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Abstract

Visible and infrared image fusion is an important area in

image processing due to its numerous applications. While

much progress has been made in recent years with efforts on

developing image fusion algorithms, there is a lack of code

library and benchmark which can gauge the state-of-the-

art. In this paper, after briefly reviewing recent advances of

visible and infrared image fusion, we present a visible and

infrared image fusion benchmark (VIFB) which consists of

21 image pairs, a code library of 20 fusion algorithms and

13 evaluation metrics. We also carry out extensive experi-

ments within the benchmark to understand the performance

of these algorithms. By analyzing qualitative and quantita-

tive results, we identify effective algorithms for robust image

fusion and give some observations on the status and future

prospects of this field.

1. Introduction

The target of image fusion is to combine information

from different images to generate a single image, which

is more informative and can facilitate subsequent process-

ing. Many image fusion algorithms have been proposed,

which can be generally divided into pixel-level, feature-

level and decision-level approaches based on the level of

fusion. Also, image fusion can either be performed in the

spatial domain or transform domain. Based on application

areas, image fusion technology can be grouped into several

types, namely medical image fusion [1, 2], multi-focus im-

age fusion [3, 4, 5], remote sensing image fusion [6], multi-

exposure image fusion [7, 8], visible and infrared image fu-

sion [9, 10]. Among these types, the visible and infrared

image fusion is one of the most frequently used ones. This

is because that the visible and infrared image fusion can be

applied in many applications, for instance object tracking

[11, 12, 13, 14, 15], object detection [16, 17, 18], and bio-

metric recognition [19, 20]. Figure 1 shows an example of

visible and infrared image fusion.

However, current research on visible and infrared image

Figure 1. The benefit of visible and infrared image fusion. The

people around the car are invisible in visible image due to car

light. Although they can be seen in infrared image, the infrared

image lacks detail information about the scene. After fusion, the

fused image contains enough details and the people are also visi-

ble.

fusion is suffering from several problems, which hinder the

development of this field severely. First, there is not a well-

recognized visible and infrared image fusion dataset which

can be used to compare performance under the same stan-

dard. Therefore, it is quite common that different images

are utilized in experiments in the literature, which makes

it difficult to compare the performance of various algo-

rithms. Second, it is crucial to evaluate the performance

of state-of-the-art fusion algorithms to demonstrate their

strength and weakness and to help identify future research

directions in this field. However, although many evaluation

metrics have been proposed, none of them is better than all

other metrics. As a result, researchers normally just choose

several metrics which support their methods in the image

fusion literature. This further makes it difficult to objec-

tively compare performances. Third, although the source

codes of some image fusion algorithms have been made



Table 1. Details of some existing visible and infrared image fusion datasets and the proposed dataset.
Name Image/Video pairs Image type Resolution Year Results Code library

OSU Color-Thermal Database 6 video pairs RGB, Infrared 320× 240 2005 No No

TNO 63 image pairs multispectral Various 2014 No No

VLIRVDIF 24 video pairs RGB, Infrared 720×480 2019 No No

VIFB 21 image pairs RGB, Infrared Various 2020 Yes Yes

Figure 2. The infrared and visible test set in VIFB. The dataset includes 21 pairs of infrared and visible images. The first, third, and fifth

row contains RGB images, while the second, fourth, and sixth row presents the corresponding infrared images.

publicly available, for example the the DLF [21] and CNN

[22], the interface and usage of most algorithms are differ-

ent and thus it is inconvenient as well as time-consuming for

researchers to perform large scale performance evaluation.

To solve these issues, in this work we build a visible and

infrared image fusion benchmark (VIFB) that includes 21

pairs of visible and infrared images, 20 publicly available

fusion algorithms and 13 evaluation metrics to facilitate the

performance evaluation task 1.

The main contributions of this paper lie in the following

aspects:

• Dataset. We created a test set containing 21 pairs of

visible and infrared images. These image pairs are col-

lected from the Internet and several tracking datasets

thus covering a wide range of environments and work-

ing conditions, such as indoor, outdoor, low illumina-

tion, and over-exposure. Therefore, the dataset is able

1https://github.com/xingchenzhang/Visible-infrared-image-fusion-

benchmark

to test the generalization ability of image fusion algo-

rithms.

