
Topometric Imitation Learning For Route Following Under Appearance Change

Shaojun Cai

UISEE Technology Inc.

85 Hongan Road, Fangshan District, Beijing, China

shaojun.cai@uisee.com

Yingjia Wan

Key Laboratory of Behavioral Sciences, Institute of Psychology, Chinese Academy of Sciences

16 Lincui Road, Chaoyang District, Beijing, China

wanyj@psych.ac.cn

Abstract

Traditional navigation models in autonomous driving

rely heavily on metric maps, which severely limits their

application in large scale environments. In this paper,

we introduce a two-level navigation architecture that con-

tains a topological-metric memory structure and a deep

image-based controller. The hybrid memory extracts vi-

sual features at each location point with a deep convolu-

tional neural network, and stores information about local

driving commands at each location point based on metric

information estimated from ego-motion information. The

topological-metric memory is seamlessly integrated with a

conditional imitation learning controller through the navi-

gational commands that drives the vehicle between differ-

ent vertices without collision. We test the whole system in

teach-and-repeat experiments in an urban driving simula-

tor. Results show that after being trained in a separate en-

vironment, the system could quickly adapt to novel environ-

ments with a single teach trial and follow route successively

under various illumination and weather conditions.

1. Introduction

In recent years, spatial navigation has received

widespread interest from the areas of artificial intelligence

and cognitive neuroscience. Inspired by the cognitive mod-

els of animals and humans in navigation tasks, researchers

have proposed a number of navigation models for au-

tonomous agents, and the performance of many nicely repli-

cated the results of some classic behavioral experiments in

maze environments [2]. However, navigation remains a crit-

ical challenge for real-world robotic applications. The com-

plex mechanical control and the rapidly changing environ-

ments make it difficult and costly for autonomous agents to

navigate in real-world contexts.

In the area of autonomous driving, the majority of ex-

isting navigation models rely heavily on a metric map for

localization and path planning. Most of the traditional vi-

sual navigation systems first build a geometric map of the

environment with SLAM techniques and then perform fea-

ture matching with the map to compute the camera pose.

After that, the system calculates a feasible path accord-

ingly and execute the plan with control modules. However,

SLAM suffers from several problems. Firstly, visual SLAM

is based on local feature matching which tends to fail due to

weather and illumination changes commonly found in out-

door spaces [20] (Figure 1 and Figure 2). Secondly, pre-

cise reconstruction of every geometric element could result

in an overwhelmingly large map that contains much redun-

dant information about task-irrelevant elements, such as de-

tails of stores on the sides of the roads. Lastly, the heavy

reliance on a precise geometric map makes it difficult to

apply SLAM-based systems to large-scale environments, as

the amount of calculation would be proportionate to the area

of the environment.

Compared to the commonly used navigation systems in

autonomous driving which rely on a detailed metric map

and a planner, mammal’s navigation system is more similar

to a combination of a topological map for global planning

and a stimulus-response system for local control [23]. In-

stead of having an accurate map of the entire environment,

mammals store information about key location points, such

as certain landmarks and intersections. When traveling in

the environment, they match their perceptions to these key

points to localize themselves and plan paths toward goals,

and then travel from one point to the next by simply fol-

lowing the planned path. Similarly, navigation systems for

autonomous driving could build a topological map to repre-

sent the environment with vertices – nodes that correspond

1



(a) Clear Noon (b) After rain noon (c) Cloudy after rain (d) Heavy rain (e) Clear sunset (f) Soft rain sunset

Figure 1: Sample images under various weather and illumination conditions in town01 and town02. The first row represents

images in town01, and the second row represents images in town02. Each column shows a different weather condition.

(a) Clear sunset (b) Cloudy sunset (c) Hard rain noon (d) Mid rain sunset

Figure 2: Sample images in town03 and town05. The first row represents images in town03, and the second row represents

images in town05. Both environments are more complex than town01 and town02, with multi-way lanes and irregular

intersections. It can also be spotted that there are roundabouts and slopes in town03.

to locations in the environment, use feature matching to lo-

cate the vehicle, and travel from one vertex to the next with

local control modules.

