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Abstract

Current automotive radars output sparse point clouds
with very low angular resolution. Such output lacks seman-
tic information of the environment and has prevented radars
from providing reliable redundancy when combined with
cameras. This paper introduces the first true imaging-radar
dataset for a diverse urban driving environments, with reso-
lution matching that of lidar. To illustrate the need of having
high resolution semantic information in modern radar ap-
plications, we show an unsupervised pretraining algorithm
for deep neural networks to detect moving vehicles in radar
data with limited ground-truth labels.

We envision that the details seen in this type of high-
resolution radar image allow us to borrow from decades
of computer vision research and develop radar applications
that were not previously possible, such as mapping, local-
ization and drivable area detection. This dataset is our first
attempt to introduce such data to the vision community, and
we will continue to provide datasets with improved features
in the future.

1. Introduction

Camera, lidar and radar are the three main sensor types
used in automotive for perception. Both lidar and radar
are active range sensors. Between the two, radars are
more robust under different lighting and adverse weather
conditions. Radars are also much cheaper to manufac-
ture. However, a typical automotive radar has 3-4 degree
azimuth resolution and provides about ~10,000 detected
points per second. In comparison, a Velodyne VLP-16 li-
dar has 0.1 degree azimuth resolution and provides 300,000
points per second. This makes automotive radar quite in-
ferior in both azimuth resolution as well as point density.
The limited resolution of automotive radars stems from their
limited antenna aperture. For 76-81GHz (automotive radar
band) radars, a 2 meter long antenna aperture is required
to achieve lidar like azimuth resolution. Under the cur-

rent radar architecture, such an aperture is very difficult to
achieve and the state-of-art radar has a 20cm aperture size.

For the dataset provided in this paper, we use an auto-
motive radar system that is designed from the ground-up
to achieve lidar-like resolution. By coherently combining
information from multiple radars on the vehicle and uti-
lizing accurate information about the vehicle’s ego-motion,
we can create a very long effective antenna aperture with
a small physical aperture. This basic principle is known
as synthetic aperture radar (SAR) and is commonly used in
satellite and aerial radar imaging. By using this approach,
we are able to image the static objects in the scene at 0.1 de-
gree azimuth resolution and can resolve ~1,000,000 points
for a typical scene. Moreover, the SNR advantage of a
large coherent aperture allows the radar to see very small
objects and features that are not detectable using traditional
radar. This advantage can be easily seen from Figure 1. A
recorded video can be seen at [3]. The dataset will be avail-
able for download at zendar.io/dataset.

1.1. Synthetic Aperture Radar

Synthetic aperture radar (SAR) is a set of related tech-
niques for coherently combining radar returns from a mov-
ing radar over some segment of the the radar’s path to create
a high-resolution two-dimensional image of the scene. The
specific set of radar positions used to create the image is
called the synthetic aperture. The concept of SAR is usu-
ally credited to the mathematician Carl Wiley of Goodyear
Aerospace in 1951 and was originally devised as a method
for imaging the Earth’s surface from radar sensors moving
at high altitude, first on aircraft and soon after on spacecraft
[5].

While a detailed discussion of SAR imaging can be
found in [5], we briefly describe some of the most salient
characteristics of SAR images here.

1.1.1 Intrinsic Resolution

It is convenient for discussion to take the two axes of the
image to be “range,” the distance from the radar, and “az-
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Figure 1: The same scene seen from camera image, bird’s eye view of SAR, traditional radar point cloud and lidar.

imuth,” the horizontal angular coordinate running perpen-
dicular to the range. With these definitions, the intrinsic
resolution of the SAR system can be decomposed into range
and azimuth components. The intrinsic range resolution of
the system is directly proportional to the carrier frequency
bandwidth of the transmitted chirp signal and may be ex-
pressed in units of distance as

C
ARfﬁ,

where c is the speed of light and B is the carrier frequency
bandwidth, which is at most 4 gigahertz for our data.