• Code library. We collected 20 recent image fusion al-

gorithms and integrated them into a code library, which

can be easily utilized to run algorithms and compare

performance. Most of these algorithms are published

in recent 5 years. An interface is designed to integrate

other image fusion algorithms into VIFB easily.

• Comprehensive performance evaluation. We imple-

mented 13 evaluation metrics in VIFB to comprehen-

sively compare fusion performance. We have run the

collected 20 algorithms on the proposed dataset and

performed comprehensive comparison of those algo-

rithms. All the results are made available for the inter-

ested readers to use.



Table 2. Visible and infrared image fusion algorithms that have been integrated in VIFB.
Method Year Journal/Conference Category

ADF [23] 2016 IEEE Sensors Journal Multi-scale

CBF [24] 2015 Signal, image and video processing Multi-scale

CNN [22] 2018 International Journal of Wavelets, Multiresolution and Information Processing DL-based

DLF [21] 2018 International Conference on Pattern Recognition DL-based

FPDE [25] 2017 International Conference on Information Fusion Subspace-based

GFCE [26] 2016 Applied Optics Multi-scale

GFF [27] 2013 IEEE Transactions on Image Processing Multi-scale

GTF [9] 2016 Information Fusion Other

HMSD GF[26] 2016 Applied Optics Multi-scale

Hybrid MSD [28] 2016 Information Fusion Multi-scale

IFEVIP [29] 2017 Infrared Physics & Technology Other

LatLRR [30] 2018 arXiv Saliency-based

MGFF [31] 2019 Circuits, Systems, and Signal Processing Multi-scale

MST SR [32] 2015 Information Fusion Hybrid

MSVD [33] 2011 Defense Science Journal Multi-scale

NSCT SR [32] 2015 Information Fusion Hybrid

ResNet [34] 2019 Infrared Physics & Technology DL-based

RP SR [32] 2015 Information Fusion Hybrid

TIF [35] 2016 Infrared Physics & Technology Saliency-based

VSMWLS [36] 2017 Infrared Physics & Technology Hybrid

2. Related Work

In this section, we briefly review recent visible and in-

frared image fusion algorithms. In addition, we summarize

existing visible and infrared image datasets.

2.1. Visibleinfrared fusion methods

A lot of visible and infrared image fusion methods have

been proposed. Before deep learning is introduced to the

image fusion community, main image fusion methods can

be generally grouped into several categories, namely multi-

scale transform-, sparse representation-, subspace-, and

saliency-based methods, hybrid models, and other methods

according to their corresponding theories [37].

In the past few years, a number of image fusion methods

based on deep learning have emerged [38, 39, 40, 37]. Deep

learning can help to solve several important problems in

image fusion. For example, deep learning can provide bet-

ter features compared to handcrafted ones. Besides, deep

learning can learn adaptive weights in image fusion, which

is crucial in many fusion rules. Regarding methods, convo-

lutional neural network (CNN) [41, 4, 5, 2, 8], generative

adversarial networks (GAN) [42], Siamese networks [22],

autoencoder [43] have been explored to conduct image fu-

sion. Apart from image fusion methods, the image quality

assessment, which is critical in image fusion performance

evaluation, has also benefited from deep learning [44]. It is

foreseeable that image fusion technology will develop in the

direction of machine learning, and an increasing number of

research results will appear in the coming years.

2.2. Existing dataset

Although the research on image fusion has begun for

many years, there is still not a well-recognized and com-

monly used dataset in the community of visible and infrared

image fusion. This differs from the visual tracking commu-

nity where several well-known benchmarks have been pro-

posed and widely utilized, such as OTB [45, 46] and VOT

[47]. Therefore, it is common that different image pairs

are utilized in visible and infrared image fusion literature,

which makes the objective comparison difficult.

At the moment, there are several existing visible and

infrared image fusion datasets, including OSU Color-

Thermal Database [48]2, TNO Image fusion dataset3,

and VLIRVDIF [49]4. The main information about these

datasets are summarized in Table 1. Actually, apart from

OSU, the number of image pairs in TNO and VLIRVDIF

is not small. However, the lack of code library, evaluation

metrics as well as results on these datasets make it difficult

to gauge the state-of-the-art based on them.