Recent work started developing navigation systems us-

ing topological representation [24, 21, 6]. However, this

line of work targets only the high-level navigation problem,

rather than issuing steering commands to the low-level con-

troller. Inspired by the development in deep learning, recent

work [4] proposed to directly map the visual perception to

a controller output with an end-to-end neural network. In

an effort to combine high-level command and local control,

[15, 9] proposed to use an additional navigational command

alongside the image to compute the final control. How-

ever, this system requires a separate external mapping and

planning module to generate the navigational command. In

other words, a precise map is still required, and the limita-

tions of building a metric map are still unsolved.

In order to develop a complete visual navigation system,

a map representation that is suitable for downstream control

task is required so that the high-level command and the low-

level control can be integrated seamlessly. In this paper, we

present a two-level navigation architecture for autonomous

driving that uses topological-metric memory representation

for high-level commands and conditional imitation learn-

ing for local control [15]. The map stores high-level nav-

igational commands at the graph vertices, which are then



passed to the local controller. The mapping system first con-

structs a topological graph G with vertices that correspond

with the places in the mapping process, and then uses the

convolutional layer output of ResNet50 [17] as the embed-

ded scene signature for each place. The system also stores

approximate distances between different vertices based on

the ego-motion information, and generates the navigational

command which is either a discrete value or a top-down

view of the local path at each vertex. After constructing

the map, the navigation system uses place recognition tech-

nique to localize the vertex and retrieves the navigational

command stored in that vertex. Since the place recognition

result could produce error due to repetitive appearances of

the environment, and the navigation trial might not overlap

completely with the mapping trial, the learning-based lo-

cal controller is designed to handle the uncertainty inherent

to the navigational command. Although conditional imita-

tion learning has certain degree of resistance to inaccurate

navigational command, we further account for the errors in

local path by adding permutations to the data in the training

process.

We run all the experiments in an autonomous driving

simulator Carla [12] that provides realistic urban driving

environments. We first train the retrieval and controller

networks in a separate training environment, and evaluate

the mapping and navigation process using teach-and-repeat

paradigm in a new environment with notably different road

structures and features. During the evaluation phase, the ve-

hicle is spawned in a random position and given one demon-

stration trial with the images, controls, and ego-motions

recorded. Then the vehicle is reinitialized at the same start-

ing point and asked to follow the same route to the endpoint

under a variety of weather and illumination conditions. Pre-

liminary results show that this model performs well in com-

plex urban environments despite the appearance differences

between the teaching trial and repeating trials.

2. Related Works

Traditional navigation methods in autonomous driving

generally rely on metric map representation for both high-

level planning and low-level control. In particular, SLAM-

based methods are gaining increasing popularity in recent

years [7, 22]. Feature-based SLAM method performs fea-

ture matching to construct the sparse 3D point cloud as map

representation. Direct SLAM [13] performs direct pixel-

level matching and builds a semi-dense representation of

the environment. Both types of SLAM methods build a de-

tailed metric map of the environment, and the map construc-

tion process is prone to errors in feature matching caused by

weather and illumination changes.

In order to reduce reliance on precise mapping and local-

izaton systems, recent works [4, 18, 8] have started to utilize

information perceived locally from sensors such as cam-

eras to compute controller outputs such as steer, gas, and

brake. A particularly popular approach is imitation learning

[4], in which the system learns from expert demonstrations.

Imitation learning is generally considered model-free, as it

directly maps the visual perception to a controller output

with an end-to-end neural network rather than conducting

planning or model-based reasoning. [9] proposed to aug-

ment the purely reactive imitation learning method with a

high-level navigational command. [15] changes the con-

ditional command to a more general top-down view rep-

resentation. Rather than learning control from first-person

images, [3, 28] proposes to learn the control from a bird-

eye view of an abstract scene representation. However, the

above methods either rely on a metric map or leave open the

issue of map representation.