The intrinsic azimuth resolution of the system is directly
proportional to both the absolute carrier frequency and the
length of the synthetic aperture and may be expressed in

radians as
c
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where f is the central carrier frequency, L is the syn-
thetic aperture length, and 6 is the azimuth coordinate, with
6 = +7 /2 being opposite directions parallel to the synthetic
aperture. This means that in theory, azimuth resolution can
be pushed arbitrarily high by using very long synthetic aper-
tures. In practice, the effective synthetic aperture length is
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limited by (1) the extents of the physical radar beam, mean-
ing that a particular area in the scene may not be visible
from all positions along the radar’s path, and (2) errors in
ego-position estimation, which hamper the ability to coher-
ently combine radar returns over very long synthetic aper-
tures.

1.1.2 Stationary and Moving Objects

The SAR approach requires accurate relative distance mea-
surement between the radar and the object. If all features in
the scene are stationary, then only vehicle ego-motion needs
to be measured. This is achieved by using the GPS/IMU
system available on the vehicle. In order to image objects
that are moving fast (i.e. comparable to ego speed of vehi-
cle), the object’s motion needs to be estimated as well. One
possible way is to use a traditional radar signal processing
pipeline based on short-aperture range-Doppler-DOA (di-
rection of arrival) processing in parallel with the SAR pro-
cessing pipeline.

When a moving object’s path is not compensated prior
to SAR imaging, two things occur:

1. Its image defocuses, i.e., loses resolution and SNR.
2. Its image may be displaced in azimuth.

Both effects are proportional to the ratio of the object’s un-
compensated speed to the ego-vehicle’s speed. Thus, since
only stationary objects image cleanly with high resolution,
accuracy, and SNR, to a rough approximation, a SAR im-
age without object motion compensation may be considered
as a “static-scene” datum, i.e., a representation of the sta-
tionary elements of the scene only. Because our SAR data
stream does not incorporate object motion compensation,
this heuristic can be exploited to help distinguish static from
moving objects, as described in 2.3.

1.1.3 Automotive SAR

SAR has been used for decades, first by the military and
later civilian operators, for aerial surveillance and remote
sensing. More recently, SAR has been extended to the au-
tomotive setting (e.g., [6]), but the benefits provided by the
high-definition radar imaging enabled by SAR in this set-
ting are only beginning to be explored. Thus, while there
already exists a body of high-altitude SAR data (e.g., [1]),
this is not the case for street-level SAR. One of our key
contributions is thus the publication of a high-quality street-
level SAR dataset consisting of complex urban imagery.

1.2. Contributions

In this paper, we describe a semi-supervised method for
the detection of moving objects in the range-Doppler-DOA
domain. We have accurately labeled 11,000 moving cars

with their positions on range-Doppler maps and SAR im-
ages to train and evaluate the performance of radar-based
moving object detection algorithms.

Our contributions:

* First high resolution radar image dataset of complex
urban driving scenes.

* Time synchronized radar data cube, radar images with
camera images and lidar overlay.

* Novel semi-supervised training of deep neural net-
works for radar dynamic object detection.

e Over 11,000 moving cars labeled in 27 diverse scenes
with over 40,0000 automatically generated labels of
moving cars to train and evaluate performance of mov-
ing object detection algorithms on complex and di-
verse urban driving scene scenarios.

2. Semi-supervised Dynamic Object Detection
2.1. Range-Doppler Preprocessing

A traditional radar processing pipeline assumes the
world is made of point-like reflective objects. The signal
reflected from such an object has a very simple mathemati-
cal model parametrized by:

1. range, the distance from the radar;
2. Doppler velocity, the rate of change of range; and

3. direction of arrival (DOA), the direction vector from
the radar to the object, which is often further decom-
posed into azimuth (horizontal) and elevation angles.

