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Abstract

Current automotive radars output sparse point clouds

with very low angular resolution. Such output lacks seman-

tic information of the environment and has prevented radars

from providing reliable redundancy when combined with

cameras. This paper introduces the first true imaging-radar

dataset for a diverse urban driving environments, with reso-

lution matching that of lidar. To illustrate the need of having

high resolution semantic information in modern radar ap-

plications, we show an unsupervised pretraining algorithm

for deep neural networks to detect moving vehicles in radar

data with limited ground-truth labels.

We envision that the details seen in this type of high-

resolution radar image allow us to borrow from decades

of computer vision research and develop radar applications

that were not previously possible, such as mapping, local-

ization and drivable area detection. This dataset is our first

attempt to introduce such data to the vision community, and

we will continue to provide datasets with improved features

in the future.

1. Introduction

Camera, lidar and radar are the three main sensor types

used in automotive for perception. Both lidar and radar

are active range sensors. Between the two, radars are

more robust under different lighting and adverse weather

conditions. Radars are also much cheaper to manufac-

ture. However, a typical automotive radar has 3-4 degree

azimuth resolution and provides about ∼10,000 detected

points per second. In comparison, a Velodyne VLP-16 li-

dar has 0.1 degree azimuth resolution and provides 300,000

points per second. This makes automotive radar quite in-

ferior in both azimuth resolution as well as point density.

The limited resolution of automotive radars stems from their

limited antenna aperture. For 76-81GHz (automotive radar

band) radars, a 2 meter long antenna aperture is required

to achieve lidar like azimuth resolution. Under the cur-

rent radar architecture, such an aperture is very difficult to

achieve and the state-of-art radar has a 20cm aperture size.

For the dataset provided in this paper, we use an auto-

motive radar system that is designed from the ground-up

to achieve lidar-like resolution. By coherently combining

information from multiple radars on the vehicle and uti-

lizing accurate information about the vehicle’s ego-motion,

we can create a very long effective antenna aperture with

a small physical aperture. This basic principle is known

as synthetic aperture radar (SAR) and is commonly used in

satellite and aerial radar imaging. By using this approach,

we are able to image the static objects in the scene at 0.1 de-

gree azimuth resolution and can resolve ∼1,000,000 points

for a typical scene. Moreover, the SNR advantage of a

large coherent aperture allows the radar to see very small

objects and features that are not detectable using traditional

radar. This advantage can be easily seen from Figure 1. A

recorded video can be seen at [3]. The dataset will be avail-

able for download at zendar.io/dataset.

1.1. Synthetic Aperture Radar

Synthetic aperture radar (SAR) is a set of related tech-

niques for coherently combining radar returns from a mov-

ing radar over some segment of the the radar’s path to create

a high-resolution two-dimensional image of the scene. The

specific set of radar positions used to create the image is

called the synthetic aperture. The concept of SAR is usu-

ally credited to the mathematician Carl Wiley of Goodyear

Aerospace in 1951 and was originally devised as a method

for imaging the Earth’s surface from radar sensors moving

at high altitude, first on aircraft and soon after on spacecraft

[5].

While a detailed discussion of SAR imaging can be

found in [5], we briefly describe some of the most salient

characteristics of SAR images here.

1.1.1 Intrinsic Resolution

It is convenient for discussion to take the two axes of the

image to be “range,” the distance from the radar, and “az-
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Figure 1: The same scene seen from camera image, bird’s eye view of SAR, traditional radar point cloud and lidar.

imuth,” the horizontal angular coordinate running perpen-

dicular to the range. With these definitions, the intrinsic

resolution of the SAR system can be decomposed into range

and azimuth components. The intrinsic range resolution of

the system is directly proportional to the carrier frequency

bandwidth of the transmitted chirp signal and may be ex-

pressed in units of distance as

∆R =
c

2B
,

where c is the speed of light and B is the carrier frequency

bandwidth, which is at most 4 gigahertz for our data.