Unlike SLAM-based method, humans and animals do

not rely on metric representations of the environment

for global navigation and local control [16, 26, 14].

While mammals also use a cognitive map for high-level

planning[25], the map contains relatively abstract knowl-

edge of the spatial layout. While the exact navigation strat-

egy of mammals is still under debate, it appears to rely

on information such as landmarks and connections between

different locations [14], suggesting that their representation

of the environment is mostly topological.

Topological maps have been applied to navigation mod-

els for decades, especially in 2D environments [5, 11, 20].

Recently, [24] designed a topological memory model that

uses deep neural network to retrieve information about ver-

tices based on observations. However, their work focuses on

the indoor environments rather than the large-scale outdoor

scenarios used in autonomous driving setting. [6] performs

topological map construct in a large environment with a sin-

gle traversal, but it mainly focuses on high-level navigation

task and does not address the control issue. To successfully

apply topological maps, the robot has to associate the ab-

stract places and paths with physical places and paths per-

ceived locally [20]. In contrast, metric map stores rich ge-

ometric and navigational information in the map itself, and

thus lowers the burden for the perception module. How-

ever, building a globally consistent metric map is difficult

and only feasible in small areas. For this reason, a com-

bination of topological and metric map, or topometric map

[10, 1], is a good balance. Topometric maps only contains

locally consistent metric information and is thus more ap-

plicable.

3. Methodology

Our method can be separated into two modules: topolog-

ical localization and local control. The topological localiza-

tion module is trained with a metric learning paradigm, and

the local control is trained with conditional imitation learn-

ing paradigm. Both modules are trained in a separate en-



vironment different from the test environment, and without

any human labeling effort.

We test our method in a teach-and-repeat paradigm. In

the testing environment, we first conduct a teach trial that

navigates from a specified start point to an endpoint with

ground truth localization and a planning system. After that,

we construct the topology graph and save the images and

navigational commands at each topological node. There are

two types of navigational commands, the Discrete Local

Move (DLM) and Local Path (LP), and the type of com-

mand stored in the topological map is different according to

the chosen controller model that are described. The details

of the two types of navigational commands are described

in the following sections. In the repeat trial, the agent con-

ducts topology localization by matching the convolutional

feature of the current image and a subset of vertices in the

graph. After that, the agent retrieves the navigational com-

mand from the matched vertex and performs conditional im-

itation learning to drive the vehicle forward.

3.1. Discrete Local Move Command

We trained the model using conditional imitation learn-

ing – a variant of imitation learning that allows providing

high-level commands to a learning-based controller model.

When coupled with a high-level topological planner, the

method can scale to complex navigation tasks such as driv-

ing in an urban environment. We briefly review the ap-

proach here and refer the readers to [9, 15] for further de-

tails. [15] proposes two kinds of representations of the high-

level commands. The DLM-net represents the intention

with four discrete values: follow lane, left, right, straight.

3.2. Local Path Command

The above discrete commands only apply to simple in-

tersections. In order to handle more complicated intersec-

tions, e.g. roundabout, we adopt a more general command

representation as in [15]. Specifically, we first compute the

ego-motion of the vehicle using the provided velocity and

timestamps from the simulator. Afterward, we draw the co-

ordinates of the positions in a local window of 224x224 pix-

els in the local coordinate system. Then the image of the

local path is concatenated with the first-person image and

passed further through two fully-connected layers to gener-

ate the final control command.

We made two modifications to the original implementa-

tion in [15]. First, the original local path representation is

drawn on top of a local environment sketch. Since we do

not assume any form of prior map of the environment , we

draw the local path on a blank background instead. Second,

the original network is implemented in a siamese network

style. However, in the experiment we find that the non-

siamese network produces better results in our setting. A

possible explanation is that although the siamese network

tries to embed the two inputs into a shared space, it also

forces the rich first-person image to lose a certain amount

of information which might be essential to the control out-

put.

