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Abstract

We investigate a procedure for rapidly adding cali-

brated vehicle visible-near infrared (VNIR) paint signa-

tures to an existing hyperspectral simulator - The Digital

Imaging and Remote Sensing Image Generation (DIRSIG)

model - to create more diversity in simulated urban scenes.

The DIRSIG model can produce synthetic hyperspectral

imagery with user-specified geometry, atmospheric condi-

tions, and ground target spectra. To render an object pixel’s

spectral signature, DIRSIG uses a large database of re-

flectance curves for the corresponding object material and

a bidirectional reflectance model to introduce s due to ori-

entation and surface structure. However, this database con-

tains only a few spectral curves for vehicle paints and gen-

erates new paint signatures by combining these curves in-

ternally. In this paper we demonstrate a method to rapidly

generate multiple paint spectra, flying a drone carrying

a pushbroom hyperspectral camera to image a university

parking lot. We then process the images to convert them

from the digital count space to spectral reflectance with-

out the need of calibration panels in the scene, and port

the paint signatures into DIRSIG for successful integration

into the newly rendered sets of synthetic VNIR hyperspectral

scenes.

1. Introduction

The availability of large scale datasets has been an im-

portant factor in the ongoing success of deep neural net-

works - for example, the Mask R-CNN framework for im-

age instance segmentation [2, 12, 6]. Computer vision algo-

rithms often use synthetic data for training and testing deep

neural networks and then adapt them to the real data distri-

bution for application deployments [24, 3, 23, 18]. In com-

parison, research in hyperspectral imagery for these kind of

tasks is limited due to the cost of hardware and acquisition

of a wide variety of object signatures for input to synthetic

Figure 1: Examples of real and simulated hyperspectral data

from a parking lot (displayed as RGB). Left, an image chip

from the flight line (top) and the VNIR spectrum of digital

counts obtained from a region of interest sampled from the

yellow car (bottom). Right, a synthetic parking lot scene

with cars exhibiting several paint signatures (top) including

the radiance spectrum sampled from a yellow car (bottom).

data simulators. Recently, AeroRIT established a baseline

on the task of semantic segmentation with hyperspectral im-

agery [16] by annotating all pixels in a flight line over a uni-

versity campus. The authors show trained networks being

able to correctly identify vegetation, buildings and road pix-

els to a large degree while struggling with cars due to the

relatively low resolution and the atmospheric noise in the

scene. We hypothesize that synthetic imagery can help im-

prove the performance of such networks by providing bet-

ter initialization and a larger set of training samples. After

exploring the available simulators for hyperspectral scene

rendering, we find that current simulators are geared more

towards vegetation and cloud modeling, with few samples



for vehicle paints. To increase the number of available paint

samples, we fly a drone over a parking lot filled with cars

and devise a methodology to extract the digital count sig-

natures from the vehicles for modeling a new set of paint

signatures (Fig. 1).

Four well-known simulators that can render hyperspec-

tral scenes are: MCScene [17], CameoSim [14], DIRSIG

[19, 4], and CHIMES [25]. MCScene (Monte Carlo Scene)

generates the imagery by modeling a 3D cuboid world with

all the specified atmospheric parameters and then using

Direct Simulation Monte Carlo for all spectral signatures.

CameoSim (CAMoflauge Electro-Optic Simulator) repre-

sents objects in the scene as polygons and then applies ra-

diosity and reverse ray tracing to model the signatures. The

DIRSIG (Digital Imaging and Remote Sensing Image Gen-

eration) model uses physics-based radiation propagation

modules along with Metropolis Light Transport for scene

rendering. CHIMES (Cranfield Hyperspectral Image Mod-

eling and Evaluation System) is relatively new and uses an

enhanced adjacency model and automatic atmospheric pa-

rameter search to render realistic scenes with minimal user

effort. We use DIRSIG as the simulator following the ex-

tensive list of successful works [11, 5, 15, 21, 22, 10].

Kolb et al. used DIRSIG to create virtual night-time

scenes for conducting system tests over a wide range of at-

mospheric visibility and environmental conditions [11, 13].

