
Feudal Steering: Hierarchical Learning for Steering Angle Prediction

Faith Johnson

Rutgers University

faith.johnson@rutgers.edu

Kristin Dana

Rutgers University

kristin.dana@rutgers.edu

Abstract

We consider the challenge of automated steering angle

prediction for self driving cars using egocentric road im-

ages. In this work, we explore the use of feudal networks,

used in hierarchical reinforcement learning (HRL), to de-

vise a vehicle agent to predict steering angles from first

person, dash-cam images of the Udacity driving dataset.

Our method, Feudal Steering, is inspired by recent work

in HRL consisting of a manager network and a worker net-

work that operate on different temporal scales and have dif-

ferent goals. The manager works at a temporal scale that is

relatively coarse compared to the worker and has a higher

level, task-oriented goal space. Using feudal learning to

divide the task into manager and worker sub-networks pro-

vides more accurate and robust prediction. Temporal ab-

straction in driving allows more complex primitives than

the steering angle at a single time instance. Composite

actions comprise a subroutine or skill that can be re-used

throughout the driving sequence. The associated subrou-

tine id is the manager network’s goal, so that the manager

seeks to succeed at the high level task (e.g. a sharp right

turn, a slight right turn, moving straight in traffic, or moving

straight unencumbered by traffic). The steering angle at a

particular time instance is the worker network output which

is regulated by the manager’s high level task. We demon-

strate state-of-the art steering angle prediction results on

the Udacity dataset.

1. Introduction

Reinforcement Learning (RL) has made major strides

over the past decade, from learning to play Atari games

[22] to mastering chess and Go [25]. However, RL tends

to be unable to generalize policies enough to apply them

to new environments and still struggles to solve problems

with sparse reward signals. In response to this brittleness,

Hierarchical Reinforcement Learning (HRL) is growing in

popularity. In HRL, a manager network operates at a lower

temporal resolution and produces goal vectors that it passes

to the worker network. The worker network uses these goal

Figure 1. Four frames from the Udacity dataset are shown with

their corresponding ground truth (blue) and predicted (orange)

steering angles using our Feudal Steering network. The orienta-

tion of the lines corresponds to the egocentric steering angle. Our

model predicts steering angles within 2.67 degrees of the ground

truth angle.

vectors to guide its learning of a policy over micro-actions,

also called primitive actions, in the environment at a higher

temporal resolution than the manager network [6]. The tem-

poral abstraction created through this relationship helps the

networks to learn and execute macro-actions or tasks, also

called subroutines, in the environment while lessening the

negative effects of sparse rewards on network training.

Autonomous driving is an application that struggles with

this issue of sparse reward signals. However, most HRL

work emphasizes video game and other simulated domains

instead of autonomous driving applications. At all times,

human drivers are paying attention to two levels of their en-

vironment. The first level goal is on a finer grain: don’t hit

obstacles in the immediate vicinity of the vehicle. The sec-

ond level goal is on a coarser grain: plan actions a few steps

ahead to maintain the proper course efficiently. It is even

possible to conceive of higher levels of abstraction com-

prised of path planning and other more complicated driving

tasks.

Autonomous vehicles need to have tight constraints on

hardware and software in order to be effective in real world

applications [18]. Current successful HRL networks are

large and take a long time to train [26, 30], making them

unsuitable to implement in autonomous vehicles despite the

theoretical benefits. Additionally, many HRL methods that

do focus on the driving domain require handcrafted sub-

routines and do not focus on primitive navigation directly,

choosing to find policies over macro-actions instead. Hand-

crafting subroutines limits environment exploration and re-

quires a high level of domain specific knowledge in order to

yield good model performance.

We propose a vehicle agent to predict steering angles

using feudal networks. Feudal networks are typically ap-

plied in hierarchical reinforcement learning. However, in

this work, we train these networks with ground-truth data

from the Udacity dataset [29], instead of with rewards, al-

lowing us to retain the advantageous hierarchical structure

of HRL without using reinforcement learning. We present

two methods. The first method predicts steering angles with

subroutines (driving tasks) obtained from the t-SNE embed-

ding of the driving data. We also use t-SNE to refine and

structure the subroutine embedding space discovered by the

manager in order to visualize the driving data subroutines

and observe their semantic meaning. The second method

allows the manager to discover the existing subroutines in

the data instead of handcrafting them.Our results show that

feudal networks with learned subroutines provide improved

training stability and prediction performance.

2. Related Work

2.1. Temporal Abstraction

In hierarchical reinforcement learning, the manager net-

work operates at a lower temporal resolution than the

worker network and communicates with the worker net-

work through a goal vector that encapsulates a temporally

extended action (called a subroutine, skill, option, or macro-

action). The worker executes atomic actions in the envi-

ronment based on this goal vector and its own state infor-

mation. This process of manager/worker communication

through temporal abstraction helps to break down a prob-

lem into more tractable pieces as outlined by the options

framework [27].

To explain the concept of temporal abstraction further,

consider the case of an agent attempting to leave a room

through a door. When a human plans this action, they

don’t compose a low level sequence of movements such

as straight, straight, left, straight, right. In other words,

humans do not consciously think of each atomic action re-

quired to exit the room. Instead, they think in terms of tem-

poral abstraction: Find the door. Approach it. Pass through

it. Each of these actions encapsulates multiple atomic ac-

tions that need to be executed in a specific order for the

agent to complete the higher level task.