In the experiment, we also find that simply training the

network in a non-siamese fashion could lead to severe over-

fitting to the local path image. In the extreme case, the net-

work would just completely ignore the visual input and sim-

ply follow the direction in the Local Path. Therefore, it is

important to account for the possible localization error in

the retrieval process. We augment the training local paths

by randomly selecting a path centered around a perturbated

location with proximity to the true vehicle position. In ad-

dition, we add a small amount of random rotation to each

local path to simulate the possible deviation from the path

in the repeat process.

3.3. Visual Place Recognition

Visual Place Recognition [20], or topological localiza-

tion, determines the most likely place of the vehicle based

on the current camera input. Unlike metric localization that

computes the metric location in a global coordinate system,

place recognition aims at locating the most likely vertex in

the topological map. Compared to the local feature match-

ing and geometric pose estimation in SLAM systems, place

recognition has a larger localization error as it does not com-

pute the accurate pose. However, global features used in the

place recognition process are more robust to changing light-

ing conditions than local features used in the SLAM method

[20], and therefore has a higher overall success rate.

We implement the place recognition algorithm with the

siamese network [27]. The network aims at projecting the

input images into a common feature space, where images

spatially close to each other in the map are also close to

each other in the embedding space. To achieve this goal,

the network extracts visual features from a pair of images

using shared weights, and features are further processed by

fully-connected layers to determine whether they are close

or not.

Specifically, we employ the ResNet50 [17] as our base

network and adopts the 2048 dimensional feature of the av-

erage pooling layer as the embedded feature vector. The

feature vectors of the two images are concatenated and fur-

ther processed by two fully-connected layers and a softmax

function to produce the final output. The network is trained

with cross-entropy loss.

3.4. Topological Map Construction

Upon finishing the teaching trial, we construct a topo-

logical node at each position on the path. We store the ap-

proximate positions of each vertex based on the estimation

using path integration on the velocity input from the simu-

lator with additional Gaussian noise. The ego-motion could



(a) Topo-DLM map (b) Topo-LP Map

Figure 3: We group the vertices in Topo-DLM Map accord-

ing to their values. Every time, the agent only needs to lo-

cate itself to the correct group, rather than to the exact ver-

tex. The Topo-LP map maintains a local window around its

current position and searches in the window.

also be calculated from the visual odometry, but we leave

this for future work. After determining the places of the

vertices, we store the visual features and the corresponding

navigational commands along with the vertices.

3.5. Visual Navigation Pipeline

After finishing the teaching trial and having constructed

the topological graph, in the repeat trial the system first

searches for the vertex that matches the current image the

most and retrieves the stored navigational command. After

that, the system performs the conditional imitation learning

pipeline according to the stored command.

We perform a different type of topological localization

strategy for each navigational command. For the DLM

command, we group the topological nodes belonging to the

same command, as shown in Figure 3a. Upon localized to

a certain node, we use the retrieved discrete command for

further processing in the DLM-net. Otherwise, we simply

set the conditional command as 2 (Go Straight).

For the LP command, we perform a more sophisticated

localization procedure. We conduct image retrieval with a

fixed frequency in the neighborhood of the last estimated

pose (shown in Figure 3b, and the retrieval is deemed suc-

cessful only if the score predicted by the retrieval network

on the current image and the retrieved image is higher than

0.8. If the retrieval is not performed or unsuccessful at

the current timestamp, we use path integration from the ve-

locity to compute the estimated position on the topometric

graph. Due to the noise in the velocity, the integrated po-

sition could drift, and we set the estimated pose to the re-

trieved pose if successful. If there is no successful retrieval

in the past 30 timestamps, we perform global relocaliza-

tion that searches all the vertices to relocalize the vehicle.

During the relocalization procedure, we consider the recent

five images and compare them independently against all the

candidate images. The result positions of the images should

not be too far away from each other, so we only consider

the localization successful if the max and min of the result

positions are within 30 vertices on the topometric graph.

