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Abstract

We present a self-supervised learning framework to es-

timate the individual object motion and monocular depth

from video. We model the object motion as a 6 degree-of-

freedom rigid-body transformation. The instance segmen-

tation mask is leveraged to introduce the information of ob-

ject. Compared with methods which predict dense optical

flow map to model the motion, our approach significantly

reduces the number of values to be estimated. Our system

eliminates the scale ambiguity of motion prediction through

imposing a novel geometric constraint loss term. Experi-

ments on KITTI driving dataset demonstrate our system is

capable to capture the object motion without external an-

notation. Our system outperforms previous self-supervised

approaches in terms of 3D scene flow prediction, and con-

tribute to the disparity prediction in dynamic area.

1. INTRODUCTION

Imagining a driving scenario in real world. The driver

may encounter many dynamic objects (e.g. moving vehi-

cles). The knowledge of their movements is of vital impor-

tance for the driving safety. We aim to solve the motion of

individual object from video in the context of autonomous

driving (i.e. the video is taken by a camera installed on a

moving car). However, due to the entanglement of object

movement and camera ego-motion, it is difficult to estimate

the individual object motion from video.

This difficulty can be tackled by introducing the infor-

mation of surrounding structure, i.e. a per-pixel depth map.

Depth estimation from image is a fundamental problem in

computer vision. Recently the view-synthesis based ap-

proach provides a self-supervised learning framework for

depth estimation, without supervision of depth annotation.

Strong baselines of depth prediction have been established

in [10, 20, 35], most of which jointly train a depth and a

pose network (for predicting camera ego-motion).

The depth and camera ego-motion can only explain the

Figure 1. Our system predicts individual object motion by lever-

aging the instance-level segmentation mask. For each segmented

object, three translation (X, Y, Z) and three rotation elements (ϕ,

ω, κ) are predicted. The prediction describes the object movement

during the capture of two consecutive frames (It and It+1), within

the camera coordinate system of It. The unit of translation and

rotation elements are meter and degree respectively.

pixel displacement in static background. To explain the mo-

tion of dynamic object, 2D optical flow ([33]) and 3D scene

flow map ([3]) have been used to model the object motion.

For example, Luo et al. [20] proposed to jointly estimate

depth, camera ego-motion and optical flow map.

In this paper, we propose a self-supervised learning

framework for estimating the individual object motion and

the monocular depth from video. The object motion is

modelled in the form of a 6 degree-of-freedom (dof ) rigid-

body transform. We further eliminate the scale ambiguity

of motion prediction by imposing a novel geometric con-

straint loss term. Previous approaches use dense flow map
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to model the motion, meaning a pixel-wise flow map is pre-

dicted. By contrast, our approach predicts a 6 dof rota-

translation for the motion of individual object. The num-

ber of values to be estimated is significantly reduced from a

pixel-wise prediction to 6 scalars per instance.

We perform evaluations of our framework on KITTI

dataset. The result manifests the effectiveness of our sys-

tem to predict individual object motion. Our system outper-

forms other self-supervised approaches in scene flow pre-

diction, and improve the disparity prediction in dynamic

area of the image.

2. Related Work

Our system is developed to solve the individual object

motion from video, and provide monocular depth estima-

tion. In this section we firstly present works related to

depth estimation from image. Then some methods which

address the object motion are introduced.

Supervised Depth Estimation The depth estimation is for-

mulated as a regression problem in most supervised ap-

proaches, where the difference between the predicted depth

and its ground truth is minimized. The manually defined

feature is used in early work. Saxena et al. [28] propose to

estimate the single-view depth by training Markov random

field(MRF) with hand-crafted features. Liu et al. [19] in-

tegrate semantic labels with MRF learning. Ladicky et al.

[15] improve the performance by combining the semantic

labeling with the depth estimation.

Deep convolutional neural network (CNN) is good at ex-

tracting features and inspires many other methods. Eigen et

al. [7] propose a CNN architecture to produce dense depth

map. Based on this architecture, many variants have been

proposed to improve the performance. Li et al. [18] im-

prove the estimation accuracy by combining the CNNs with

the conditional random filed(CRF), while Laina et al. [16]

use the more robust Huber loss as the loss function. Patil et

al. [26] produce a more accurate depth estimation by ex-

ploiting spatio-temporal structures of depth across frames.