Han et al. modeled urban and desert scenes to create a large

dataset of synthetic remote sensing images of cars and he-

licopters under a wide combination of atmospheric and en-

vironmental factors for data augmentation to train convolu-

tional neural networks [5]. Rahman et al. rendered a dataset

similar to Han et al. and used a VGG16-based siamese

network for change detection under various illuminations

[15, 20, 1]. Uzkent et al. modeled vehicle movements ob-

served by imaging platforms at different altitudes for the

purpose of detection and tracking using the Megascene en-

vironment in DIRSIG [8, 21, 22]. Kemker and Kanan used

the Trona scene from DIRSIG to boost the average accuracy

of their ResNet-50 based semantic segmentation architec-

tures [10, 7].

The current version of DIRSIG supports fewer than 10

paint signatures for vehicles. These spectra can then be

added to synthesize new paint signatures and create the en-

tire color gamut in the 3 band RGB domain. However,

simulating realistic hyperspectral imagery requires a large

database of spectral color signatures for each desired ma-

terial, such that the natural of a material’s spectra can be

measured and then rendered in simulated environments. To

our knowledge, such a dataset for vehicle paint spectra is

not publicly available. Hence, we collect the required paint

data and augment the existing set of signatures for a wider

range of samples. We discuss our approach towards this

objective in the paper.

Our contributions are summarized as follows:

• We introduce a relatively simple approach to process

data in digital counts into reflectance, without the ex-

plicit need of calibration panels.

• We gather a rich dataset of car paints that is much

larger than the current core car paint signatures in

DIRSIG, with metadata containing the car make and

model for future use.

2. Data Collection

We collect a comprehensive, high-resolution vehicle

dataset on a university parking lot to obtain hyperspectral

signatures of different vehicle paints (Fig. 2a). We start the

collection at noon, when the parking lot is near full capac-

ity with 450+ vehicles. We obtain ground truth spectra of 10

vehicles in the scene by measuring their hood with a hand-

held SVC spectrometer for verifying the spectral curves ob-

tained by our method. The main imaging platform for this

collect is inspired by the setup of Kaputa et al.- a drone

fitted with a push broom hyperspectral sensor [9]. We sum-

marize all the instruments and specifications of the sensor

and flight in Table 1.

Imaging System

Manufacturer Headwall Photonics

Model Nano-Hyperspec

Spectral Range [nm] 400 - 1000

Spectral Bands 272

Bit Depth (bits) 12

Other sensors

Device SVC Spectrometer

Spectral Range [nm] 335 - 2510

Device ASD Spectrometer

Spectral Range [nm] 350 - 2500

Flight

Altitude [ft] 50

GSD [cm] ≈ 0.8

Exposure time [ms] 5

Frame period [ms] 7

Table 1: Specifications for data collection.

The Nano-Hyperspec is a pushbroom scanning sensor

that collects a simultaneous line of 640 cross-track spatial

pixels and 272 spectral band pixels. Along-track pixels are



(a)

(b) (c) (d)

Figure 2: 2a shows a few vehicles captured from the hyperspectral sensor during our data collection. We obtain a rich dataset

consisting of diverse paints and their sub-variants under different illumination conditions. The wavy image edges are a feature

of the orthorectification process. 2b, 2c, 2d show the high level conversion from digital counts to radiance to reflectance for a

few pixels from the vehicle of interest pointed by the red arrow (off-white SUV). The neatly clustered set of curves indicate

the vehicle paint spectra, and the rest of the curves indicate glint. Reflectance is unitless.

collected over time as the drone flies over the parked ve-

hicles in the scene. We collect an average of 50,000 hy-

perspectral pixels per vehicle, providing a dense number of

data points that captures the natural intra-vehicle material

reflectance . We carefully sample regions from these set of

points as described in Sec. 4.2.

