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Abstract

State-of-the-art thermal infrared cameras produce high

quality images with a bit depth of up to 16 bits per pixel

(bpp). In practice, the data often reach a bit depth of 14 bpp,

which cannot be displayed naı̈vely to a standard monitor

that is limited to 8 bpp. Therefore, the dynamic range of

these images has to be compressed. This can be done with

an operator called tone mapping. There are many meth-

ods available for tone mapping, but the quality of the re-

sults can be extremely different. In this paper, we discuss

and evaluate image quality assessment measures for tone

mapping taken from the literature using thermal infrared

videos. The usefulness of the measures is analyzed and ef-

fectively demonstrated by utilizing various reference Tone

Mapping Operators (TMOs) based on traditional algorithm

engineering on the one hand and deep learning on the other

hand. We conclude that the chosen measures can objec-

tively assess the quality of TMOs in thermal infrared videos.

1. Introduction

Tone mapping is a method used in the field of computa-

tional imaging to map a High Dynamic Range (HDR) im-

age [27] to a Low Dynamic Range (LDR) [10]. A cam-

era that is able to acquire images with a value range (= bit

depth) larger than 8 bits per pixel (bpp) can lead to subop-

timal images when naı̈vely displayed on a standard monitor

limited to 8 bpp. Such naı̈ve displaying can be the result

of linear downscaling and in this way, the rich informa-

tion contained within the higher bit depth can get lost. In-

stead, intelligent and image content sensitive tone mapping

can not only preserve all relevant information but even em-

phasize it. This approach is well-known for its application

in computational photography [29], where visual-optical

(VIS) HDR images and tone mapping can be used to make

details of the image content visible to the spectator even in

case of difficult illumination conditions with image regions

that appear to be close to saturation [14, 16, 28]. Similar

demands raise for medical imaging [25] or visual surveil-

lance applications, in which thermal infrared (IR) cameras

are used [19]. Although thermal IR cameras do not see re-

flected but emitted light [12], different temperature ranges

within the same observed scene can lead to image regions

with weak contrast. Such regions can contain information

crucial for scene understanding and need to be preserved by

an appropriate Tone Mapping Operator (TMO).

Table 1. Motivation for IR Tone Mapping.

Linear downscaling CAN24 AN [7]

CLAHE [41] Reference TMO [9]

Various TMOs exist, but the quality of the results can be

extremely different as demonstrated in Table 1: the first ex-

ample shows naı̈ve linear downscaling resulting in a dark

image with weak contrast. The second example shows the

result if the same 14-bit IR image is processed using a deep

learning based Context Aggregation Network (CAN24 AN)

that has been originally trained to improve the contrast of



8-bit color images [7]. Now it is possible to identify the im-

age content, but the contrast especially in the background is

still poor. Then, a standard approach for compressing the

dynamic range of images is used called Contrast Limited

Adaptive Histogram Equalization (CLAHE) [41] resulting

in better contrast and more visible details in the background.

Finally, the result of one reference TMO used in this paper

is presented [9] providing best detail visibility. These ex-

amples not only demonstrate the need to study TMOs, but

also to examine what it means to have a good result and how

this can be objectively evaluated since human perception of

quality is very subjective.

In this paper, we discuss and evaluate objective Im-

age Quality Assessment (IQA) measures for tone mapping

taken from the literature [8, 10, 37, 38]. Such measures

consider both the tone mapped LDR image and the orig-

inal HDR image. Hence, they are more suitable com-

pared to conventional full reference metrics such as Peak

Signal-To-Noise Ratio (PSNR) [40] or Structural Similar-

ity (SSIM) [32]. While the measures were originally de-

signed to evaluate tone mapping in the visual-optical spec-

trum, we analyze them for their applicability to thermal IR

videos. To the best of our knowledge this is the first pa-

per discussing tone mapping IQA in the IR spectrum. The

contributions lie in (1) an in-depth analysis of the consid-

ered IQA measures exploring details missing in the original

papers and including a mathematical derivation, (2) a de-

tailed evaluation for two public thermal IR datasets [4, 11],

and (3) the release of code1 for four objective IQA mea-

sures [10] that has not been released before. In this way, we

provide a tool enabling reproducibility and comparability of

TMOs. While recent literature focuses on rather subjective

IQA measures such as a purely qualitative evaluation [23]

or the Tone Mapping Quality Index (TMQI) [16], we aim

at evaluating objective measures to support human opera-

tors for surveillance applications. The main purpose of IR

imaging in such applications is to convey information rather

than producing visually appealing images.