3. Visible and Infrared Image Fusion Bench-

mark

3.1. Dataset

The dataset in VIFB, which is a test set, includes 21 pairs

of visible and infrared images. The images are collected by

the authors from the Internet5 and fusion tracking dataset

[62, 48, 13]. These images cover a wide range of environ-

ments and working conditions, such as indoor, outdoor, low

illumination, and over-exposure. Each pair of visible and in-

frared image has been registered to make sure that the image

fusion can be successfully performed. There are various im-

2http://vcipl-okstate.org/pbvs/bench/
3https://figshare.com/articles/TN Image Fusion Dataset/1008029
4http://www02.smt.ufrj.br/ fusion/
5https://www.ino.ca/en/solutions/video-analytics-dataset/



Table 3. Evaluation metrics implemented in VIFB. ’+’ means that a large value indicates a good performance while ’-’ means that a small

value indicates a good performance.

Category Name Meaning +/- Category Name Meaning +/-

Information

theory-based

CE [50] Cross entropy -

Image

feature-based

AG [51] Average gradient +

EN [52] Entropy + EI [53] Edge intensity +

MI [54] Mutual information + SD [55] Standard deviation +

PSNR [56] Peak signal-to-noise ration + SF [57] Spatial frequency +

QAB/F [58] Gradient-based fusion per-

formance

+

Structural

similarity-

based

SSIM [59] Structural similarity index measure + Human

perception

inspired

QCB [60] Chen-Blum metric +

RMSE [56] Root mean squared error - QCV [61] Chen-Varshney metric -

Figure 3. Qualitative comparison of 20 methods on the fight image pair shown in Fig. 2.

age resolution in the dataset, such as 320×240, 630×460,

512×184, and 452×332. Some examples of images in the

dataset are given in Fig. 2.



Figure 4. Qualitative comparison of 20 methods on the manlight image pair shown in Fig. 1 and Fig. 2.

3.2. Baseline algorithms

In recent years, a lot of algorithms have been proposed to

perform visible and infrared image fusion. However, only a

part of papers provide the source code. Besides, these codes

have different input and output interfaces, and they may re-

quire different running environment. These factors hinder

the usage of these codes to produce results and to perform

large-scale performance comparison.

In VIFB benchmark, we integrated 20 recently published

visible-infrared image fusion algorithms including MSVD

[33], GFF [27], MST SR [32], RP SR [32], NSCT SR

[32], CBF [24], ADF [23], GFCE [26], HMSD GF [26],

Hybrid-MSD [28], TIF [35], GTF [9], FPDE [25], IFEVIP

[29], VSM WLS [36], DLF [21], LatLRR [30], CNN [22],

MGFF [31], ResNet [34]. Table 2 lists more details about

these algorithms. Note that many algorithms were origi-

nally designed to fuse grayscale images. We modified them

to fuse color images by fusing every channel of the RGB

image with corresponding infrared image.

These algorithms cover almost every kind of visible-

infrared fusion algorithms, and most algorithms are pro-

posed in the last five years, which can represent the devel-

opment of the visible-infrared fusion field to some extent.

To integrate algorithms into VIFB and for the conve-

nience of users, we designed an interface. By using this

interface, other visible-infrared fusion algorithms or their

fusion results can be integrated to VIFB to compare their

results with those integrated algorithms.

3.3. Evaluation metrics

Numerous evaluation metrics for visible-infrared image

fusion have been proposed. As introduced in [63], image

fusion metrics can be classified into four types, namely in-

formation theory-based, image feature-based, image struc-

tural similarity-based, and human perception-based met-

rics. However, none of the proposed metrics is better than

all others. To have comprehensive and objective perfor-

mance comparison, we implemented 13 evaluation metrics

in VIFB. All evaluation metrics that have been implemented

in VIFB and their corresponding categories are listed in Ta-

ble 3. As can be seen, the implemented metrics in VIFB

cover all four categories. It is convenient to compute all

these metrics for each method in VIFB, thus making it easy



Figure 5. Quantitative comparisons of six metrics of the selected 10 methods on 21 image pairs shown in Fig. 2. The best 10 methods in

terms of each evaluation metric are shown. The values in the legend indicate the average value on 21 image pairs for each method. From 1

to 21 in the horizontal axis: carLight, carShadow, carWhite, elecbike, fight, kettle, labMan, man, manCall, manCar, manlight, manWalking,

manwithbag, nightCar, peopleshadow, running, snow, tricycle, walking, walking2, walkingnight.