The intrinsic azimuth resolution of the system is directly

proportional to both the absolute carrier frequency and the

length of the synthetic aperture and may be expressed in

radians as

∆θ =
c

2fL sin θ
,

where f is the central carrier frequency, L is the syn-

thetic aperture length, and θ is the azimuth coordinate, with

θ = ±π/2 being opposite directions parallel to the synthetic

aperture. This means that in theory, azimuth resolution can

be pushed arbitrarily high by using very long synthetic aper-

tures. In practice, the effective synthetic aperture length is



limited by (1) the extents of the physical radar beam, mean-

ing that a particular area in the scene may not be visible

from all positions along the radar’s path, and (2) errors in

ego-position estimation, which hamper the ability to coher-

ently combine radar returns over very long synthetic aper-

tures.

1.1.2 Stationary and Moving Objects

The SAR approach requires accurate relative distance mea-

surement between the radar and the object. If all features in

the scene are stationary, then only vehicle ego-motion needs

to be measured. This is achieved by using the GPS/IMU

system available on the vehicle. In order to image objects

that are moving fast (i.e. comparable to ego speed of vehi-

cle), the object’s motion needs to be estimated as well. One

possible way is to use a traditional radar signal processing

pipeline based on short-aperture range-Doppler-DOA (di-

rection of arrival) processing in parallel with the SAR pro-

cessing pipeline.

When a moving object’s path is not compensated prior

to SAR imaging, two things occur:

1. Its image defocuses, i.e., loses resolution and SNR.

2. Its image may be displaced in azimuth.

Both effects are proportional to the ratio of the object’s un-

compensated speed to the ego-vehicle’s speed. Thus, since

only stationary objects image cleanly with high resolution,

accuracy, and SNR, to a rough approximation, a SAR im-

age without object motion compensation may be considered

as a “static-scene” datum, i.e., a representation of the sta-

tionary elements of the scene only. Because our SAR data

stream does not incorporate object motion compensation,

this heuristic can be exploited to help distinguish static from

moving objects, as described in 2.3.

1.1.3 Automotive SAR

SAR has been used for decades, first by the military and

later civilian operators, for aerial surveillance and remote

sensing. More recently, SAR has been extended to the au-

tomotive setting (e.g., [6]), but the benefits provided by the

high-definition radar imaging enabled by SAR in this set-

ting are only beginning to be explored. Thus, while there

already exists a body of high-altitude SAR data (e.g., [1]),

this is not the case for street-level SAR. One of our key

contributions is thus the publication of a high-quality street-

level SAR dataset consisting of complex urban imagery.

1.2. Contributions

In this paper, we describe a semi-supervised method for

the detection of moving objects in the range-Doppler-DOA

domain. We have accurately labeled 11,000 moving cars

with their positions on range-Doppler maps and SAR im-

ages to train and evaluate the performance of radar-based

moving object detection algorithms.

Our contributions:

• First high resolution radar image dataset of complex

urban driving scenes.

• Time synchronized radar data cube, radar images with

camera images and lidar overlay.

• Novel semi-supervised training of deep neural net-

works for radar dynamic object detection.

• Over 11,000 moving cars labeled in 27 diverse scenes

with over 40,0000 automatically generated labels of

moving cars to train and evaluate performance of mov-

ing object detection algorithms on complex and di-

verse urban driving scene scenarios.

2. Semi-supervised Dynamic Object Detection

2.1. Range­Doppler Preprocessing

A traditional radar processing pipeline assumes the

world is made of point-like reflective objects. The signal

reflected from such an object has a very simple mathemati-

cal model parametrized by:

1. range, the distance from the radar;

2. Doppler velocity, the rate of change of range; and

3. direction of arrival (DOA), the direction vector from

the radar to the object, which is often further decom-

posed into azimuth (horizontal) and elevation angles.