The remainder of this paper is organized as follows: re-

lated work is presented in Section 2. The analyzed eval-

uation measures are introduced in Section 3. Experimental

results are described in Section 4. We conclude in Section 5.

2. Related Work

IR Tone Mapping Operators: Tone Mapping is usually

applied to an image’s luminance channel in the log do-

main [8]. Since thermal infrared images consist of one in-

tensity or luminance channel in general, typical color trans-

formations or color restoring techniques [30] can be skipped

here. An edge-preserving filter such as a bilateral filter [6] is

applied to separate the image’s base and detail layer. Then,

1https://github.com/HensoldtOptronicsCV/ToneMappingIQA

logistic or sigmoidal functions called tone curves are ap-

plied to the tiled base layer [9, 10, 20] to enhance the con-

trast of the signal but not the noise.

IR images usually belong to the group of HDR im-

ages. A typical infrared detector has a temperature reso-

lution less than 0.02 K. However, in a natural scene the dif-

ference in temperature radiation can reach more than 30 K

or sometimes even over 100 K. Consequently, the intensity

value range of an infrared image often reaches more than

1,000 [19]. In general, however, there is not much liter-

ature that examines tone mapping specifically for IR im-

ages [17, 18, 19, 31]. Linear mapping and histogram ad-

justment based mapping are classic tone mapping methods

that process an image globally [19]. With linear mapping,

however, a larger range of radiation distribution lowers the

radiation resolution of the output image leading to weak

detail visibility. Global methods based on histogram ad-

justment such as histogram equalization are widely used

due to their low computational complexity and effective-

ness [18]. While a global tone-curve can easily compress

the dynamic range, the contrast will be reduced. For IR im-

ages and videos, however, it can be important to preserve

local contrasts to better convey information across an im-

age and avoid losing important image features. In order to

overcome the disadvantages of global approaches, methods

were developed to enhance local contrast based on the char-

acteristics of local regions [17].

Image Quality Assessment: There are no IR specific

tone mapping evaluation measures. Hence, measures are

adopted from tone mapping for visual-optical images. Such

measures typically compare the original HDR with the pro-

cessed LDR image to determine a loss of image quality dur-

ing tone mapping. We skip subjective measures [21] and

focus on objective measures instead. Yeganeh et al. [38] de-

veloped a semi-objective IQA model, the so-called TMQI,

for tone mapped images using their corresponding HDR im-

ages as reference. The proposed quality index is based on

two assessment methods. The SSIM [32] and its multi-scale

extensions such as the MS-SSIM [33, 34] is the first ap-

proach claiming that structural fidelity is a good indicator of

perceptual quality. This is based on the hypothesis that the

main purpose of vision is to extract structural information

from the visual scene. The second method is the so-called

Natural Scene Statistics (NSS) model, which is based on

the theory that the visual system is highly adapted to the

natural visual environment. In this way, the variance from

natural image statistics is used as a measure of perception

quality [33]. However, several authors demonstrated that

the TMQI is not sensitive to halo effects [26] or not suf-

ficiently representing human perception [2]. Usually, the

occurrence of artifacts during processing impairs the qual-

ity of the tone mapped video content. Objective evaluation

measures aim at quantifying the presence of such artifacts



after tone mapping. Eilertsen et al. [10] propose four ob-

jective measures that assess the presence of (1) temporal in-

coherence artifacts such as local or global flickering are an

important issue [3, 5], (2) the percentage of over- and under-

exposed image pixels, (3) the contrast and the (4) noise visi-

bility of an image before and after tone mapping. These four

objective measures together with the semi-objective TMQI

are considered in the remainder of this paper.