The sources of light energy for this data collection are

sunlight and skylight, which in the remote sensing field are

termed downwelling irradiance. It is important to accurately

measure the downwelling irradiance because the source of

light in a scene impacts the observed color or spectra of an

object’s surface. Atmospheric effects such as clouds, shad-

ows, and haze, as well as the sun’s position in the sky, need

to be measured to calibrate raw hyperspectral data. To keep

track of changes in the atmosphere and sun during the vehi-

cle collect, we use an ASD Spectrometer pointed skyward

at a stationary position on a grounded tripod. We attach

an optically diffuse cosine corrector to the ASD spectrom-

eter so that it collects light with a 180 degree field of view,

which provides our dataset a measure of the full-sky hemi-

sphere downwelling irradiance every 2 seconds.

Following in the order of the light path, the downwelled

light then interacts with materials where the light either re-

flects, absorbs, or transmits. Our main interest is in measur-

ing the reflective properties of vehicle materials to then gen-

erate hyperspectral paint signatures. We utilize a factory-

calibrated handheld SVC spectrometer to measure spectral

radiance in the VIS-SWIR range with 987 spectral bands.

To convert radiance into reflectance, the SVC spectrometer

uses a Spectralon target that has a flat reflectance curve ( >

99% reflective in VIS-SWIR range) and is highly Lamber-

tian. We obtain the spectral reflectance of vehicle paints by

dividing the radiance of the vehicle paint by the Spectralon

target radiance and treat it as the ground truth reflectance

data. Reflectances measured by the SVC spectrometer are

used to verify our calculated reflectances from the Nano-

Hyperspec as shown in Sec. 4.3.

To summarize, we have the following sets of spectra

from the data collection that we use to move from Fig. 2b

to Fig 2d:

• Nano-Hyperspec: Flight line data in digital counts

domain.



• ASD: Downwelling irradiance throughout the data

collection at 0.5 Hz.

• SVC: Spectral radiance and reflectance for a selected

set of cars we use for verification of our pipeline.

3. Radiometric Calculations

Collecting airborne hyperspectral imagery of vehicles

and calibrating the data to surface material reflectance is a

difficult task due to complex object geometry and radiation

propagation. For our university parking lot dataset - a sce-

nario that is starkly different than a controlled laboratory

setup - it is necessary for us to make certain assumptions

about the vehicle reflectance properties and the illumina-

tion sources. Even though vehicle paint is highly specular,

we assume vehicle paint is Lambertian so that we can ap-

proximate spectral radiance from radiant exitance leaving

the vehicle’s surface without performing an exhaustive in-

situ measure of the surface BRDF (bidirectional reflectance

distribution function), as shown in Eqn. 1.

Lλ =
Mλ

π
=

Eλρλ cos θ

π
, (1)

where L, M , E, ρ indicate radiance, radiant exitance, ir-

radiance and reflectance at wavelength λ, and θ is the angle

of incidence. We summarize the terms across all equations

in Table 2. When calculating vehicle reflectance, we select

regions of interest on the car’s body that are approximately

planar and nadir to the drone imaging platform so that mea-

sured variance in exitance due to surface angle θ is reduced.

For our dataset, we assume the primary source of illumi-

nation in the scene is from sky downwelling irradiance, and

that all other sources of illumination are negligible. In local

cases where an image pixel contains shadowed or glinted

light from the sun, this assumption is no longer true and

therefore calculated surface reflectance from these pixels

will not return an accurate spectral curve, as demonstrated

in Fig. 2d. Additionally, since some vehicle paints are

highly reflective and the vehicles are placed close to each

other in our parking lot dataset, the adjacency effect (sec-

ondary reflections from nearby objects) can act as another

significant illumination source. We have identified small re-

gions of interest (ROI) in our dataset where the adjacency

effect prominently alters our spectral data, which we discuss

in detail in Sec. 4.2.

Collecting surface material spectra remotely with a hy-

perspectral imaging system requires a method to calibrate

the sensors electronic digital counts to physically mean-

ingful units, such as radiance or reflectance. For airborne

remote sensing at high altitude, accurate radiometric cali-

bration of data to reflectance requires an accounting of all

light-matter interactions in the atmosphere between a ma-

terials surface and the airborne sensor. Since the university

parking lot data was collected with a drone flying at very

low altitude (50 feet) on a clear and sunny day, we assume

that the radiometric atmospheric effects between the sensor

and ground are negligible.