During the global relocalization procedure, we deliberately

slow down the agent as the global search takes more time

than a window-based search. The full navigation pipelines

of the two methods are shown in Figure 4 and Figure 5.

4. Experiments

We perform experiments using Carla [12], a driving sim-

ulator that renders realistic outdoor urban environments.

Unlike the indoor environments used in other works [24],

this simulated outdoor environment is much larger in scale

and highly structured. In addition, it contains various

weather and illumination conditions.

We use two versions of Carla simulation environment,

Carla 0.8.2 and Carla 0.9.7. Carla 0.8.2 contains two town

environments. Carla 0.9.7 contains seven environments,

two of which are the same as the two towns in Carla 0.8.2.

Carla 0.8.2 contains a planner that provides high-level dis-

crete commands at intersections, which is suitable to test

the DLM agents.

Town01 and town02 are regular urban environments,

with two-way lanes and buildings on the sides, as shown in

Figure 1. town03 and town05 are more complex urban en-

vironment with irregular intersections and multi-way lanes,

as shown in Figure 2. town03 contains roundabouts and

tunnels which are not present in town05 We deliberately

pick environment town03 to examine the performance of

LP command when navigating through complex structures.

We conduct two sets of experiments. In the first set, we

train all the networks of the model separately in town01 and

test the full model in town02. In the second set, we train

all the networks in town05 and test the model in town03.

The two environments in each train-test pair are different in

appearance but contain similar structures.

For different experiments, we pick different combina-

tions of weather conditions. For town01 and town02, we

choose six weather conditions, including rain, sunset, etc.

For town03 and town05, we choose five different weather

conditions.

We evaluate the performance with a teach-and-repeat

paradigm. Although teach-and-repeat is a special case of

navigation, it can properly demonstrate the essential abil-

ities of our system, such as topological-metric map con-

struction, self-localization, etc. To extend the experiment

to a more general goal-based navigation, we adopt the place

recognition network to associate the goal image with a ver-

tex, and conduct A* search from the start to the goal.

To demonstrate the generalizability of our method, we

train the place recognition network, intersection classifica-

tion network, and the controller network only in town01 and



(a) Similarity Comparison (b) Localization (c) DLM controller

Figure 4: The visual navigation pipeline for Topo-DLM model.

(a) Similarity Comparison (b) Localization (c) LP controller

Figure 5: The visual navigation pipeline for Topo-LP model.

town05, and perform route following in town02 and town03.

(a) Camera image (b) Local path image

Figure 6: Sample image and generated local path in town03

at the middle of the roundabout. Local path representation

is flexible and able to represent more general road structure

such as roundabout, whereas discrete command could only

represent regular intersection.

4.1. Training Details

We train the control network and the retrieval network in

town01 and town05. In town01 we use the dataset provided

by [9]. The dataset contains two hours of human driving

data in town01, 10% of which contains injected noise (i.e.,

intentionally deviates from the optimal path). The label of

each image contains the steering angle, throttle and brake

value, positions, rotations, and the high-level command. In

town05, we collect the training data with the planning-based

controller provided by the simulator. As in the dataset from

town01, we also inject noise in about 10% of the data. We

record the images along with steering angles, locations, ro-

tations. It is important to note that for the noisy data points,

we record the steering angle computed by the controller that

brings the vehicle to its correct path. The noise injection is

critical to train a stable controller. The steering angle is

within the range [-1, 1].

In town01, we use the discrete commands provided by

the dataset. In town03 we generate the local path in a local

window around the current position of the robot. We con-

vert the coordinates in the local window to the local coordi-

nate of the current position, and draw the local coordinates

in the background, with the current position at the center.

Sample local path images are shown in Figure 6. To avoid

overfitting to the local path, we add random noise to the

robot position and generate the local path at the perturbated

position.