3. Tone Mapping Image Quality Assessment

As already mentioned, the TMQI [38] is based on heuris-

tics of human perception. However, not all complex pro-

cesses involved in a subjective comparison can be consid-

ered. As a result, Eilertsen et al. [10] motivated to evaluate

four specific properties and not the overall subjective qual-

ity as a single quality score. In the following sections, the

four measurements covering the attributes exposure, con-

trast, noise visibility and temporal incoherence are pre-

sented in detail. The reason for the detailed description of

the measures is that the authors describe them very briefly

in their survey paper and hence a thorough understanding is

not possible. In general, the aim of the measures is to in-

dicate the performance of a TMO regarding (1) generating

well-exposed tone mapped images with (2) good contrast,

(3) reduced or at least not amplified camera noise and (4)

show no temporal artifacts such as flickering. More details

about the measures such as pseudo code or appropriate pre-

processing can be found in the supplementary material.

3.1. Over/Underexposure Measure

A well-exposed image has at best only few pixels in sat-

uration. Hence, the goal of the exposure measure is to es-

timate if a TMO can be expected to calculate well-exposed

images. Considering overexposure and thus the amount of

saturation, the measure calculates the fraction of pixels in

the normalized tone mapped image T with pixels s ∈ [0, 1]
which are above or equal 0.95. In the case of underexpo-

sure, the fraction of pixels below or equal 0.02 is taken into

account. These two measures should have a low but unequal

zero value indicating well-exposed tone mapped images ca-

pable of sufficiently compressing the dynamic range.

3.2. Loss Of Contrast Measure

Due to the difficulty of uniformly specifying contrast in

different images, there are many ways to define contrast. A

commonly used definition for measuring the contrast is the

Michelson formula [22]

CM =
Imax − Imin

Imax + Imin

, (1)

where Imax and Imin represent the maximum and the min-

imum luminance values, respectively. CM ranges from 0 to

1. However, the Michelson contrast measure does not repre-

sent image contrast well as it only depends on the maximum

and minimum values of the image [1]. In IR imaging the so-

called Infrared Focal Plane Arrays (IRFPA) are widely used

to acquire IR images. Technical limitations and material

defects in the manufacturing process lead to the fact that

IRFPA usually contains defective pixels, which can affect

the quality of IR images considerably [36]. These defective

pixels can be seen as salt and pepper noise [13] and would

have an erroneous impact on the Michelson contrast mea-

sure, as they are the maximum and the minimum luminance

values. Hence, we need different contrast measures.

In general, the loss of contrast measure is divided into

two calculations. First, the local contrast is determined.

This means that the details are extracted with a bilateral

filter by subtracting the filtered image Fbi from the tone

mapped image T as shown in Eq. 2. Then, the absolute

values of the subtraction are weighted with the input lumi-

nance L and the mean value over all pixels x is taken with

the total number of pixels N leading to

Clocal(T ) =
1

N

∑

x

Lx |Tx − Fbix | . (2)

Equation 3 shows the definition of the bilateral filter,

where the sum over Ωx means that a local neighborhood

of the pixel x is considered. Therefore, each pixel is a

weighted average of its neighbors and the weight assigned

to each neighbor decreases with the distance in the image

plane |Tp−Tx| and the distance on the intensity axis ‖p−x‖.

Additionally, a Gaussian function G is used as a decreasing

function. σsp and σc are the corresponding standard devia-

tions, where the index sp stands for space and the index c

for color. In the context of this paper, color obviously means

the one-channel luminance. W normalizes the sum of the

weights.

Fbi =
1

W

∑

p∈Ωx

Gσsp
(‖p− x‖)Gσc

(|Tp − Tx|)Tp

with W =
∑

p∈Ωx

Gσsp
(‖p− x‖)Gσc

(|Tp − Tx|)

(3)

The second part of the contrast measure is the global

contrast, which is estimated using a Gaussian kernel G

leading to

Cglobal(T ) =
1

N

∑

x

√

(G ∗ T 2)x − (G ∗ T )2x, (4)

where ∗ is the convolution operator and T is the same tone

mapped image as used in Eq. 2 and 3. Equation 4 shows that

the mean value of all pixels is calculated in the same way

as with the local contrast measure. Finally, the two contrast



measures are applied to each image pair with input HDR

image L and tone mapped image T . Afterwards, they get

subtracted in order to estimate the loss of contrast after tone

mapping. The local and global contrast coefficients should

then be as large as possible, i.e. only minimal contrast is

lost. This contrast difference or loss of contrast [10] can

then be expressed with the formulations

clocal(L, T ) = Clocal(T )− Clocal(L), (5)

cglobal(L, T ) = Cglobal(T )− Cglobal(L). (6)

3.3. Noise Visibility Measure

The motivation for the noise visibility measure is that

camera noise can have a significant influence on the results

of a tone mapping algorithm. Under the transformation of a

tone curve V : L → T , the noise visibility can vary. Eilert-

sen et al. [10] use an artificial, synthetic HDR input L with-

out any noise to quantify the change in noise visibility. In

this paper, we transfer this measure to the real world and ap-

ply it to all images considered for the evaluation framework.