to compare performances among methods. Due to the page

limits, we leave the detailed introduction to these metrics in

the supplementary material. More information about evalu-

ation metrics can be founded in [63, 37].

4. Experiments

This section presents experimental results on the VIFB

dataset. Section 4.1 and Section 4.2 presents qualitative and

quantitative performance comparison, respectively. Section

4.3 compares the runtime of each algorithm. All experi-

ments were performed using a computer equipped with an

NVIDIA RTX2070 GPU and i7-9750H CPU. Default pa-

rameters reported by the corresponding authors of each al-

gorithm were employed. Regarding deep learning-based al-

gorithms, the pretrained models provided by their authors

were used in this work and we did not retrain those mod-

els. Note that due to the page limits, we just present a part

of results here. More fusion results will be provided in the

supplementary materials.

4.1. Qualitative performance comparison

Qualitative evaluation methods are important in fusion

quality assessment and they assess the quality of fused im-

ages on the basis of the human visual system. Figure 3



Table 4. Average evaluation metric values of all methods on 21 image pairs. The best three values in each metric are denoted in red, green

and blue, respectively. The three numbers after the name of each method denote the number of best value, second best value and third best

value, respectively. Best viewed in color.

Method AG CE EI EN MI PSNR QAB/F QCB QCV RMSE SF SSIM SD

ADF (0,0,0) 4.582 1.464 46.529 6.788 1.921 58.405 0.520 0.474 777.8 0.1043 14.132 1.400 35.185

CBF (0,0,3) 7.154 0.994 74.590 7.324 2.161 57.595 0.578 0.526 1575.1 0.1257 20.380 1.171 48.544

CNN (1,2,2) 5.808 1.030 60.241 7.320 2.653 57.932 0.658 0.622 512.6 0.1178 18.813 1.391 60.075

DLF (3,0,0) 3.825 1.413 38.569 6.724 2.030 58.444 0.434 0.445 759.8 0.1035 12.491 1.461 34.717

FPDE (0,0,0) 4.538 1.366 46.022 6.766 1.924 58.402 0.484 0.460 780.1 0.1045 13.468 1.387 34.931

GFCE (0,3,0) 7.498 1.931 77.466 7.266 1.844 55.939 0.471 0.535 898.9 0.1728 22.463 1.134 51.563

GFF (0,0,0) 5.326 1.189 55.198 7.210 2.638 58.100 0.624 0.619 881.6 0.1117 17.272 1.398 50.059

GTF (0,0,0) 4.303 1.286 43.664 6.508 1.991 57.861 0.439 0.414 2138.4 0.1177 14.743 1.371 35.130

HMSD GF (0,1,0) 6.246 1.164 65.034 7.274 2.472 57.940 0.623 0.604 533.0 19.904 19.904 1.394 57.617

Hybrid MSD (1,1,0) 6.126 1.257 63.491 7.304 2.619 58.173 0.636 0.623 510.9 0.1102 19.659 1.405 54.922

IFEVIP (0,0,0) 4.984 1.339 51.782 6.936 2.248 57.174 0.486 0.462 573.8 0.1384 15.846 1.391 48.491

LatLRR (3,0,1) 8.962 1.684 92.813 6.909 1.653 56.180 0.438 0.497 697.3 0.1686 29.537 1.184 57.134