Self-supervised Depth Estimation The depth map can be

learned from unlabeled video under a view-synthesis based

framework [35]. This framework is primarily supervised

by the image reconstruction loss, which is a function of

depth prediction. Zhou et al. [35] proposed to jointly train

two networks for estimating dense depth and camera ego-

motion, respectively. The image is synthesized from the

network outputs, following the traditional Structure-from-

motion procedure. Extra constraint and additional infor-

mation have been introduced to improve the performance,

like the temporal depth consistency [22], the stereo match-

ing [23] and the semantic information [34]. Godard et al.

[11] achieved a significant improvement by compensating

for image occlusion.

Besides estimating depth from the monocular video,

[11, 20] have proposed to synthesize stereo image pairs for

depth estimation. Here the stereo image pairs have been

calibrated in advance, the pose network is thus no longer

necessary. Depth prediction from this set-up is free of scale

ambiguity issue, since the scale information is introduced

from the calibrated stereo image pairs.

Compensation for Object Motion Most self-supervised

monocular depth estimation approaches are subject to rigid

scene assumption: scenes captured by video are assumed to

be rigid. This assumption is not valid in most autonomous

driving scenario, where many moving objects are presented.

The object motion can be solved by introducing the opti-

cal flow map. Yin et al. [33] proposed to estimate the resid-

ual flow on top of the rigid flow, which is computed from

the predicted depth and camera ego-motion. This resid-

ual flow can only correct for small error but generally fail

for big pixel displacement, e.g. when the object is mov-

ing fast. Lee et al. [17] proposed to estimate the residual

flow from stereo video. Luo et al. [20] proposed to jointly

train networks for depth, camera ego-motion, optical flow

and motion segmentation, with enforcing the consistency

between each prediction. In [27] a similar architecture is

adopted, while the system is trained in a competitive col-

laboration manner. Both [27] and [20] produced State-of-

the-art (SoTA) performance of optical flow prediction on

KITTI dataset.

Beyond the scope of self-supervised learning, the esti-

mation of optical flow has been addressed through end-to-

end deep regression based methods [6, 13]. PWC-Net [29]

further improves the efficiency by integrating the pyramid

processing and cost volume into their system. Besides op-

tical flow, scene flow [30] has been introduced to solve the

object motion. Scene flow vector describes the 3D motion

of a point. [31, 32, 24] estimated the scene flow by fitting

a piece-wise rigid representations of motion. They decom-

pose the scene into small rigidly moving plane and solve

their motion by enforcing some constraints, like appear-

ance or constant velocity consistency in [31]. Battrawy et

al. [2] introduced sparse LiDAR to estimate scene flow to-

gether with stereo images. DRISF [21] formulates the scene

flow estimation as energy minimization in a deep structured

model, which can be solved efficiently and outperforms all

other approaches.

In this work we estimate the object motion by modelling

it as a rigid-body transform. The scale ambiguity of motion

prediction is solved by imposing a geometric constraint loss

term. Our network output describes the object movement in

3D space. This is fundamentally different with the work

of Casser et al. [4], where only an up-to-scale prediction is

predicted. This means the magnitude information of motion

is missing in their prediction. Neither did they provide the

evaluation of the object motion prediction.
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Figure 2. Framework overview.

For view synthesis, each pixel is

distinguished as either dynamic or

static pixel. Dynamic pixel is syn-

thesized from the individual ob-

ject motion and depth prediction,

while static pixel is reconstructed

from the depth and camera ego-

motion. The camera ego-motion

is pre-computed from the visual

odometry library [9]. The dis-

tinguish of static/dynamic pixel is

based on the segmentation mask,

provided by Mask R-CNN [12].

3. Method

We propose a framework for jointly training an ob-

ject motion network (ObjMotion-net) and a depth network

(Depth-net). We firstly explain the view synthesis for dy-

namic objects, and then provide an overview of our frame-

work. Our networks are supervised by four losses, which

are detailed in Sec. 3.3.

3.1. Theory of View Synthesis

The target frame Itgt is synthesized from the source

frame Isrc. For each pixel ptgt in Itgt, its correspondence

psrc in Isrc is required. The photometric consistency

between the synthesized view Îtgt and its reference Itgt
serves as the primary supervision in our system.