Starting from an input HDR image, artificial noise follow-

ing a Poisson distribution is added and a corrupted HDR

input is constructed. In thermal IR imaging it is common

practice to favor Poisson distributed noise (or shot noise) in-

stead of Gaussian distributed additive noise [15, 35]. Both

the original HDR input L and the manipulated HDR input

L̂ are then tone mapped

T = V (L),

T̂ = V (L̂),
(7)

where V describes the tone mapping operator or the tone

curve, respectively. Then, the quality predictor Θ from the

HDR-VDP 2.2.0 metric provided by Mantiuk et al. [21] is

used to measure the visibility of the added noise. This met-

ric needs a reference image and a test image as input. A

result of 100 indicates best quality and that the visual dif-

ferences are very small. A lower value, however, indicates

lower image quality. Equation 8 shows the final definition

of the noise visibility measure, where the quality metric is

first calculated for the HDR input and the HDR input with

additional noise and secondly for the corresponding tone

mapped inputs. Subsequently, the difference is calculated

as final result.

n = Θ(L̂, L)−Θ(T̂ , T ) (8)

A positive difference n > 0 means that the noise is more

visible after tone mapping. Conversely, if the noise visibil-

ity measure becomes negative n < 0, the noise visibility is

reduced after tone mapping.

3.4. Temporal Incoherence Measure

Various temporal artifacts can occur when performing

video tone mapping if a TMO is applied for each frame in-

dividually. Global and local flickering artifacts appear, for

example, when the image statistics used for a tone curve of

a TMO change rapidly from frame to frame. As a result, the

tone curve changes non-smoothly.

In order to investigate the temporal coherence of a TMO,

a comparison of the tone mapped sequence and the input

HDR sequence is performed to derive their correlation over

time. However, the challenge is how to consider transfor-

mations to which the measure should be invariant such as

scaling, exponentiation, temporal adjustment, etc. There-

fore, the temporal incoherence measure quantitatively esti-

mates the temporal inconsistencies with a natural measure

that examines the linear dependence of the HDR image and

the tone mapped image using their cross correlation. The

sample Pearson correlation coefficient can be applied to cal-

culate a normalized measure rLT with

rLT =

t+d
∑

k=t−d

(Lk − µL)(Tk − µT )

√

t+d
∑

k=t−d

(Lk − µL)2 ·
t+d
∑

k=t−d

(Tk − µT )2

(9)

where L denotes the HDR and T the tone mapped images.

An evaluation of the linear dependence is done over a local

neighborhood in time with k ∈ {t−d, ..., t+d}. The means

µL and µT and the standard deviations in the denominator

are used to normalize the HDR and the tone mapped sig-

nals to have the same mean and standard deviation within

the temporal neighborhood {t − d, ..., t + d}. In practice,

the mean value or a pixel value of the tone mapped image

can change over time in an opposite direction to the HDR

image. This is due to the ability of a video TMO to adapt

to the input over time based on statistics from the HDR se-

quence. Equation 9 does not take this into account. The aim

is to make the measure invariant to local linear changes over

time. Therefore, the normalization of Eq. 9 using the mean

value µ is extended. As a first step, a normalization from

a linear regression is performed, then the normalized HDR

input is normalized again to have the same variance as the

normalized tone mapped input.

The estimation of global temporal incoherence is de-

scribed below. In this context, the mathematical elabo-

ration is more detailed than it was done by Eilertsen et

al. [10] in order to better understand the individual steps.

The measure is applied using the mean values in each frame

Lt =
1
N

∑

x Lt,x, where x are the pixel values and N is the

number of pixels. The first step is to calculate the sample

means of all HDR images L and tone mapped images T

within the temporal neighborhood,

µL =











∑

x

L
−d,x

N

...
∑

x

Ld,x

N











=







µL
−d

...