MGFF (0,0,0) 5.839 1.295 60.607 7.114 1.768 58.212 0.573 0.542 676.9 0.1092 17.916 1.406 44.290

MST SR (2,2,2) 5.851 0.957 60.781 7.339 2.809 57.951 0.661 0.645 522.7 0.1165 18.807 1.390 57.314

MSVD (0,0,3) 3.545 1.462 36.202 6.705 1.955 58.415 0.332 0.426 809.0 0.1042 12.525 1.425 34.372

NSCT SR (3,1,0) 6.492 0.900 67.956 7.396 2.988 57.435 0.646 0.617 1447.3 0.1314 19.389 1.277 52.475

ResNet (1,2,0) 3.674 1.364 37.255 6.735 1.988 58.441 0.407 0.445 724.8 0.1035 11.736 1.460 34.940

RP SR (0,1,1) 6.364 0.994 65.219 7.353 2.336 57.777 0.566 0.606 888.8 0.1217 21.171 1.332 55.808

TIF (0,0,0) 5.558 1.371 57.839 7.075 1.767 58.225 0.584 0.545 613.0 0.1087 17.739 1.399 42.643

VSMWLS (0,0,0) 5.612 1.409 57.252 7.028 2.035 58.194 0.554 0.497 754.7 0.1092 17.662 1.417 46.253

presents the qualitative performance comparison of 20 fu-

sion methods on the fight image pair. In this image pair,

several people are in the shadow of a car thus can not be

seen clearly in the visible image while can be seen in in-

frared image. As can be seen, in almost all fused images

these people can be seen. However, the fused images ob-

tained by some algorithms have introduced artifacts infor-

mation. These include CBF, IFEVIP, MST SR, NSCT SR,

and RP SR. Besides, the fused images produced by ADF,

CNN, GTF, LatLRR and MSVD do not preserve detail in-

formation contained in the visible image well. Figure 3

indicates that the fused images obtained by Hybrid MSD,

MGFF, TIF and VSMWLS are more natural for human sen-

sitivity and preserve more details.

Figure 4 shows the qualitative comparison of 20 methods

on manlight image pair. In this case, the people around the

car are invisible in visible images due to over-exposure. It

can be seen that in many fused images, the people around

the car are still invisible or not clear, such as those pro-

duced by CNN, GFCE, HMSD GF, Hybrid MSD, IFEVIP,

LatLRR, and VSMWLS. Some other fused images have

more artifacts which are not presented in original images,

such as those obtained by CBF, GFCE, and NSCT SR. Al-

though the fused images produced by MST SR and RP SR

preserve the details in visible image well and the people

around the car can be seen clearly, some light purple are in-

troduced in the fused images (near the image center) which

are not presented in source images. The results indicate that

GFF and MGFF give better subjective fusion performance

for the manlight case.

4.2. Quantitative performance comparison

Table 4 presents the average value of 13 evaluation met-

rics for all methods on 21 image pairs. As can be seen,

the NSCT SR obtains the best overall quantitative perfor-

mance by having 3 best values and 1 second best value. The

LatLRR method obtains the second best overall perfor-

mance by having 3 best values and 1 third best value. DLF

ranks the third place in terms of overall performance by hav-

ing 3 best values. However, this table indicates clearly that

there is not a dominant fusion method that can beat other

methods in all or most evaluation metrics. Besides, from

the table one can see that the deep learning-based methods

show slightly worse performance than conventional fusion

algorithms, although each deep learning-based method per-

forms well in some evaluation metrics. This is very different

from the field of object tracking and detection which is al-

most dominated by deep learning-based approaches.

From Table 4 one can also see that the top three algo-

rithms show very different performance in different kinds

of metrics. Specifically, the NSCT SR algorithm obtains

the best value in CE, EN and MI, which are all informa-

tion theory-based evaluation metrics. The LatLRR algo-

rithm shows the best performance in AG, EI and SF, which

are all image feature-based metrics. The DLF method per-

forms well in RMSE, SSIM and PSNR. Both RMSE and

SSIM are structural similarity-based metrics. The possible

reason is that the authors of these algorithms pay more at-

tention to a specific kind of information when designing

these algorithms. This phenomenon further shows that an

image fusion algorithm should be evaluated using various

kinds of metrics for a comprehensive comparison, which



further indicates the benefits of this study.