Synthesis for Static Area Suppose two consecutive

frames from a video are given: the target frame Itgt cap-

tured at time t, and the source frame Isrc captured at time

t+1. For pixel ptgt in the static area of Itgt, its correspon-

dence psrc in Isrc is computed from Eq. 1:

h(psrc) ∼ KTt→s X
t(ptgt)

X
t(ptgt) = D̂(ptgt)K

−1
h(ptgt) ptgt ∈ S0(Itgt)

(1)

where h(p) denotes the homogeneous pixel coordinates, K

is the camera intrinsics, Tt→s is the camera ego-motion

for the reference system Ctgt and Csrc, Xt(ptgt) is the

projected 3D point of ptgt in the reference system Ctgt,

D̂(ptgt) denotes the depth prediction scalar at ptgt, S0(Itgt)
refers to the static area of Itgt.

Synthesis for Dynamic Area Pixel correspondence for

dynamic object is computed from Eq. 2. Here the 3D point

Xt(ptgt) is further transformed by a rigid-body transform

T̂
obj
i ∈ SE(3) (6 dof, 3 translations and 3 Euler angles).

This process is illustrated in Fig. 3.

h(psrc) ∼ K Tt→s T̂
obj
i X

t(ptgt) ptgt ∈ Si(Itgt) (2)

Here Si(Itgt) refers to pixels in the dynamic area of Itgt,

whose 3D motion is described as T̂
obj
i . Suppose there
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Figure 3. View synthesis for dynamic object. Firstly ptgt is pro-

jected into the target camera reference system Ctgt, denoted as a

3D point Xt(ptgt). This point is then transformed by T̂
obj
i (for

object motion) and Tt→s (for camera ego-motion), and is finally

projected onto Isrc as the correspondence psrc.

are n moving objects in the scene, we estimate T̂
obj
i (i =

1, . . . , n) for each individual object. Then the target frame

Itgt is synthesized separately for static pixels according to

Eq. 1, and for dynamic pixels according to Eq. 2.

Note we only focus on objects whose movement can be

described by a rigid-body transform. These include cars,

buses and trucks. Objects like pedestrians are not con-

sidered since their movement is too complicated to be de-

scribed by a 6 dof rigid-body transform.

3.2. Framework Overview

Fig. 2 provides an overview of our framework. It illus-

trates how the image is synthesized from the network out-

put: depth and object motion for all instances in the scene.

We distinguish between the static and dynamic area based

on image segmentation mask. The segmentation masks are

obtained from the pre-trained Mask R-CNN [12] model.

They highlight instances which move rigidly in the scene.

The segmentation mask also distinguishes between dif-

ferent instances in the scene. We align the instance mask

across time, and segment the temporal image sequence by

the instance-aligned mask. One masked sequence example



is shown as It−1, It and It+1 in Fig. 2. This serves as the

network input to predict the motion T̂
obj
t→t−1 and T̂

obj
t→t+1 for

this specific object.

In implementation, the actual network prediction is the

product of the camera ego-motion and the object motion

(i.e. Tt→s × T̂
obj
i in Eq. 2). We combine the camera ego-

motion and object motion into one single transformation.

This transformation is equivalent to a pesudo object mo-

tion where we assume the camera is static. The actual ob-

ject motion can be decomposed based on the pre-computed

camera ego-motion. Combining the camera and object mo-

tion together facilitates the employment of geometric con-

straint loss term (defined in Eq. 5), which encodes the mag-

nitude information of object motion.

It is noteworthy that motionless objects are also high-

lighted by Mask R-CNN. They are treated equally as dy-

namic objects in our system. It is unnecessary to distin-

guish between static and dynamic objects, since the input of

ObjMotion-net is a segmented image sequence, where only

one individual instance is presented. The motion predic-

tions of static objects are equal to the camera ego-motion.

Object Motion Network The ObjMotion-net is designed

to predict individual object movement. It takes the masked

image sequence (shown in Fig. 2) as input. All information

irrelevant with the target object is excluded.

The idea of ObjMotion-net is inspired by the Pose-net.