The physical process in which a photosensitive sensor

generates electrons when impinged by photons can be de-

scribed as

Se = φ · t ·
λ

hc
· η, (2)

where φ is radiant flux, t is time, and η is the ratio

of converted electrons to incident photons per wavelength,

also known as quantum efficiency (QE). When a sensor

is photon-noise limited, that is, the photon Poisson noise

is greater than the detectors inherent electronic noise, the

quantum efficiency is the dominant factor in determining a

sensor’s maximum achievable signal to noise ratio (SNR).

A sensor’s QE can be measured in a controlled laboratory

setting when using a monochromatic light source of known

intensity, and recording the number of electrons generated

by the sensor.

Extending beyond the sensor, the conversion of photons

to electrons of an imaging system can be defined holistically

with external quantum efficiency (EQE). EQE is the ratio

of photons incident on the first optical element to electrons

generated by the sensor. This can be a convenient method

to define performance of an imaging system with complex

static optical components such as lenses, apertures, mirrors,

and diffraction gratings because EQE accounts for any po-

tential loss in signal through the entire optical system.

A synonymous measure to QE and EQE is spectral re-

sponsivity, which is the ratio of current generated to inci-

dent radiometric power. For a camera, output pixel values

are expressed in digital counts after the analog current in

the sensor is passed through an analog-to-digital converter.

Assuming the analog-to-digital converter and the sensor are

linear, system spectral responsivity can be defined in terms

of digital counts as

Rλ =
DCi −DCdark

φ
. (3)

A benefit of measuring spectral responsivity in terms of

camera digital counts is that, like EQE, it takes into account

the affect of optical components as well as the photosensi-

tive sensor on incident power. This contextually aligns with

a system calibration process that is needed for collecting

field data where the raw output is in digital counts.

Normalizing the spectral responsivity curve by its max-

imum will provide a relative spectral responsivity for an

imaging system. Dividing raw digital count data (that is

corrected for dark current) by an accurately measured rela-

tive spectral responsivity curve will ensure that the incident

power required to raise a pixel’s value by one digital count



will be constant for all spectral bands in the imaging system.

For applications which do not require image pixel values to

be in absolute physical units, further radiometric calibration

may not be needed.

To convert a camera’s digital counts to absolute physi-

cal units such as radiance, the straightforward method is to

measure the camera’s digital count response in a controlled

laboratory setting, where the light source power spectrum

and spectral bandwidth are known. In the specific case

of calibrating the Nano-Hyperspec camera to spectral ra-

diance, we used a monochrometer with a tunable diffrac-

tion grating. We placed the front of the Nano-Spec as close

to the exit aperture of the monochrometer as possible and

blocked out stray light with optical absorbing material. We

collected Nano-Hyperspec image frames with monochro-

matic light every 10nm in the VIS-NIR range (61 steps from

400-1000nm). For each wavelength tested, we also mea-

sured the monochrometer’s lamp radiant flux φref with an

optical power meter, which is used in Eqn. 4.

Since the Nano-Hyperspec has a diffraction grating to

separate incoming light into 272 spectral bands across the

image array columns, a monochromatic light source will

only illuminate a few columns with the rest of the image

array receiving almost no light. With a theoretical noiseless

system, we could determine the spectral responsivity of the

camera by recording the maximum digital count value in

the illuminated band for each monochromatic wavelength

tested, then use Eqn. 3 to calculate responsivity. How-

ever, there is noise introduced from digitized sampling, non-

uniform illumination, and spectral band widening due to

diffracted light that needs to be addressed.

Light leaves the monochrometer aperture with non-

uniform intensity, and across the illuminated band on the

image plane the intensity profile is approximately Gaus-

sian. For each monochromatic wavelength tested, we fit a

1-D Gaussian function to our data and record the amplitude

in digital counts. Normalizing the fitted functions provides

us a measured spectral responsivity Rλ,norm for our Nano-

Hyperspec sensor.

We can then use the normalized spectral responsivity

curve and the known sensor specifications to obtain irra-

diance per digital count as

E

DC
=

(

φref ·

tobs

tref

)(

x2

obs · θ
2

IFOV ·

Bref

Bobs

·Rλ,norm

)

−1

,

(4)

where the ref and obs subscripts denote acquisition pa-

rameters from laboratory (monochrometer) measurement

and field measurements respectively.