Note that although the NSCT SR algorithm obtains the

best overall quantitative performance, its qualitative perfor-

mance is not very good. As can be seen from Fig. 3 and

Fig. 4, it introduces artifacts in the fused images. Similarly,

the LatLRR also shows good quantitative performance but

the qualitative performance is relatively poor. Specifically,

in the fight case the LatLRR algorithm loses some details of

the visible image while in the manlight case it fails to show

the target which is invisible in visible images due to over-

exposure. Actually, NSCT SR and LatLRR do not perform

very well in QCB and QCV , which are human perception

inspired metrics used to measure the visual performance of

the fused image. The different performance between qual-

itative and quantitative evaluation clearly shows that both

qualitative and quantitative comparison are crucial in image

fusion quality evaluation.

To further show quantitative comparison of fusion per-

formances of various methods, the values of six metrics of

the 10 selected methods on 21 image pairs are presented in

Figure 5.

4.3. Runtime comparison

The runtime of algorithms integrated in VIFB is listed in

Table 5. As can be seen, the runtime of image fusion meth-

ods varies significantly from one to another. This is also

true even for methods in the same category. For instance,

both CBF and GFF are multi-scale methods, but the runtime

of CBF is more than 50 times that of GFF. Besides, multi-

scale methods are generally fast and deep learning-based

algorithms are slower than others even with the help of

GPU. The fastest deep learning-based method, i.e. ResNet,

takes 4.80 seconds to fuse one image pair. It should be men-

tioned that all three deep learning-based algorithms in VIFB

do not update the model online, but use pretrained model in-

stead.

One important application area of visible and infrared

image fusion is the RGB-infrared fusion tracking [11, 12,

64], where the tracking speed is vital for practical applica-

tions. As pointed out in [11], if an image fusion algorithm

is very time-consuming, like LatLRR [30] and NSCT SR

[32], then it will not be feasible to develop a real-time fu-

sion tracker based on this image fusion algorithm. Actually,

most image fusion algorithms listed in Table 5 are compu-

tationally expensive in terms of tracking.

5. Concluding Remarks

In this paper, we present a visible and infrared image fu-

sion benchmark (VIFB), which includes a test set of 21 im-

age pairs, a code library consists of 20 algorithms, 13 eval-

uation metrics and all results. To the best of our knowledge,

this is the first visible and infrared image fusion benchmark

to date. This benchmark facilitates better understanding of

Table 5. Runtime of algorithms in VIFB (seconds per image pair)
Method Average runtime Category

ADF [23] 1.00 Multi-scale

CBF [24] 22.97 Multi-scale

CNN [22] 31.76 DL-based

DLF [21] 18.62 DL-based

FPDE [25] 2.72 Subspace-based

GFCE [26] 2.13 Multi-scale

GFF [27] 0.41 Multi-scale

GTF [9] 6.27 Other

HMSD GF[26] 2.76 Multi-scale

Hybrid MSD [28] 9.04 Multi-scale

IFEVIP [29] 0.17 Other

LatLRR [30] 271.04 Saliency-based

MGFF [31] 1.08 Multi-scale

MST SR [32] 0.76 Hybrid

MSVD [33] 1.06 Multi-scale

NSCT SR [32] 94.65 Hybrid

ResNet [34] 4.80 DL-based

RP SR [32] 0.86 Hybrid

TIF [35] 0.13 Saliency-based

VSMWLS [36] 3.51 Hybrid

the state-of-the-art image fusion approaches, and can pro-

vide a platform for gauging new methods.

We carry out extensive experiments using VIFB to eval-

uate the performance of all integrated fusion algorithms. We

have several observations based on our experimental re-

sults. First, unlike some other fields in computer vision

where deep learning is almost dominant, such as object

tracking and detection, the performances of deep learning-

based image fusion algorithms do not show superiority over

non-learning algorithms at the moment. However, due to

its strong representation ability, we believe that the deep

learning-based image fusion approach will be an impor-

tant research direction in future. Second, image fusion algo-

rithms may have different performances in different kinds

of evaluation metrics, thus it is necessary to utilize vari-

ous kinds of metrics to comprehensively evaluate an image

fusion algorithm. Besides, both qualitative and quantitative

evaluation are crucial. Finally, the computational efficiency

of visible and infrared image fusion algorithms still need to

be improved in order to be applied in real-time applications,

such as tracking and detection.