To train the retrieval network, we sample image pairs

with a distance less than 2.0 meters as positive pair, and

sample image pairs with a distance greater than 2.0 me-

ters as negative pairs. To make the network robust for im-

ages across different weather and illumination conditions,

we sample the positive pairs across various weather and il-

lumination conditions in the training data.

We use a batch size of 32 in the training process for both

networks. We perform gradient update using RAdam [19].

The learning rate is initially set to 0.0001 and dynamically



(a) Demonstraion (b) Topo-LP (c) Replay (d) Replay(gt loc)

Figure 7: Display of all nine trajectories of different methods under the weather of clear sunset in town03 (units of the axes

are meters). Topo-LP completes more trajectories than replay agents with or without ground truth locations. It is especially

noteworthy that both the replay and replay(gt loc) agents drift away due to open loop control, as shown in the orange rectangle

at the top right corner.

decreases as the training proceeds.

4.2. Measurements

We measure the performance of each method by its suc-

cess rate in the repeat trials. A trial is considered successful

when the vehicle reaches the goal within a certain distance.

We calculates the average success rate for all the lighting

conditions, as well as the success rate under each individual

lighting condition.

Carla simulator provides a benchmark system that could

test the agent navigation performance in a set of pre-defined

routes and weather conditions. After finishing all the routes,

the benchmark system measures performance results with a

set of criteria.

4.3. Baselines

We compare both the Topo-DLM and Topo-LP methods

to the baseline action replay agent. Upon reaching a vertex,

the agent reads the target speed and target steer stored in

the vertex. It then maintains the speed as close to the target

speed as possible, and executes the target steer accordingly.

We test two variants: one uses image retrieval to get the

vertex, and the other uses ground truth localization to get the

vertex. The velocity of the agent has a gaussian distribution

with mean = 0.0 and deviation = 0.1.

5. Results

Results are shown in Table 1 and Table 2. As the table

shows, simple action replay has the worst performance. In

town02, the replay agent, with or without ground truth, has

no successful trials, while in town03 the replay agent with

ground truth location achieves a success rate of 0.5 and the

replay agent without ground truth location achieves a suc-

cess rate of 0.25. The reason for the especially poor perfor-

mance in town02 could be that the narrow roads in town02

lead to more crashes when the vehicle drifts. As shown in

Figure 2, the roads in town03 are much wider, which re-

duces the chances for the agent to collide to the road struc-

ture on the sides. The generally poor performance of the

replay agent, with or without ground truth location, is be-

cause it is open-loop without any correction, so any local-

ization or control error could lead to the failure of the entire

navigational process.

Both the Topo-DLM and the Topo-LP Agent outper-

forms the replay agent by a large margin. There are several

reasons to explain the robustness of our method. Firstly,

the network aims at computing an action conditioned on the

discrete local move or the local path, rather than completely

replay the path. Secondly, in the training process, we in-

ject noise that takes into account the possible pattern of lo-

calization error, so that the network could learn to balance

the information between the navigational command and the

camera image. Thirdly, we adaptively adjust the speed ac-

cording to the localization accuracy. When the vehicle is

lost and conducting global relocalization, it slows down un-

til relocalization is successful.

We also show detailed performance under different light-

ing conditions for each method. We can see that Topo-LP

and Topo-DLM consistently outperform replay in all cases,

and perform slightly worse than Topo-LP and Topo-DLM

with ground truth location in most cases. The example tra-

jectories of different methods under the clear sunset weather

in town03 are presented in Figure 7.

It is worth noting that in relatively regular environments

town02, Topo-DLM agent works better than Topo-LP agent.

However, in the more complex roundabout environment in

town03, discrete values are not sufficient to describe the

navigational command, and therefore Topo-LP is more ap-

propriate and appears to perform well.