The signal reflected from the world is then modeled as the

linear superposition of the reflections from all the individual

objects [8].

The data as received from the hardware is a time series

of receiver antenna excitation levels, indexed by slow time

(which counts individual chirps), fast time (which counts

ADC samples within a chirp), and the virtual antenna in-

dex, which enumerates the physical array elements on the

sensor (more precisely, active pairs of transmitting and re-

ceiving antennas). However, in practice, it is convenient to

take a discrete time chunk of the data and compress it along

the two time dimensions, transforming those axes into the

Doppler and range axes, respectively.

Because this “compression” essentially amounts to a

two-dimensional discrete Fourier transform and is thus re-

versible [8], this range-Doppler-domain format may also be

described as a “raw” radar format.

Range-Doppler compression performs two important

functions:



1. It decouples the compressed range and Doppler axes

from the uncompressed DOA axis. This enables,

for example, nonparametric detection over range

and Doppler combined with parametric estimation of

DOA. For this to be effective, the intrinsic range and

Doppler resolutions of the system need to be sufficient,

since nonparametric detection will only report detec-

tions to within one range-Doppler resolution cell. (Su-

perresolution is possible, but this again requires joint

estimation of all parameters for all objects contribut-

ing to a given resolution cell.)

2. The response of an individual object of interest is gen-

erally highly localized in range and Doppler, unlike

in the uncompressed signal model. If the range and

Doppler axes have resolution sufficient to distinguish

typical objects of interest like cars and pedestrians, as

they do in our case, then the localized range-Doppler

structure of these objects can be exploited by sophis-

ticated detection and classification algorithms. This is

an active topic of current and future research, and we

will describe this subsequently. This localized struc-

ture in the range-Doppler domain can be seen in Figure

2.

2.2. CNN Detector

One candidate algorithm that can model the multidimen-

sional structure of moving objects in radar data is a con-

volutional neural net (CNN). Previous work using CNN on

radar data uses simple and shallow network structure [15].

The networks have limited receptive field size and fail to ex-

tract features in different scales and distortions. Our goal is

to use a network with large receptive field size, supporting

multiple scales and utilizing temporal information. The ma-

jor challenge with training such a network is the scarcity of

labeled data. Although there are a few open source radar

datasets [4], [13], the labels are on the processed sparse

point clouds. This is the first labeled dataset on raw radar

data and SAR point cloud.

2.3. Unsupervised Dynamic Object Detection

In order to generate enough labels for pretraining, we

combine the high-resolution static-scene images with the

output of a traditional radar pipeline. Specifically, the tra-

ditional radar pipeline outputs a sparse list of points, each

of which belongs to either a moving object or a stationary

object. By projecting the radar points into the static scene

(i.e., SAR image), we can distinguish a moving object from

a stationary one. Here, we exploit the heuristic that the SAR

image cleanly images primarily the static elements of the

scene and thus argue that the points detected on moving ob-

jects are likely to be those that project to low-SNR regions

of the SAR image. However, note that this heuristic is very

approximate, since moving objects do pollute the SAR im-

ages. Thus, the output of this step should be considered as

fairly noisy in subsequent processing.

All the potential moving object points are projected back

into the raw radar data and segmentation is performed

around each point. Segmented clusters are subsequently la-

beled.

The pretraining is then supplemented with supervised

fine-tuning. The results are discussed in Section 4.

3. Dataset

Our dataset consists of the following data streams. The

elements of each data stream are timestamped by a common

GPS clock, so the timestamps may be used to synchronize

and multiplex all the streams. Note that the elements of the

radar and lidar streams all aggregate data over a time inter-

val. By convention, these stream elements are timestamped

by the GPS time at the center of this time interval.