The signal reflected from the world is then modeled as the
linear superposition of the reflections from all the individual
objects [8].

The data as received from the hardware is a time series
of receiver antenna excitation levels, indexed by slow time
(which counts individual chirps), fast time (which counts
ADC samples within a chirp), and the virtual antenna in-
dex, which enumerates the physical array elements on the
sensor (more precisely, active pairs of transmitting and re-
ceiving antennas). However, in practice, it is convenient to
take a discrete time chunk of the data and compress it along
the two time dimensions, transforming those axes into the
Doppler and range axes, respectively.

Because this “compression” essentially amounts to a
two-dimensional discrete Fourier transform and is thus re-
versible [8], this range-Doppler-domain format may also be
described as a “raw” radar format.

Range-Doppler compression performs two important
functions:



1. It decouples the compressed range and Doppler axes
from the uncompressed DOA axis. This enables,
for example, nonparametric detection over range
and Doppler combined with parametric estimation of
DOA. For this to be effective, the intrinsic range and
Doppler resolutions of the system need to be sufficient,
since nonparametric detection will only report detec-
tions to within one range-Doppler resolution cell. (Su-
perresolution is possible, but this again requires joint
estimation of all parameters for all objects contribut-
ing to a given resolution cell.)

2. The response of an individual object of interest is gen-
erally highly localized in range and Doppler, unlike
in the uncompressed signal model. If the range and
Doppler axes have resolution sufficient to distinguish
typical objects of interest like cars and pedestrians, as
they do in our case, then the localized range-Doppler
structure of these objects can be exploited by sophis-
ticated detection and classification algorithms. This is
an active topic of current and future research, and we
will describe this subsequently. This localized struc-
ture in the range-Doppler domain can be seen in Figure
2.

2.2. CNN Detector

One candidate algorithm that can model the multidimen-
sional structure of moving objects in radar data is a con-
volutional neural net (CNN). Previous work using CNN on
radar data uses simple and shallow network structure [15].
The networks have limited receptive field size and fail to ex-
tract features in different scales and distortions. Our goal is
to use a network with large receptive field size, supporting
multiple scales and utilizing temporal information. The ma-
jor challenge with training such a network is the scarcity of
labeled data. Although there are a few open source radar
datasets [4], [13], the labels are on the processed sparse
point clouds. This is the first labeled dataset on raw radar
data and SAR point cloud.

2.3. Unsupervised Dynamic Object Detection

In order to generate enough labels for pretraining, we
combine the high-resolution static-scene images with the
output of a traditional radar pipeline. Specifically, the tra-
ditional radar pipeline outputs a sparse list of points, each
of which belongs to either a moving object or a stationary
object. By projecting the radar points into the static scene
(i.e., SAR image), we can distinguish a moving object from
a stationary one. Here, we exploit the heuristic that the SAR
image cleanly images primarily the static elements of the
scene and thus argue that the points detected on moving ob-
jects are likely to be those that project to low-SNR regions
of the SAR image. However, note that this heuristic is very

approximate, since moving objects do pollute the SAR im-
ages. Thus, the output of this step should be considered as
fairly noisy in subsequent processing.

All the potential moving object points are projected back
into the raw radar data and segmentation is performed
around each point. Segmented clusters are subsequently la-
beled.

The pretraining is then supplemented with supervised
fine-tuning. The results are discussed in Section 4.

3. Dataset

Our dataset consists of the following data streams. The
elements of each data stream are timestamped by a common
GPS clock, so the timestamps may be used to synchronize
and multiplex all the streams. Note that the elements of the
radar and lidar streams all aggregate data over a time inter-
val. By convention, these stream elements are timestamped
by the GPS time at the center of this time interval.