The result suggests a trade-off here. On the one end,

if the structure of the environment is simple enough, such

as a straight road, no navigational command is needed for

the vehicle to drive forward. On the other end, if the envi-



Mean Clear Noon After rain After rain Heavy rain Clear sunset Soft rain

noon cloudy sunset

Replay (gt loc) 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Topo-DLM 0.65 0.8 0.3 0.9 0.6 0.8 0.5

Topo-DLM (gt loc) 0.667 1.0 0.3 0.8 0.7 0.8 0.4

Topo-LP 0.567 1.0 0.6 0.5 0.6 0.4 0.3

Topo-LP (gt loc) 0.817 1.0 1.0 1.0 0.9 0.3 0.7

Table 1: Results of town02

Mean Clear sunset Cloudy sunset Hard rain noon Mid rain sunset

Topo-LP 0.722 0.778 0.667 0.667 0.778

Topo-LP (gt loc) 0.806 0.556 0.889 0.889 0.889

Replay 0.25 0.222 0.444 0.222 0.111

Replay (gt loc) 0.5 0.444 0.667 0.444 0.444

Table 2: Results of town03

ronment is complex, such as a roundabout, a sophisticated

navigational command is essential.

6. Conclusion

This paper proposes a two-level navigation method that

integrates a model-based planning module and a model-free

local control module. The planning module builds a topo-

logical representation of the environment by storing infor-

mation about location and direction in vertices. The control

module uses imitation learning to train the vehicle to travel

between vertices without collision.

This method can be generalized to novel environments

and perform robustly in various weathers and illuminations.

Results show that the proposed combination of topological

representation and conditional imitation learning could al-

low vehicles to navigate in complex, novel urban environ-

ments without a metric map.

Currently, our method focuses only on static environ-

ments without considering other active agents on the road

that could potentially affect both place recognition and lo-

cal control performance. In addition, the need to avoid other

agents might lead to inconsistency between local control

and global navigational command, which would be an is-

sue worth addressing in future research.

References

[1] Hernán Badino, Daniel Huber, and Takeo Kanade. Real-time

topometric localization. In 2012 IEEE International Confer-

ence on Robotics and Automation, pages 1635–1642. IEEE,

2012. 3

[2] Andrea Banino, Caswell Barry, Benigno Uria, Charles Blun-

dell, Timothy Lillicrap, Piotr Mirowski, Alexander Pritzel,

Martin J Chadwick, Thomas Degris, Joseph Modayil, et al.

Vector-based navigation using grid-like representations in ar-

tificial agents. Nature, 557(7705):429–433, 2018. 1

[3] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauf-

feurnet: Learning to drive by imitating the best and synthe-

sizing the worst. arXiv preprint arXiv:1812.03079, 2018. 3

[4] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,

Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D

Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al.

End to end learning for self-driving cars. arXiv preprint

arXiv:1604.07316, 2016. 2, 3

[5] Francisco Bonin-Font, Alberto Ortiz, and Gabriel Oliver. Vi-

sual navigation for mobile robots: A survey. Journal of in-

telligent and robotic systems, 53(3):263, 2008. 3

[6] Jake Bruce, Niko Sünderhauf, Piotr Mirowski, Raia Hadsell,

and Michael Milford. Learning deployable navigation poli-

cies at kilometer scale from a single traversal. arXiv preprint

arXiv:1807.05211, 2018. 2, 3

[7] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif,

Davide Scaramuzza, José Neira, Ian Reid, and John J

Leonard. Past, present, and future of simultaneous localiza-

tion and mapping: Toward the robust-perception age. IEEE

Transactions on robotics, 32(6):1309–1332, 2016. 3

[8] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong

Xiao. Deepdriving: Learning affordance for direct percep-

tion in autonomous driving. In Proceedings of the IEEE

International Conference on Computer Vision, pages 2722–

2730, 2015. 3

[9] Felipe Codevilla, Matthias Miiller, Antonio López, Vladlen

Koltun, and Alexey Dosovitskiy. End-to-end driving via

conditional imitation learning. In 2018 IEEE International

Conference on Robotics and Automation (ICRA), pages 1–9.