µLd






, (10)



µT =











∑

x

T
−d,x

N

...
∑

x

Td,x

N











=







µT
−d

...

µTd






. (11)

The sample distances are defined by

X =
(

−d · · · d
)

. (12)

Equations 13 and 14 describe the calculation of the weights

wL and wT of the linear regression:

wL =

t+d
∑

k=t−d

(µT
L
·X)

X ·XT
=

∑
(

µL
−d

· · ·µLd

)

· (−d · · · d)

(−d · · · d) ·







−d
...

d







(13)

wT =

t+d
∑

k=t−d

(µT
T
·X)

X ·XT
=

∑
(

µT
−d

· · ·µTd

)

· (−d · · · d)

(−d · · · d) ·







−d
...

d







(14)

The results of Eqs. 13 and 14 are scalar values. In general,

a temporal averaging kernel is defined by uniform weights

K with

K =







1
2d+1

...
1

2d+1






with K ∈ R

(2d+1)×1. (15)

With the help of the kernel K the fitted lines after the regres-

sion are calculated for the HDR input and the tone mapped

input, respectively:

yL = wL ·X +
t+d
∑

k=t−d

K · µL (16)

yT = wT ·X +

t+d
∑

k=t−d

K · µT (17)

Subsequently, the mean values are normalized with the in-

serted lines:

t̂L = µL − yT

L
(18)

t̂T = µT − yT

T
(19)

For the second part of the normalization the variances are

calculated for the normalized HDR and tone mapped input:

σ2
L =

t+d
∑

k=t−d

K · (t̂L)2 (20)

σ2
T =

t+d
∑

k=t−d

K · (t̂T )2 (21)

Now, the normalization of the HDR signals is performed on

the basis of the standard deviations with

t̃L =
t̂L · σT

σL

. (22)

Then, the linear slope of the HDR signal L is put back:

tL = 0.25 ·XT + t̃L (23)

tT = 0.25 ·XT + t̂T (24)

The slope of 0.25 was chosen by Eilertsen et al. [10] and

additionally applied to the signals. Now the HDR signal

has the same slope and variance as the tone mapped signal.

As in Eq. 9, the entries of the sample Pearson correlation

coefficient q1, q2 and q3 are calculated.

q1 =

t+d
∑

k=t−d

K · (tL)2 (25)

q2 =

t+d
∑

k=t−d

K · (tT )2 (26)

q3 =
t+d
∑

k=t−d

K · tL · tT (27)

cfLT = 1− max

(

0,
q3√
q1 · q2

)

(28)

Finally, the incoherence measure cfLT is estimated, so

that negative correlations are clamped and considered as

equivalent to no correlation. The measure is calculated

for each stack of 2d + 1 HDR and the corresponding tone

mapped images in an image sequence consisting of M

frames. Since a temporal neighborhood is considered, a

temporal offset must be introduced starting with the (d+1)-
th frame and ending with the (M − d− 1)-th frame.

For the local temporal incoherence coefficient, the same

calculation steps are performed, but they are applied per

pixel and not with the mean values in each frame. Conse-

quently, the temporal averaging kernel K for the local mea-

sure is a matrix with K ∈ R
h×v×(2d+1) where h and v are

the horizontal and vertical image dimensions. In addition,

the normalization steps are performed elementwise, which

results in a matrix for the correlation coefficient in Eq. 28.



Therefore, the local per pixel measure is only calculated on

values of the tone mapped image that are not under- or over-

exposed. Subsequently, an averaging is performed.

In general, the temporal incoherence measure gives a re-

sult of 0 if the HDR and the tone mapped signals are fully

linearly correlated. On the other side, a value of 1 means

that the signals are either completely uncorrelated or neg-

atively correlated. Consequently, the goal of a TMO is to

produce an incoherence coefficient close to 0.

4. Experiments and Results

In this section, we first describe the datasets used for our

experiments. Then, we show results for artificially degrad-

ing reference HDR and LDR IR images to verify that the

evaluation measures are sensitive to typical IR image arti-

facts. Four reference TMOs are introduced and qualitatively

and quantitatively evaluated in the remainder of this section.