3.1. Raw Radar Data Cube

This is the radar data format commonly used in automo-
tive radar processing. The full time series is segmented into
fixed-length chunks and range-Doppler-compressed as de-
scribed in section 2. Thus, each chunk may be described as
a three-dimensional complex-valued array with the axes

1. range sample, with 512 elements,
2. Doppler sample, with 256 elements,

3. antenna array element (transmitter-receiver pair), with
4 elements (one transmitter and four receivers) arrayed
uniformly along azimuth only. (Thus, the system has
no elevation resolution.)

This is illustrated in Figure 4.

Along the range dimension, the radar maximum range is
set to 90m and the range resolution is 18cm.

Each radar cube is timestamped by the center time of the
pre-Fourier-transform time series.

3.2. High Resolution Static Scene (SAR)

Each image is created using SAR backprojection [7]
from a two-meter segment of radar data (i.e., two-meter
synthetic apertures). Note that the time-extent of the data
used to create this image is thus inversely proportional to
the speed of the vehicle at the time of collection, in contrast
to the raw radar cubes, which have fixed extents in time.
The width of an image pixel is 4 centimeters along both
axes.

This stream carries a fixed frame rate of 10 frames per
second. Thus, the two-meter synthetic apertures used to
image each frame will overlap when the collection vehicle
travels slower than 20 meters per second.
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Figure 2: Automatic dynamic object extraction: (a) Green points on the range-Doppler map are stationary detections masked
out by SAR. Red detection are dynamic detections. Blue detections are uncertain, meaning that the cluster that they belong
to contains both stationary and dynamic detections. (b) Bird’s eye view of SAR point cloud with lidar overlay (yellow points)

and dynamic detections from range-Doppler (red points).

Each image is tagged with a timestamp that corresponds
to the middle of the synthetic radar aperture.

3.3. Tracklog

The tracklog consists of the vehicle pose stream recorded
by the VectorNav VN200, the onboard GPS/IMU. Each en-
try in the tracklog represents the rotation and translation
from the IMU sensor frame (forward, right, down) to the
Earth-centered, Earth-fixed (ECEF) global frame. The ex-
trinsic pose of each sensor is also provided to convert into
the sensor-centric frame.

3.4. Camera Image

The reference camera image is taken by ImageSource
(model number DFK-33GX265¢e) color industrial camera.
The frame rate is set to 24Hz.

3.5. Lidar Point Cloud

This dataset uses a Velodyne VLP-16 lidar to provide
ground truth for the dynamic objects. For every image in
the static-scene radar image stream, the corresponding lidar
points within the raw radar data time range are projected
into the radar image frame. The lidar point cloud frame rate
is 10Hz, identical to the high-resolution static-scene radar
stream.
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Figure 3: Illusteration of Zoom-out DenseNet with three dense blocks. Input to the network is a sequence of range-doppler

maps over time. Network output is dynamic objects mask.
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Figure 4: Radar data cube

4. Experiments

The performance of our baseline moving-object detector
models is evaluated on the test set of our dataset. The test
set has over 1300 labeled moving cars in complex urban
driving scenarios. The training set contains 10,000 labeled
and 400,000 automatically generated labels of moving cars.
CNN based experiments are done in PyTorch [2], using the
Adam [11] update rule when training networks.

Unsupervised labels are generated based on the unsuper-
vised dynamic object detection procedure 2 with Constant
False-Alarm Rate (CFAR) detector. Models trained on un-
supervised labels use a batch size of 8 and learning rate of

10~ for 100 epochs. These models are then fine-tuned on
the labeled data by end-to-end training with learning rate of
10~° for 80 epochs.

4.1. Evaluation Metrics

In order for a detection to be considered true positive,
a common measure is to compute the area of the overlap
between the predicted bounding box and the ground truth
bounding box. The predicted bounding box is true positive
if the area of the overlap is greater than a threshold. In our
dataset, we have used lidar to annotate bounding boxes on
the SAR image. Since we don’t expect point-wise radar de-
tections and lidar to have exact returns from the same parts
of a moving car, we consider a predicted bounding box to be
true positive if the center of the bounding box is closer than
half the length of an average car, i.e. 2.5 meters, to the cen-
ter of the ground truth bounding box. We use average preci-
sion (AP) measure to evaluate the dynamic object detection
performance. Range-based AP is computed in terms of the
area under the precision-recall curve at different ranges.