3.1. Raw Radar Data Cube

This is the radar data format commonly used in automo-

tive radar processing. The full time series is segmented into

fixed-length chunks and range-Doppler-compressed as de-

scribed in section 2. Thus, each chunk may be described as

a three-dimensional complex-valued array with the axes

1. range sample, with 512 elements,

2. Doppler sample, with 256 elements,

3. antenna array element (transmitter-receiver pair), with

4 elements (one transmitter and four receivers) arrayed

uniformly along azimuth only. (Thus, the system has

no elevation resolution.)

This is illustrated in Figure 4.

Along the range dimension, the radar maximum range is

set to 90m and the range resolution is 18cm.

Each radar cube is timestamped by the center time of the

pre-Fourier-transform time series.

3.2. High Resolution Static Scene (SAR)

Each image is created using SAR backprojection [7]

from a two-meter segment of radar data (i.e., two-meter

synthetic apertures). Note that the time-extent of the data

used to create this image is thus inversely proportional to

the speed of the vehicle at the time of collection, in contrast

to the raw radar cubes, which have fixed extents in time.

The width of an image pixel is 4 centimeters along both

axes.

This stream carries a fixed frame rate of 10 frames per

second. Thus, the two-meter synthetic apertures used to

image each frame will overlap when the collection vehicle

travels slower than 20 meters per second.



(a) range−Doppler (b) SAR

Figure 2: Automatic dynamic object extraction: (a) Green points on the range-Doppler map are stationary detections masked

out by SAR. Red detection are dynamic detections. Blue detections are uncertain, meaning that the cluster that they belong

to contains both stationary and dynamic detections. (b) Bird’s eye view of SAR point cloud with lidar overlay (yellow points)

and dynamic detections from range-Doppler (red points).

Each image is tagged with a timestamp that corresponds

to the middle of the synthetic radar aperture.

3.3. Tracklog

The tracklog consists of the vehicle pose stream recorded

by the VectorNav VN200, the onboard GPS/IMU. Each en-

try in the tracklog represents the rotation and translation

from the IMU sensor frame (forward, right, down) to the

Earth-centered, Earth-fixed (ECEF) global frame. The ex-

trinsic pose of each sensor is also provided to convert into

the sensor-centric frame.

3.4. Camera Image

The reference camera image is taken by ImageSource

(model number DFK-33GX265e) color industrial camera.

The frame rate is set to 24Hz.

3.5. Lidar Point Cloud

This dataset uses a Velodyne VLP-16 lidar to provide

ground truth for the dynamic objects. For every image in

the static-scene radar image stream, the corresponding lidar

points within the raw radar data time range are projected

into the radar image frame. The lidar point cloud frame rate

is 10Hz, identical to the high-resolution static-scene radar

stream.



Figure 3: Illusteration of Zoom-out DenseNet with three dense blocks. Input to the network is a sequence of range-doppler

maps over time. Network output is dynamic objects mask.

Figure 4: Radar data cube

4. Experiments

The performance of our baseline moving-object detector

models is evaluated on the test set of our dataset. The test

set has over 1300 labeled moving cars in complex urban

driving scenarios. The training set contains 10,000 labeled

and 400,000 automatically generated labels of moving cars.

CNN based experiments are done in PyTorch [2], using the

Adam [11] update rule when training networks.

Unsupervised labels are generated based on the unsuper-

vised dynamic object detection procedure 2 with Constant

False-Alarm Rate (CFAR) detector. Models trained on un-

supervised labels use a batch size of 8 and learning rate of

10−4 for 100 epochs. These models are then fine-tuned on

the labeled data by end-to-end training with learning rate of

10−5 for 80 epochs.

4.1. Evaluation Metrics

In order for a detection to be considered true positive,

a common measure is to compute the area of the overlap

between the predicted bounding box and the ground truth

bounding box. The predicted bounding box is true positive

if the area of the overlap is greater than a threshold. In our

dataset, we have used lidar to annotate bounding boxes on

the SAR image. Since we don’t expect point-wise radar de-

tections and lidar to have exact returns from the same parts

of a moving car, we consider a predicted bounding box to be

true positive if the center of the bounding box is closer than

half the length of an average car, i.e. 2.5 meters, to the cen-

ter of the ground truth bounding box. We use average preci-

sion (AP) measure to evaluate the dynamic object detection

performance. Range-based AP is computed in terms of the

area under the precision-recall curve at different ranges.