We will continue extending the dataset and code library

of VIFB. We will also implement more evaluation metrics

in VIFB. We hope that VIFB can serve as a good starting

point for researchers who are interested in visible and in-

frared image fusion.
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“A novel performance evaluation methodology for single-

target trackers,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 38, no. 11, pp. 2137–2155, Nov

2016.

[48] J. W. Davis and V. Sharma, “Background-subtraction us-

ing contour-based fusion of thermal and visible imagery,”

Computer vision and image understanding, vol. 106, no. 2-3,

pp. 162–182, 2007.

[49] A. Ellmauthaler, C. L. Pagliari, E. A. da Silva, J. N. Gois,

and S. R. Neves, “A visible-light and infrared video database

for performance evaluation of video/image fusion methods,”

Multidimensional Systems and Signal Processing, vol. 30,

no. 1, pp. 119–143, 2019.

[50] D. M. Bulanon, T. Burks, and V. Alchanatis, “Image fu-

sion of visible and thermal images for fruit detection,”

Biosystems Engineering, vol. 103, no. 1, pp. 12–22, 2009.

[51] G. Cui, H. Feng, Z. Xu, Q. Li, and Y. Chen, “Detail pre-

served fusion of visible and infrared images using regional

saliency extraction and multi-scale image decomposition,”

Optics Communications, vol. 341, pp. 199 – 209, 2015.

[52] V. Aardt and Jan, “Assessment of image fusion procedures

using entropy, image quality, and multispectral classifica-

tion,” Journal of Applied Remote Sensing, vol. 2, no. 1, p.

023522, 2008.

[53] B. Rajalingam and R. Priya, “Hybrid multimodality medi-

cal image fusion technique for feature enhancement in med-

ical diagnosis,” International Journal of Engineering Science

Invention, 2018.

[54] G. Qu, D. Zhang, and P. Yan, “Information measure for per-

formance of image fusion,” Electronics letters, vol. 38, no. 7,

pp. 313–315, 2002.

[55] Y.-J. Rao, “In-fibre bragg grating sensors,” Measurement

science and technology, vol. 8, no. 4, p. 355, 1997.

[56] P. Jagalingam and A. V. Hegde, “A review of quality metrics

for fused image,” Aquatic Procedia, vol. 4, no. Icwrcoe, pp.

133–142, 2015.

[57] A. M. Eskicioglu and P. S. Fisher, “Image quality

measures and their performance,” IEEE Transactions on

communications, vol. 43, no. 12, pp. 2959–2965, 1995.

[58] C. S. Xydeas and P. V. V., “Objective image fusion perfor-

mance measure,” Military Technical Courier, vol. 36, no. 4,

pp. 308–309, 2000.

[59] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli et al.,

“Image quality assessment: from error visibility to structural

similarity,” IEEE transactions on image processing, vol. 13,

no. 4, pp. 600–612, 2004.



[60] Y. Chen and R. S. Blum, “A new automated quality as-

sessment algorithm for image fusion,” Image and vision

computing, vol. 27, no. 10, pp. 1421–1432, 2009.

[61] H. Chen and P. K. Varshney, “A human perception inspired

quality metric for image fusion based on regional informa-

tion,” Information fusion, vol. 8, no. 2, pp. 193–207, 2007.

[62] C. O’Conaire, N. E. O’Connor, E. Cooke, and A. F. Smeaton,

“Comparison of fusion methods for thermo-visual surveil-

lance tracking,” in 2006 9th International Conference on

Information Fusion. IEEE, 2006, pp. 1–7.

[63] Z. Liu, E. Blasch, Z. Xue, J. Zhao, R. Laganiere, and W. Wu,

“Objective assessment of multiresolution image fusion al-

gorithms for context enhancement in night vision: A com-

parative study,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 34, pp. 94–109, 2012.

[64] X. Zhang, P. Ye, S. Peng, J. Liu, and G. Xiao, “DSiamMFT:

An RGB-T fusion tracking method via dynamic Siamese net-

works using multi-layer feature fusion,” Signal Processing:

Image Communication, p. 115756, 2020.