Both networks take image sequence as input, and output

6 motion parameters. As shown in [35], Pose-net is capa-

ble to infer the camera ego-motion. This indicates Pose-net

can conduct feature extraction and matching which are in-

dispensable procedures for motion inference. We suppose

ObjMotion-net, which adopts a similar architecture, also

has the capability to extract and match features, and can in-

fer the individual object motion based on these information.

3.3. Loss Function

Our framework employs four loss terms: photometric

loss Lp, left-right photometric loss Llrp, disparity smooth-

ness loss Ldisp and geometric constraint loss Lgc.

Photometric Loss Lp penalizes the photometric inconsis-

tency between the synthesized view Î and its reference view

I . Î is synthesized based on the prediction from Depth-

net and ObjMotion-net, thus Lp provides gradient on both

networks. We adopt a robust image similarity measure-

ment SSIM for Lp as formulated in Eq. 3, with α = 0.85.

The depth is predicted and supervised at multi-scale level to

overcome the gradient locality [35].

Lp = α
1− SSIM(I, Î)

2
+ (1− α)‖I − Î‖1 (3)

Note we distinguish the static and dynamic area for the

synthesized view Î when we compute its photometric loss.

Instead of averaging the per-pixel photometric difference

over the whole image, we average the difference in static

and dynamic area separately, and formulate the Lp by sum-

ming them. According to [3], the separation of photometric

loss can compensate the unbalance between the static and

dynamic image area, thus provide more supervision signal

and contribute to the training of ObjMotion-net.

Left-right Photometric Loss Llrp is imposed to solve the

scale ambiguity of the monocular depth prediction. The di-

rect output of our Depth-net is actually the disparity. It can

be used to synthesize the left image from its right counter-

part, and vice versa. Llrp penalizes the photometric differ-

ence of the synthesized stereo images. This provides super-

vision to solve the scale ambiguity of disparity predictions.

Disparity Smoothness Loss Ldisp is enforced to penalize a

fluctuated disparity prediction. An edge-aware smoothness

term is imposed as formualted in Eq. 4. Here the disparity

smoothness (∂xd and ∂yd) is weighted by the exponential

image gradient (e‖−∂xI‖ and e‖−∂yI‖). x and y refers to the

gradient along the horizontal or vertical direction.

Ldisp = |∂xd|e
‖−∂xI‖ + |∂yd|e

‖−∂yI‖ (4)

Geometric Constraint Loss During experiments we found

the translation of object motion tends to be predicted as

small values. Similar phenomenon was also observed in [4].

We fix this issue by imposing a geometric constraint on the

object translation prediction. This constraint provides the

magnitude information of the object movement. The geo-

metric constraint F t→t+1

i for the i-th object between time t

to t+ 1 is computed as Eq. 5:

F
t→t+1

i = X̄
t+1

i − X̄
t
i

X̄
m
i = |

∑
X

m
i (p)| p ∈ Si(Im),m ∈ {t, t+ 1}

X
m
i (p) = D̂

m(p)K−1
h(p) m ∈ {t, t+ 1}

(5)

F t→t+1

i is actually the vector from the 3D object center X̄t
i

to X̄t+1

i . Here | · | refers to the mean operator. Xm
i (p) is

the projected 3D point of pixel p in the reference system

Cm, while Si(Im) is the i-th object area of image Im, with

m ∈ {t, t+ 1} denoting the image capture time.

As mentioned in 3.2, our system predicts a pesudo ob-

ject motion where we assume the camera is static. Ideally

the predicted (pseudo) object translation are supposed to be

equivalent with the geometric constraint. We impose the

geometric constraint loss term Lgc, which is the L1-norm

of the difference between the predicted translation of object

motion t̂i and the geometric constraint Fi.

Lgc =

n∑

i

‖t̂i − Fi‖1 t̂i = [x̂i, ŷi, ẑi] (6)

Here n is the number of instances appeared in the input im-

age sequence. With introducing Lgc, the issue of the small



translation prediction can be fixed. Ablation studies are pro-

vided in Sec. 4.3.