Assuming a Lambertian reflector, we calculate sensor

reaching spectral radiance as

Variable Description Units

Se Sensor Generated Electrons -

φ Radiant Flux W

Rλ Spectral Responsivity W−1

Mλ Radiant Exitance W m−2

E Irradiance W m−2

ρλ Spectral Reflectance W m−2

B Spectral Bandwidth nm

x Ground Sample Distance m

t Time s -

λ Wavelength nm

h Planck’s constant J s

c Speed of Light m s−1

η Quantum Efficiency -

θ Angle of Incidence rad

θIFOV Instantaneous FOV sr

Table 2: List of all notations used throughout the paper,

their description and default units.

Lλ = (DCi −DCdark) ·
E

DC
·

1

π
. (5)

To convert from spectral radiance to spectral reflectance,

we assume the surface is Lambertian and solely illuminated

by downwelling irradiance (measured by the ASD) as

ρλ = Lλ ·

Eλ,downwell

π
. (6)

To summarize, we obtain the reflectance spectra as fol-

lows:

• Calibrate the sensor using monochrometer to obtain

the spectral responsivity curve as per Eqn. 3.

• Assume vehicle is Lambertian and sample approxi-

mately planar region of interest.

• Use Eqn. 4 to convert ROI data from digital counts to

irradiance.

• Use Eqn. 5 and 6 to compensate the dark current mea-

surements and obtain reflectance spectra.

4. Data Processing and Visualization

4.1. University Parking Lot

The drone based imaging platform is susceptible to sharp

changes in the collected imagery due to wind-influenced



(a)

(b)

Figure 3: We use orthorectification to remove the distor-

tions in 3a and obtain a 3b.

movement (Fig 3a). We use orthorectification based on

GPS and IMU data and correct these distortions to obtain

a much cleaner image (Fig. 3b). Since we operate the sen-

sor in a non-automatic setting (i.e. the gain and integration

time does not change with the scene variance), we apply

the pipeline described in Sec. 3 after orthorectification. Af-

ter smoothing out the resultant reflectance signal with a box

filter, we import the vehicle spectral curves into DIRSIG as

new synthetic paint signatures.

4.2. ROI Selection

In our data collect, when radiance due to adjacency ef-

fect is proportional to the downwelling radiance for a given

pixel, we no longer know how the corresponding pixel is

illuminated. Therefore, we cannot obtain accurate vehicle

material reflectance(s) in regions that have significant adja-

cency effects. For example, in Fig. 4, a gray vehicle has sec-

ondary light reflections from a nearby bright red car. Along

contours of the car hood that are pointed towards the red

vehicle, we observe a red tinged spectral radiance that is

significantly different than the spectral radiance of a nearby

region on the gray vehicle hood.

Vehicle paint is highly specular, and under solar illumi-

nation, the vehicle may appear to have bright glinted regions

on its surface. Glint is caused by direct reflections from an

illumination source. In our parking lot scene, we observed

that pixels containing glint are often an order of magnitude

brighter than the observed vehicle brightness, which causes

our imaging sensor to be saturated. In addition to being

brighter, the irradiance spectra from glinted regions on a

vehicle do not have the same paint signature as the vehi-

cle paint, and instead resembles the solar spectral irradiance

curve. When selecting ROI’s on the vehicles surface, it is

important to avoid glinted pixels to reduce error in calcu-

Figure 4: Adjacency effect from the red car onto the gray

car. We select two ROIs - the red and blue boxes, and plot

the mean spectra with respective colors.

lating spectral reflectance. An example of glint effects on

measured digital counts, radiance, and reflectance is shown

in Fig. 2. Hence, in order to obtain spectral reflectance

curves of objects from our remote imaging platform, we

carefully select regions on the object that are geometrically

planar and are not influenced by secondary reflections from

nearby objects.