4.1. Datasets

Two public thermal IR datasets that provide 8- and 16-bit

image pairs are used for the experiments. The Linköping

Thermal IR (LTIR) dataset provided by Berg et al. [4] con-

tains image sequences in the PNG format. Seven different

scenes with 20 sequences in total are available for different

IR cameras. However, the resolution of the images varies

across the sequences between 320 × 256 and 640 × 480
pixels. The FLIR dataset [11] is a thermal dataset for train-

ing DCNNs in an automotive environment. This dataset is

available in TIFF format with a bit depth of 16 bpp, of which

14 bpp are effectively used, and in JPEG format with a bit

depth of 8 bpp, where an automatic gain control is applied.

All images have a resolution of 640× 512 pixels.

4.2. Evaluation of the Tone Mapping IQA Measures

Now, we use artificial image quality degradation tech-

niques to verify that the presented evaluation measures are

able to detect their target artifacts for thermal IR images.

Each evaluation is carried out with five samples taken from

each dataset. In this way, we can present mean and stan-

dard deviation of the evaluation measures. The chosen sam-

ples for the FLIR dataset are frames 08866, 09032, 09119,

09780, and 10087 for the exposure, loss of contrast, and

noise visibility measures and five sequences of 13 frames

each starting at the already mentioned frames (e.g., 08866–

08877) for the temporal incoherence measure. From the

LTIR dataset we chose the first frame of the sequences (4)

horse, (10) crouching, (15) depthwise crossing, (18) quad-

copter2, and (19) selma, respectively. We use the first 13

frames of each sequence for the temporal incoherence mea-

sure. Since both datasets provide 8- and 16-bit images, we

directly use these image pairs for our evaluations in this sec-

tion. Example images for all image quality degradations can

be found in the supplementary material.

Table 2. Five IQA measures for four TMOs on the FLIR test sub-

dataset. The qualitative evaluation in Fig. 2 confirms the relative

quantitative evaluation behind the numbers of this table. The best

result for each measure is underlined.
TMO [11] [9] [7] [16]

TMQI ↑ .593 .519 .517 .427

Underexposure
.54 .18 .16 3.61

(in %) ↓
Overexposure

.82 .06 .13 1.81
(in %) ↓
Loss of

-0.16 -0.104 -0.105 -0.061
Global Contrast ↓

Loss of
-0.046 -0.011 -0.014 -0.008

Local Contrast ↓
Noise Visibility ↓ - 18.59 11.22 3.74

Global Temporal
.0002 .0003 .0003 .0005

Incoherence ↓
Local Temporal

.0253 .0365 .0325 .009
Incoherence ↓

Over-/Underexposure: Over- and underexposure can be

measured well as we can see in Fig. 1 (a-b). The image

quality is artificially impaired using clipping. For example

0.9 means that we clip the 10 % brightest pixels and equal-

ize the image intensities again, i.e. we bring more bright

pixels to saturation. As a consequence, the overexposure

measure increases for both datasets. A similar behavior can

be observed for underexposure, where we bring more and

more dark pixels to 0 intensity.

Noise Visibility: The verification of the noise visibility

measure is more complicated since we need four images

for the comparison: the original HDR and LDR images as

well as the noisy HDR and the resulting tone mapped noisy

LDR image. As we do not have access to the TMO used to

tone map the FLIR and the LTIR dataset, we simple apply

Poisson noise to both the HDR and the LDR image to gener-

ate the noisy images. Then, we successively add Gaussian

noise to the noisy LDR image to test the measure. Fig-

ure 1 (c) shows the result. With increasing sigma for Gaus-

sian noise, the noise visibility measure increases, too.

Loss Of Contrast: In Fig. 1 (d-g), we can see the results

for the verification of the loss of contrast measure. We use

two techniques to degrade the image quality: clipping and

Gaussian blur. For clipping, we continuously reduce the im-

age value range leading to a flat image with weak contrast.

Both degradations show an expected behavior of the mea-

sure: monotonically increasing values. However, all the val-

ues are negative. This means that we always gain contrast

after tone mapping compared to the original HDR image.