4.2. Dynamic Object Extraction

A sequence of range-Doppler frames provides a rich

temporal feature for dynamic object detection as dynamic

objects have a different movement pattern compared to sta-

tionary objects over time in the range-Doppler map. There-



Method unsupervised supervised AP near AP mid AP far

CFAR - - 65 43 13.3

FPNs ResNet-34 - X 66.3 56 22.8

FPNs ResNet-34 X X 73.1 63.4 23.9

zoom-out DenseNet-37 - X 67 59.8 28.3

zoom-out DenseNet-37 X X 77.2 68.1 29.2

zoom-out DenseNet-67 - X 74.8 58.8 29.6

zoom-out DenseNet-67 X X 76.6 67.6 29.9

Table 1: Moving car detection results on the test set.

fore, we want to utilize a CNN architecture that has a large

receptive field, extracts features at multiple scales and uti-

lizes temporal information.

We choose Feature Pyramid Networks (FPNs) and

zoom-out CNN architectures [12, 14] as a primary basis for

our baseline experiments due to the ability of these architec-

tures to extract feature at multiple spatial scales. The input

to the dynamic object detection CNN is a couple of range-

Doppler maps concatenated across the time axis. The train-

ing is done end-to-end to extract dynamic objects. Extracted

dynamic objects are then clustered and projected into the

SAR image.

We have trained a FPNs model with a 34-layer ResNet

[9, 12] backbone and two zoom-out models with DenseNet

[10] backbone with growth rate of 32 on training subset of

our dataset. The first zoom-out model consists of a 37-layer

DenseNet with two dense blocks. A dense block consists

of multiple convolutional layers where each layer is con-

nected to every other layer. All layers within the same dense

block operate on the feature maps of the same spatial size.

The second zoom-out model has a 67-layer DenseNet back-

bone with four dense blocks. Figure 3 illustrates zoom-out

DenseNet architecture with three dense blocks.

4.3. Analysis

Table 1 presents the results of dynamic car detection with

CFAR and CNN detectors. We have reported the range

based area under the curve results. Near range is from 0

to 15 meters, mid and far ranges are 15-30 and 30-60 me-

ters respectively. Regardless of the detector type, we apply

our proposed unsupervised dynamic object detection proce-

dure to the output of the detector. We will miss some of

the dynamic objects if they are not detected by the CFAR

or CNN detector. False positive cases can rise from failure

in creating a perfect SAR mask or detecting noisy sidelobes

in the range-Doppler map. The other source of false posi-

tives is imperfect estimation of direction of arrival (DOA),

especially for far objects. This will lead to improper posi-

tioning of detected stationary points on the SAR image and

potentially masking them using the static SAR mask. As it

is shown, CNN models significantly outperform the CFAR-

based detector. The signal-to-noise ratio is much lower for

far objects, which makes them difficult to detect. Even un-

der low signal-to-noise ratio for far objects, CNN models

produce significantly higher AP comparing to the CFAR

model at test time. Unsupervised pretraining of the CNN

models consistently improves AP across different models

and different ranges.

5. Conclusion

We introduce a high-resolution imaging radar dataset

collected from challenging urban driving environments.

With our proposed dataset, the computer vision community

now has access to raw radar data and high-resolution SAR

images along with reference lidar and camera data. In this

paper, we demonstrate the benefit of using SAR images to

automatically generate labels to pretrain a deep CNN and

show improved performance compared to traditional radar

detection methods.

It is our belief that this type of high-resolution image

data enables many radar applications that are previously not

possible, such as scene segmentation and object detection.

We plan to release sample data of this type in the future.
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