4.2. Dynamic Object Extraction

A sequence of range-Doppler frames provides a rich
temporal feature for dynamic object detection as dynamic
objects have a different movement pattern compared to sta-
tionary objects over time in the range-Doppler map. There-



Method unsupervised | supervised | APnear | AP mid | AP far
CFAR - - 65 43 13.3
FPNs ResNet-34 - v 66.3 56 22.8
FPNs ResNet-34 v v 73.1 63.4 23.9
zoom-out DenseNet-37 - v 67 59.8 28.3
zoom-out DenseNet-37 v v 77.2 68.1 29.2
zoom-out DenseNet-67 - v 74.8 58.8 29.6
zoom-out DenseNet-67 v v 76.6 67.6 29.9

Table 1: Moving car detection results on the test set.

fore, we want to utilize a CNN architecture that has a large
receptive field, extracts features at multiple scales and uti-
lizes temporal information.

We choose Feature Pyramid Networks (FPNs) and
zoom-out CNN architectures [12, 14] as a primary basis for
our baseline experiments due to the ability of these architec-
tures to extract feature at multiple spatial scales. The input
to the dynamic object detection CNN is a couple of range-
Doppler maps concatenated across the time axis. The train-
ing is done end-to-end to extract dynamic objects. Extracted
dynamic objects are then clustered and projected into the
SAR image.

We have trained a FPNs model with a 34-layer ResNet
[9, 12] backbone and two zoom-out models with DenseNet
[10] backbone with growth rate of 32 on training subset of
our dataset. The first zoom-out model consists of a 37-layer
DenseNet with two dense blocks. A dense block consists
of multiple convolutional layers where each layer is con-
nected to every other layer. All layers within the same dense
block operate on the feature maps of the same spatial size.
The second zoom-out model has a 67-layer DenseNet back-
bone with four dense blocks. Figure 3 illustrates zoom-out
DenseNet architecture with three dense blocks.

4.3. Analysis

Table 1 presents the results of dynamic car detection with
CFAR and CNN detectors. We have reported the range
based area under the curve results. Near range is from 0
to 15 meters, mid and far ranges are 15-30 and 30-60 me-
ters respectively. Regardless of the detector type, we apply
our proposed unsupervised dynamic object detection proce-
dure to the output of the detector. We will miss some of
the dynamic objects if they are not detected by the CFAR
or CNN detector. False positive cases can rise from failure
in creating a perfect SAR mask or detecting noisy sidelobes
in the range-Doppler map. The other source of false posi-
tives is imperfect estimation of direction of arrival (DOA),
especially for far objects. This will lead to improper posi-
tioning of detected stationary points on the SAR image and
potentially masking them using the static SAR mask. As it
is shown, CNN models significantly outperform the CFAR-
based detector. The signal-to-noise ratio is much lower for

far objects, which makes them difficult to detect. Even un-
der low signal-to-noise ratio for far objects, CNN models
produce significantly higher AP comparing to the CFAR
model at test time. Unsupervised pretraining of the CNN
models consistently improves AP across different models
and different ranges.

5. Conclusion

We introduce a high-resolution imaging radar dataset
collected from challenging urban driving environments.
With our proposed dataset, the computer vision community
now has access to raw radar data and high-resolution SAR
images along with reference lidar and camera data. In this
paper, we demonstrate the benefit of using SAR images to
automatically generate labels to pretrain a deep CNN and
show improved performance compared to traditional radar
detection methods.

It is our belief that this type of high-resolution image
data enables many radar applications that are previously not
possible, such as scene segmentation and object detection.
We plan to release sample data of this type in the future.
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