Our final objective is a sum of all loss terms stated above,

weighted by their corresponding weight:

Lfinal = λp · Lp + λlrp · Llrp + λdisp · Ldisp + λgc · Lgc (7)

4. Experiments

In this section, we firstly describe the implementation de-

tails, and demonstrate evaluation results on individual ob-

ject motion, disparity, and scene flow prediction. Experi-

ments are conducted on KITTI [8], a dataset provides driv-

ing scenes in real-world scenario.

The ObjMotion-net and Depth-net are trained jointly,

since the view synthesis for dynamic scene requires both

the object motion and depth prediction. However, these two

networks can be run independently during test time infer-

ence. Their network inputs are irrelevant with each other.

4.1. Implementation Details

Dataset and Preprocessing KITTI raw dataset provides

videos which cover various scenes. We resize all images

into a fixed size 192 × 640, and format a temporal image

sequence by concatenating It−1, It and It+1 horizontally.

The evaluation is performed on the training split of

KITTI flow 2015 dataset, where the ground truth for dis-

parity, optical flow and scene flow are available. Scenes

covered by this training split are excluded during training.

40820 samples and 2070 samples are formatted for training

and validation, respectively. Besides the raw dataset, we

format another training set from the test split of the multi-

view extension of KITTI flow 2015 dataset. Scenes in this

split contain more moving vehicles. This contributes to the

training of ObjMotion-net. There are 6512 training samples

and 364 validation samples in this training set.

The segmentation mask for image is generated from the

pre-trained Mask R-CNN model [12]. We segment objects

which move rigidly in the scene. The instance is aligned ac-

cording to the Intersection over Union (IoU) of the temporal

mask sequence. For example, M i
t is the mask of instance

i at time t. Its aligned mask M i
t−1 and M i

t+1 are obtained

by finding the instance mask with the maximum IoU at time

t−1 and t+1. For partially occluded or fast moving objects

whose IoU is small, we further check the moving direction

of the mask center. We assume the object moving direction

between t − 1 to t and t to t + 1 (i.e. the 2D vector which

connects mask centers) are similar. Aligned masks with sig-

nificantly different moving direction are discarded. We also

ignore very small instances (i.e. the number of mask pixels

is less than 400 in one 1392× 512 image).

The camera ego-motion is required for view synthesis.

Instead of training a pose network, we use the Libviso2 [9]

to estimate the camera ego-motion.

Network Architecture Our system contains two sub-

networks, the ObjMotion-net and the Depth-net. The

ObjMotion-net is designed based on the pose network in

[33]. We adopt ReLU [25] activation for all convolu-

tional layers. Batch normalization (BN) [14] is excluded

in ObjMotion-net, since experiments demonstrate BN does

not contribute to the performance.

For the Depth-net, we adopt the architecture in [33] as

backbone. This structure consists of the encoder and the de-

coder part. The basic structure of ResNet50 is adopted for

the encoder. While in decoder the combination of convolu-

tion and upsampling is used for upscaling the feature map.

Skip connections between the encoder and the decoder are

added to integrate global and local information. ReLU and

BN are adopted for all layers of Depth-net except for the

prediction layer, where the Sigmoid activation is used and

BN is excluded.

4.2. Training Details

Our system is implemented using TensorFlow frame-

work [1]. Color augmentation is performed on the fly. The

network is optimized using Adam optimizer, with β1 = 0.9
and β2 = 0.999 respectively. Our system is trained on a sin-

gle TitanXP GPU. A stage-wise training strategy is adopted,

with training Depth-net alone at the beginning, and then

jointly training Depth-net and ObjMotion-net.

Training Depth-net We firstly train the Depth-net, since

accurate depth prediction is necessary to compute the ge-

ometric constraint for the ObjMotion-net. According to

Godard et al. [10], pre-training network on Cityscapes

dataset [5] contributes to the performance of Depth-net. We

trained the Depth-net on the Cityscapes dataset for 600K

steps. The training was supervised by the left-right photo-

metric consistency Llrp (λlrp = 1.0) and disparity smooth-

ness Ldisp (λdisp = 0.5). The learning rate and the batch

size are 0.0001 and 2, respectively. The photometric loss

Lp is excluded in this stage, since we do not model object

motion. Employment of Lp will lead to inaccurate depth

prediction in dynamic area. This issue is also observed by

Luo et al. [20].