This may be surprising at the beginning. But since typical

scenes do not cover the entire temperature range of thermal

IR cameras, the HDR intensity value range is not fully oc-

cupied. Hence, negative values must actually be expected.
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Figure 1. Verification results for the four discussed objective IQA measures. For artificially impaired images, the evaluation measures

behave as expected. We consider two different IR datasets and took five samples from each dataset. This indicates that the IQA measures

are applicable to evaluate IR video TMOs. The vertical bars show the standard deviation across the five samples. The small images that

demonstrate the degradation of the image quality are cropped from one sample of the FLIR dataset. The original images and their impaired

versions can be found in the supplementary material. The exact numbers of the plots can be found on the website mentioned in Footnote 1.



[11] [9] [7] [16]

Figure 2. Processed image confirming Table 2 by showing us that (1) [16] do good noise reduction at the price of contrast, (2) the DCNN [7]

was successfully trained to perform like [9], and (3) the original image [11] shows the best tone mapping result w.r.t. detail visibility.

Temporal Incoherence: Since the temporal incoherence

measure is mainly sensitive to flickering, we simulate this

artifact by randomly performing clipping to each image of

a stack of 13 images. Clipping is applied in the same way as

for the over-/underexposure measure, but the range for ran-

dom clipping is successively increased from 0 to 0.3. The

latter means that 30 % of the darkest and the brightest pix-

els are clipped and equalized leading to brighter or darker

images. In Fig. 1 (h-i), we can see that the temporal inco-

herence gets larger with an increasing value range for inten-

sity clipping. One negative aspect is the small value range

especially for global temporal incoherence. Scaling could

help here but we wanted to stay as close as possible to the

original measure.

4.3. Reference TMOs

Four reference TMOs are used to further analyze the IR

tone mapping IQA measures. The baseline comes from

the datasets themselves as both provide 8- and 16-bit im-

age pairs. The second is a video TMO proposed by Eilert-

sen et al. [9] that performed best in a recent survey [10].

We use our own implementation as there is no public code

available. Then, we consider an approach based on Deep

Convolutional Neural Networks (DCNNs) [7]. In the origi-

nal paper, the goal is multitask learning to perform multiple

image quality improvement techniques end-to-end. How-

ever, as mentioned in the introduction, the DCNN expects

visual-optical 8-bit images as input and hence cannot per-

form tone mapping. So, we apply transfer learning and fine-

tuning to the network and use IR images tone mapped by the

second approach [9] as ground truth during training. As-

suming successful training after 180 epochs (the loss curve

looked fine), both TMOs should then roughly perform sim-

ilar. The intention here is to discover whether the IQA mea-

sures together with a qualitative evaluation can verify this

similar performance or not. Finally, we consider a recent

approach [16] and use the provided Matlab code.

4.4. TMO Evaluation using the IQA measures

Table 2 shows the measures (1) TMQI, (2) over-

/underexposure, (3) loss of contrast, (4) noise visibility, and

(5) temporal incoherence for the four considered TMOs ap-

plied to the FLIR dataset. Since we used the training and

the validation subset for DCNN training, we only evalu-

ate on the test subset that consists of 4,224 frames in total.

The numbers indicate multiple findings: the semi-objective

TMQI measure clearly favors the FLIR baseline TMO.

Liang’s [16] images are relatively over-/undersaturated and

weakly contrasted but with very good noise reduction. The

DCNN [7] successfully learned to perform like [9] but pro-

duces more noise in comparison. The temporal incoherence

is similar across all tested TMOs. Figure 2 shows qualita-

tive results that confirm the numbers of Table 2. We con-

sider this another indication that the evaluation measures

are suitable to assess the quality of tone mapped images.

Similar numbers for the LTIR dataset actually did not

provide as much insight as the numbers here. One reason

might be that the LTIR dataset is too diverse as it is acquired

by 7 different cameras. Hence, it is difficult to see clear

tendencies in the TMOs and/or the IQA measures.

5. Conclusion and Future Work

We presented IQA measures for thermal IR video tone

mapping. Among them we identified four that can be used

for objective quality assessment, which is favored compared

to subjective measures for real world applications such as

surveillance. These four measures were analyzed in depth

and applied to two public IR video datasets. The measures

work as expected and can be used to assess the quality of

IR video TMOs. Reference results on the FLIR dataset

were provided for four state-of-the-art TMOs. We mostly

discussed full reference measures that require the original

HDR image as input. Since the TMQI performed consider-

ably well, however, further blind tone mapping IQA mea-

sures [24, 39] should be evaluated in the future.
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