IEEE, 2018. 2, 3, 4, 6

[10] Feras Dayoub, Timothy Morris, Ben Upcroft, and Peter

Corke. Vision-only autonomous navigation using topometric



maps. In 2013 IEEE/RSJ International Conference on Intel-

ligent Robots and Systems, pages 1923–1929. IEEE, 2013.

3

[11] Guilherme N DeSouza and Avinash C Kak. Vision for

mobile robot navigation: A survey. IEEE transactions on

pattern analysis and machine intelligence, 24(2):237–267,

2002. 3

[12] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio

Lopez, and Vladlen Koltun. Carla: An open urban driving

simulator. arXiv preprint arXiv:1711.03938, 2017. 3, 5

[13] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct

sparse odometry. IEEE transactions on pattern analysis and

machine intelligence, 40(3):611–625, 2017. 3

[14] Patrick Foo, William H Warren, Andrew Duchon, and

Michael J Tarr. Do humans integrate routes into a cogni-

tive map? map-versus landmark-based navigation of novel

shortcuts. Journal of Experimental Psychology: Learning,

Memory, and Cognition, 31(2):195, 2005. 3

[15] Wei Gao, David Hsu, Wee Sun Lee, Shengmei Shen, and

Karthikk Subramanian. Intention-net: Integrating planning

and deep learning for goal-directed autonomous navigation.

arXiv preprint arXiv:1710.05627, 2017. 2, 3, 4

[16] Sabine Gillner and Hanspeter A Mallot. Navigation and ac-

quisition of spatial knowledge in a virtual maze. Journal of

cognitive neuroscience, 10(4):445–463, 1998. 3

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 3, 4

[18] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter

Abbeel. End-to-end training of deep visuomotor policies.

The Journal of Machine Learning Research, 17(1):1334–

1373, 2016. 3

[19] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen,

Xiaodong Liu, Jianfeng Gao, and Jiawei Han. On the vari-

ance of the adaptive learning rate and beyond. arXiv preprint

arXiv:1908.03265, 2019. 6

[20] Stephanie Lowry, Niko Sünderhauf, Paul Newman, John J

Leonard, David Cox, Peter Corke, and Michael J Milford.

Visual place recognition: A survey. IEEE Transactions on

Robotics, 32(1):1–19, 2015. 1, 3, 4

[21] Piotr Mirowski, Matt Grimes, Mateusz Malinowski,

Karl Moritz Hermann, Keith Anderson, Denis Teplyashin,

Karen Simonyan, Andrew Zisserman, Raia Hadsell, et al.

Learning to navigate in cities without a map. In Advances in

Neural Information Processing Systems, pages 2419–2430,

2018. 2

[22] Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-

source slam system for monocular, stereo, and rgb-d cam-

eras. IEEE Transactions on Robotics, 33(5):1255–1262,

2017. 3

[23] Mark G. Packard and James L. McGaugh. Inactivation of

hippocampus or caudate nucleus with lidocaine differentially

affects expression of place and response learning. Neurobi-

ology of Learning and Memory, 65(1):65 – 72, 1996. 1

[24] Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun.

Semi-parametric topological memory for navigation. arXiv

preprint arXiv:1803.00653, 2018. 2, 3, 5

[25] Edward C Tolman. Cognitive maps in rats and men. Image

and environment: cognitive mapping and spatial behavior,

1948:27–50, 1973. 3

[26] Ranxiao Frances Wang and Elizabeth S Spelke. Human spa-

tial representation: Insights from animals. Trends in cogni-

tive sciences, 6(9):376–382, 2002. 3

[27] Sergey Zagoruyko and Nikos Komodakis. Learning to com-

pare image patches via convolutional neural networks. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 4353–4361, 2015. 4

[28] Wenyuan Zeng, Wenjie Luo, Simon Suo, Abbas Sadat, Bin

Yang, Sergio Casas, and Raquel Urtasun. End-to-end inter-

pretable neural motion planner. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 8660–8669, 2019. 3