After the pre-training on Cityscapes, we continued to

train the Depth-net on the formatted KITTI dataset for 500K

steps. All hyper-parameters were kept same except for the

λdisp, which we changed to 25.0. We found in experi-

ments that a higher smoothness penalization was indispens-

able, otherwise the disparity prediction became unreason-

ably fluctuated.

Training ObjMotion-net with Depth-net We then jointly

optimize the Depth-net and ObjMotion-net. Besides the

Llrp and the Ldisp, the photometric loss Lp and geometric

constraint loss Lgc are imposed. The loss weights are set to



Figure 4. Visualization of Bird’s View Box and 3D Bounding Box. Our results (top row) and results from GeoNet [33] (bottom row) are

presented. The ground truth is in red while the prediction is in blue. Our predictions have a larger overlapping with the ground truth box.

Method Bird View 3D Box

CC [27] 43.10% 43.60%

GeoNet [33] 57.54% 56.00%

Ours (no Lgc) 45.02% 43.67 %

Ours 72.31% 70.61%

Table 1. Average IoU of bird’s view box and 3D bounding box.

be λp = λlrp = 1.0, λdisp = 25.0, and λgc = 1.0. The

learning rates for Depth-net and ObjMotion-net are 0.0001

and 0.0002, respectively. And the batch size is 2.

After training on the KITTI raw dataset for 200K iter-

ation, we fine-tune the ObjMotion-net on the test split of

KITTI Flow dataset 2015, with fixing the parameters of

Depth-net. All hyper-parameters remain the same. The

ObjMotion-net is trained for 100K iterations in this stage.

4.3. Individual Object Motion Evaluation

Our system predicts individual object motion in 3D

space. To demonstrate the effectiveness of our system, we

present the IoU of the bird’s view box and 3D bounding

box. Take the example of 3D bounding box: the 3D bound-

ing box for object i at time t, denoted as Bi
t , is transformed

by its object motion prediction T̂ i
t+1. Then the predicted lo-

cation of box at time t + 1, B̂i
t+1 is obtained. We compute

the IoU between B̂i
t+1 and its ground truth Bi

t+1. The aver-

age IoU indicates the performance of our ObjMotion-net.

We evaluate on 80 temporal image pairs which are con-

tained in both the training split of KITTI tracking (provides

ground truth bounding box) and flow 2015 dataset. Objects

are segmented by the pre-trained Mask R-CNN model [12].

We do not use the ground truth segmentation in flow 2015,

since it only provides the segmentation for It, while the

segmentation for It−1 and It+1 are necessary for motion

prediction. In total 204 objects are selected from these 80

image pairs.

We compare our results with GeoNet [33] and CC [27].

Both approaches predict dense optical flow and depth map,

from which we can compute the pixel-wise scene flow vec-

tor in 3D space. The individual object motion can then be

Method
Bad Pixel Percentage

bg fg all

CC [27] 35.03% 42.74% 36.20%

Monodepth2 [11] 18.60% 44.47 % 22.50%

EPC++ [20] 22.76% 26.63% 23.84 %

Ours (1st stage) 29.49% 19.62% 28.00%

Ours 28.08% 16.65% 26.36%

Table 2. Bad pixel percentage of disparity prediction

inferred by averaging over the object segmentation mask on

the scene flow map. Their up-to-scale depth prediction are

scaled by the median ground truth depth.

In Fig. 4, we compare our qualitative results with

GeoNet [33]. It can be seen that our predicted bound-

ing boxes have a higher overlapping with the ground truth.

Quantitative results in Table 1 also show our system has a

higher average IoU, with 72.31 % for bird’s view box and

70.61% for 3D bounding box. This demonstrates the ef-

fectiveness of our system to predict the individual object

motion. We report the evaluation result without geometric

constraint loss Lgc. It can be seen that without Lgc the per-

formance is significantly worse. The lower IoU of CC [27]

prediction results from its inaccurate depth prediction.

Besides IoU of bounding box, Cao et al. [3] proposed to

evaluate the motion speed and direction. However, they did

not publish their models and evaluation details. Thus it is

not possible to compare with them.