4.3. Comparison with SVC Data

We then validate our calculated reflectance from the

airborne Nano-HyperSpec with reflectance measurements

from the SVC spectrometer of known vehicles in the park-

ing lot scene, to determine if our assumptions made in Sec.

2 provide reasonable estimates of vehicle paint reflectance

curves. Following equations laid out in Sec. 3, we show

the calculated reflectance plotted alongside the ground truth

reflectance (SVC spectrometer) in Fig. 5.



Figure 5: Calculated vehicle paint reflectance from the

Nano-HyperSpec (blue) compared with the measured SVC

paint reflectance (red). These spectra are both from the

white vehicle of interest in Fig. 2.

Considering the radiometric simplifications utilized to

obtain vehicle paint reflectance spectra, the results reason-

ably agree with the ground truth spectra. The discrepancies

between the two curves could be due to multiple reasons,

including 1) adjacency effect, 2) the full sky hemisphere

of downwelling irradiance is not visible to the selected ROI

due to occlusion, and 3) the vehicle paint BRDF is not Lam-

bertian and is not perfectly planar within the ROI.

4.4. Hyperspectral Scene Rendering

After calibrating the car paint spectra and porting it into

DIRSIG, we use a predefined parking lot scene 1 in DIRSIG

and change the material properties to use our set of paint

signatures for the vehicles instead of the predefined set. For

preliminary testing, we select 14 vehicle reflectance spec-

tra for simulations. Fig. 7 shows a snapshot of the rendered

scene along with new set of paint signatures and their corre-

sponding real image counterparts that were used for extrac-

tion. The image rendered is significantly low in resolution

as compared to the real image from which colors are sam-

pled due to the altitude difference of the sensor.

Another benefit of creating simulated hyperspectral

scenes is that we have full knowledge of the ground truth

properties of objects placed in the scene. We then can ob-

serve how the spectral radiance reaching our sensor is influ-

enced by angle, illumination spectra, atmosphere, as well

as platform and object motion. Through many simulations

of different observation conditions, we can measure in ob-

1http://www.dirsig.org/docs/demos/index.html

(a) (b)

(c)

(d)

Figure 6: Same parking lot scene captured under three at-

mospheric conditions - at noon (6a), near sunset (6b) and

under clouds (6c). We plot the mean spectrum of pixels

sampled from selected cars (marked in 6c) in 6d with dif-

ferent line styles: noon - solid, near sunset - dotted, cloudy

- dashed.

served spectral radiance that corresponds to an object of

known reflectance properties, to aid in future hyperspectral



Figure 7: Center - Synthetic parking lot scene generated

by DIRSIG with vehicles exhibiting paints specifically ob-

tained via our approach. Surround - We also show some of

the vehicles used for sampling the paint instances.

tasks - involving object detection and re-identification. Fig.

6 shows another instance of the parking lot scene with var-

ied vehicle paints under three atmospheric conditions - at

noon, near sunset and under clouds 2. We observe stark

differences at all three timestamps - signatures under cloud

tend to have less intensity compared to the ones at noon

depending on the base paint color, and signatures during

evening are all at very less intensity irrespective of the paint.

5. Discussion and Future Work

We have shown a radiometrically calibrated airborne hy-

perspectral platform operating simultaneously with a spec-

trometer measuring downwelling irradiance can calculate

reflectance spectra of vehicle paints from manually selected

ROIs on the vehicle surface. We select pixels from approx-

imately planar areas on the vehicle body where we assume

the dominant source of illumination is the downwelling irra-

diance, thus avoiding pixels that are significantly corrupted

due to adjacency effect or glint or shadow.

These reflectance spectra are utilized in DIRSIG to gen-

erate simulated hyperspectral imagery, with the potential to

create dense simulated urban scenes where each vehicle has

a unique spectral signature. These simulations allow for the

construction of multiple spectral radiance curves that cor-

respond to the same object material (Fig. 6), generating

examples of how an object can look different when there is

local or radiometric changes in the scene. We believe that

our collection of paint spectra can be used with DIRSIG for

future work in multiple areas of remote sensing, including

but not limited to data augmentation for hyperspectral ob-

2we add the individual plots in the supplemental

ject detection from multiple platforms.
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