GRX performs

poorly compared to our method for all false positive rates of

interest on the Forest Radiance data set.

5.3. Parameter Study

Our UE-kPCA method introduces a number of nuisance

parameters beyond the bandwidth parameter, namely: batch

size, skeleton size, and number of skeleton models (Nb, Ns,

and Nm, respectively). Here, we illustrate detection perfor-

mance (AUC) and computation time for the Forest Radiance

image as a function of those parameters in Figure 3.

In particular, from Figure 3a we see that computation

time is not heavily affected by batch size over nearly two

orders of magnitude from 10 to 1000 samples per batch.

More importantly, the bandwidth parameter quickly con-

verges to the global optimum when Nb < 100. Based on

this (admittedly empirical) study we would recommend a

batch size somewhat greater than 10 but less than 100. We

set Nb = 100 for all ROC calculations shown in Figure 2.

Figure 3b illustrates the relative importance of skeleton

size, Ns. Computation time is not a strong function of

skeleton size until it reaches a critical threshold at which

point it increases exponentially. Given bandwidth fixed at

the optimum found by Algorithm 1 and Nm = 100, the

AUC for a ROC curve calculated given a specific value of

Ns increases approximately linearly from 10 to 100 before

leveling off near the threshold where computational time

begins to increase significantly. We set Ns = 256 for the

ROC calculations in Figure 2.

ROC performance as a function of the number of skele-

ton models within an ensemble, Nm, is shown in Figure

3d. Clearly, ensemble performance plateaus quickly once a

threshold number of models has been included while com-

putational time increases linearly with no parallelization.

ROC results in Figure 2 where calculated using Nm = 100.

Figure 3c shows the ensemble ROC curve (dark red) calcu-

lated from 100 separate skeleton models where the light red

curves illustrate ROC performance for each of the individ-

ual skeleton models (Ns = 256). Some of our initial studies

for future work indicate that alternate ensemble aggregation

methods may allow improvement at low false positive rates.

Finally, we found UE-kPCA performance to be relatively

insensitive to the number of retained principal components

between 30 and 200 and therefore set M = 75 for all com-

putations throughout.

6. Conclusion

We introduced here Unsupervised Ensemble-kernel

Principal Component Analysis (UE-kPCA) for hyperspec-

tral anomaly detection. By defining the reconstruction error

in kPCA feature space as our anomaly score we showed

that we can reliably select a Gaussian kernel bandwidth, σ,

that yields nearly optimal detection performance. We for-

mulated a novel loss function that can be minimized using

minibatch gradient descent to consistently choose a σ that

yields satisfactory detection performance. We then coupled

this reliable bandwidth selection process with an ensem-

ble sampling method that significantly reduces computation

time. These two innovations enable application of unsuper-

vised kPCA to data sets that were previously infeasible due

to computational constraints.
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de Sá, L. A. Alexandre, W. Duch, and D. Mandic, eds.),

(Berlin, Heidelberg), pp. 269–278, Springer Berlin Heidel-

berg, 2007.

[6] N. Goix, “How to evaluate the quality of unsupervised

anomaly detection algorithms?,” 07 2016.

[7] I. S. Reed and X. Yu, “Adaptive multiple-band cfar detec-

tion of an optical pattern with unknown spectral distribu-

tion,” IEEE Transactions on Acoustics, Speech, and Signal

Processing, vol. 38, pp. 1760–1770, Oct 1990.

[8] D. M. Tax and R. P. Duin, “Support vector domain descrip-

tion,” Pattern Recognition Letters, vol. 20, no. 11, pp. 1191

– 1199, 1999.

[9] B. Schölkopf, A. Smola, and K. Müller, “Nonlinear compo-

nent analysis as a kernel eigenvalue problem,” Neural Com-

putation, vol. 10, pp. 1299–1319, July 1998.

[10] C. M. Bachmann, T. L. Ainsworth, and R. A. Fusina, “Ex-

ploiting manifold geometry in hyperspectral imagery,” IEEE

Trans. on Geoscience and Remote Sensing, vol. 43, no. 3,

pp. 441–454, 2005.

[11] C. C. Olson and T. Doster, “A parametric study of unsuper-

vised anomaly detection performance in maritime imagery

using manifold learning techniques,” in SPIE Defense+ Se-

curity, pp. 984016–984016, International Society for Optics

and Photonics, 2016.

[12] S. Lafon, Y. Keller, and R. R. Coifman, “Data fusion and

multicue data matching by diffusion maps,” IEEE Transac-

tions on pattern analysis and machine intelligence, vol. 28,

no. 11, pp. 1784–1797, 2006.

[13] Y. Bengio, J.-F. Paiement, P. Vincent, O. Delalleau, N. L.

Roux, and M. Ouimet, “Out-of-sample extensions for LLE,

Isomap, MDS, Eigenmaps, and Spectral Clustering,” in Ad-

vances in Neural Information Processing Systems, vol. 16,

Cambridge, MA, USA: The MIT Press, 2004.

[14] C. T. H. Baker, The Numerical Treatment of Integral Equa-

tions. Oxford: Clarendon Press, 1977.

[15] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.

Flannery, Numerical Recipes in C. Cambridge: Cambridge

University Press, 1988.

[16] M. Amer, M. Goldstein, and S. Abdennadher, “Enhancing

one-class support vector machines for unsupervised anomaly

detection,” in ODD ’13, 2013.

[17] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pat-

tern Analysis. USA: Cambridge University Press, 2004.

[18] F. Hallgren and P. Northrop, “Incremental kernel pca and the

nyström method,” 01 2018.

[19] C. C. Olson and T. Doster, “A novel detection paradigm and

its comparison to statistical and kernel-based anomaly detec-

tion algorithms for hyperspectral imagery,” in Proc. CVPRW,

pp. 302–308, IEEE, 2017.

[20] A. Budynkov and S. Masolkin, “The problem of choosing the

kernel for one-class support vector machines,” Automation

and Remote Control, vol. 78, pp. 138–145, 01 2017.

[21] P. Evangelista, M. Embrechts, and B. Szymanski, “Some

properties of the gaussian kernel for one class learning,”

pp. 269–278, 09 2007.

[22] D. M. J. Tax and R. P. W. Duin, “Support vector domain

description,” Pattern Recognition Letters, vol. 20, pp. 1191–

1199, 1999.

[23] C. Olson, K. Judd, and J. Nichols, “Manifold learning tech-

niques for unsupervised anomaly detection,” Expert Systems

with Applications, vol. 91, pp. 374 – 385, 2018.

[24] C. C. Olson, M. Coyle, and T. Doster, “A study of anomaly

detection performance as a function of relative spectral abun-

dances for graph-and statistics-based detection algorithms,”

in Proc. SPIE, p. 101980X, ISOP, 2017.

[25] L. Breiman, “Bagging predictors,” Machine Learning,

vol. 24, no. 2, pp. 123–140, 1996.

[26] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in

Proceedings of the 2008 Eighth IEEE International Confer-

ence on Data Mining, ICDM ’08, (Washington, DC, USA),

pp. 413–422, IEEE Computer Society, 2008.

[27] C. C. Aggarwal and S. Sathe, “Theoretical foundations and

algorithms for outlier ensembles,” SIGKDD Explor. Newsl.,

vol. 17, p. 24–47, Sept. 2015.

[28] T. H. Emerson, J. A. Edelberg, T. Doster, N. Merrill, and

C. C. Olson, “Generative and encoded anomaly detectors,”

10th IEEE Workshop on Hyperspectral Imaging and Sig-

nal Processing: Evolution in Remote Sensing (WHISPERS),

2019.