4.4. Monocular Disparity Evaluation

To demonstrate the contribution of ObjMotion-net to-

wards disparity estimation (in particular for dynamic area),

we evaluate on the training split of flow 2015 dataset and

report the average bad pixel percentage (BPP) of disparity

prediction. A pixel is considered as bad if its prediction er-

ror ≥ 3px or ≥ 5%. Besides, the ground truth segmentation

masks for moving objects are provided. This makes it possi-

ble to evaluate within dynamic region (fg in Table 2), which

in our case is the Region-of-Interest. The BPP for static

background (bg) and overall area (all) are also presented.
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Figure 5. Visualization of op-

tical flow prediction for KITTI

flow 2015 training split. The er-

ror magnitude is encoded into

different colors according to the

legend at the right-hand side.

Basically good pixel is in blue

while bad pixel is in orange/red.

The top four rows show some

successed samples, where the

error of most pixels in dynamic

region are below 3px. The bot-

tom two rows show two imper-

fect examples. The bias of bad

pixel is slightly over the thresh-

old due to the imperfection of

view synthesis.

Method bg fg all

GeoNet [33] 66.8% 90.4% 70.7%

Mono + Geo 39.4% 70.9% 44.7%

EPC++ [20] > 22.8% > 70.4% > 60.3%

CC [27] 50.2% 60.0% 51.8%

Ours 38.2% 65.9% 42.8%

Table 3. Bad pixel percentage of scene flow prediction. For the

evaluation of Mono + Geo, the disparity from Monodepth2 [11]

and the flow prediction from GeoNet [33] are used.

Our result achieves SoTA performance in terms of BPP

in fg. We produce the lowest value of 16.65% in fore-

ground, which is better than BPP of Monodepth2 (44.47%)

and EPC++ (26.63%). It is important to note that the

published models of other works (CC, Monodepth2 and

EPC++) have been trained on the test images, since they

adopted another training split (Eigen split [7]). Our system

did not witness the test images, but still produce a better

performance in foreground and comparable result in over-

all area. This demonstrates the disparity prediction for dy-

namic objects can be improved through modelling the ob-

ject motion explicitly.

4.5. Scene Flow Evaluation

We present the evaluation results on 3D scene flow in

Table 3. The evaluation conducts on the predicted disparity

for two consecutive frames: D̂(It) and D̂(It+1), and the

2D optical flow map F̂t→t+1. In our system, we do not

have a component to explicitly predict the pixel-wise optical

flow. The optical flow prediction is obtained through view

synthesis with taking the object motion into account. We

present the visualization of our optical flow results in Fig. 5.

Our result achieves the best BPP in overall area (42.8%),

compared with 44.7% from Mono + Geo, and 51.8% from

CC. In foreground, our BPP (65.9%) is worse than the re-

sults of CC (60.0%). This is because our flow results are

synthesized from depth and object motion prediction. Any

subtle bias in view synthesis (like camera intrinsics, depth,

object motion) may result in an error larger than the bad

pixel threshold (3px). We present two imperfect flow pre-

diction examples in the last two rows of Fig. 5. Although

some bad pixels are presented in the dynamic area, the mag-

nitude of their bias are barely over the threshold due to the

imperfect view synthesis.

Nevertheless, our system is capable to capture the holis-

tic object motion. Our system produces the lowest BPP in

overall area, and it can be seen from Fig. 5 that the bias of

most dynamic pixels are below the bad pixel threshold.

5. Conclusion

We have presented a self-supervised learning framework

for individual object motion and depth estimation. The ob-

ject motion is modelled as a rigid-body transformation. Our

system is able to learn the object motion from unlabelled

video. This contributes to scene flow prediction, and im-

prove the depth estimation in dynamic area of the scene.

It would be interesting to explore the following questions

in future: 1) Integrate scale information from other sources.

In our system the scale information of object motion is ex-

tracted from the depth prediction (the control signal). It

would be difficult to apply our system in case where the

depth prediction is not reliable. In future we can try to

integrate scale information from other sources, like stereo

image pairs, or sparse depth ground truth from Lidar. 2)

Estimate the motion of pedestrians. Currently we focus on

the object motion which can be described by a rigid-body

transformation. While non-rigid motion, like the movement

of pedestrians, is also common in driving scenario. We

may dissect pedestrians into smaller parts which is moving

rigidly, or try to model its motion in a different way.
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