2.2. Hierarchical Reinforcement Learning

One difficulty with reinforcement learning is delayed re-

wards and sparse credit assignment. This problem is es-

pecially prevalent with RL in autonomous vehicles, as an

agent may only receive a reward when it completes a larger

sub-task. Hierarchical reinforcement learning is used to in-

crease model performance through temporal abstraction and

intrinsic rewards [15], but has limited implementations in

the autonomous driving domain as prior work opts for simu-

lated environments. Feudal networks [30] learns to play the

Atari game, Montezuma’s Revenge.Their hierarchical net-

work has a manager that learns a latent space for its goals,

which take on a directional meaning and allow the manager

to be updated regardless of the worker’s actions in the en-

vironment. However, this method requires a lot of data and

time to train, which is not necessarily available or possible

in the driving domain.

Because of the complexity of the driving domain, there is

a trend of manually defining subroutines for HRL networks

[4, 7, 17]. Our method diverges from this practice by allow-

ing the manager network to learn its own subroutines. There

are other frameworks [26, 28, 1] that also attempt to learn

subroutines implicitly from the data. Kumar et al. [16] pro-

pose a method to learn subroutines through imitation learn-

ing and propose using HRL to refine them. Another ap-

proach explores the nature of the subroutines themselves by

focusing on learning the states of the subgoals instead of

learning the policy between these states [24]. This hierar-

chical approach is taken a step further by [9, 23] which use

the states in the latent space of the lower layer as the action

space for the layer above it.

2.3. Steering Angle Prediction

Most of the work in steering angle prediction uses some

form of alternative representation of the driving scene be-

yond RGB images, from attention maps [14, 11] to segmen-

tation and optical flow [12, 21, 13]. While these represen-

tations contain valuable information, we aim for a method

that predicts steering angles using only raw visual input, as

humans do. Additionally, in the case of segmentation and

optical flow, these alternative scene representations add la-

tency to the prediction pipeline which is undesirable for real

world applications. CNN-based methods such as [19] use

features directly from the RGB image input and use multi-

ple fully connected layers to predict steering angle, speed,

and acceleration, thereby allowing them to create a fully

functional, end to end, autonomous vehicle model.

In order to create an autonomous driving system that is

robust to real world driving scenarios, it is desirable that

real world data is used to train and test the networks as

LSTM

ELU
&

G
r
o
u
p

N
o
r
m

Conv Conv Conv Conv

 i
n-m

, i
n-(m-1)

, ... , i
n

a
n-1-m

 , a
n-1-(m-1)

 , ... , a
n-1 a

n

g
Manager

Network

Worker

Network

g L
i
n
e
a
r

L
a
y
e
r

a
n-1

Figure 2. Feudal Steering Network. The overall network is comprised of a manager network and a worker network. The worker net-

work (expanded in the red box) acts as the steering angle prediction network. The input to the manager network is a sequence of the

previous m predicted steering angles, [an−1−m, a
n−1−(m−1), ..., an−1]. The input to the worker network is a sequence of m frames,

[in−m, i
n−(m−1), ..., in], a goal, g, obtained from the manager network, and the previous steering angle, an−1. The yellow box represents

the ELU (exponential linear unit) and group normalization step in the pipeline.

in [2], that deploys their implementation in a vehicle.The

most comparable steering angle prediction methods to Feu-

dal Steering are [5, 31], which use a sequence of RGB im-

ages to predict steering angles using recurrent units. How-

ever, our approach demonstrates the effectiveness of feudal

learning for steering angle prediction by estimating subrou-

tines (macro-action states) across the driving data.

3. Methods

3.1. Steering Angle Prediction Network

Our approach to predicting steering angles is inspired by

[8] from the Udacity steering angle challenge. During train-

ing, this network inputs images to a CNN to extract the rele-

vant features, then passes these features through two, jointly

trained recurrent units. The first recurrent cell uses the fea-

ture vector combined with the ground truth steering angles

from the previous batch as input. The second recurrent cell

uses the feature vector combined with the predicted steering

angles from the previous batch as input. The weighted sum

of the loss from both cells is used to update the network.

During testing, only the recurrent cell with trained with the

previous predicted angles is used.

We take a more simplified approach to Feudal Steering,

as shown in Figure 2. Our network uses a 3D convolu-

tional layer with a ReLU activation function followed by

a dropout layer. The output of this convolution is saved to

use later on in the network. This process is repeated four

times before the output is fed through a series of fully con-

nected layers with ReLU activation functions. At this point,

the output and the intermediary representations from each

of the convolutions are added together, passed through an

ELU (exponential linear unit) layer, and normalized. Then,

the previous predicted steering angle and the output of the

ELU layer are passed through an LSTM. Finally, the out-

put of the LSTM is passed through a fully connected layer

with the output from the ELU layer to produce the steering

angle.

Compared to the Udacity network [8], we also use a set

of 3D convolutional layers with ReLU, dropout regulariza-

tion, and skip connections to glean relevant features from

the images. However, we only train one LSTM with the

concatenated feature vectors and previously predicted steer-

ing angle as input. Using the previous ground truth steering

angle is feasible in the problem domain with the addition of

extra sensors to the vehicle. However, our goal is to create

a self-contained network that predicts steering angles based

solely on image input, so we choose to use the previous

predicted angle as input instead. Additionally, for a fully

trained model, the difference between the previous ground

truth and predicted angles will be negligible, so our perfor-

mance at test time will not be greatly effected.

Figure 3. Steering, braking, and throttle data are concatenated ev-

ery m time steps to make a vector of length 3m. Each vector is

projected to 2D t-SNE coordinates that act like a manager for the

steering angle prediction and operate at a lower temporal scale.

In our experiments m=10; t and τ are the temporal axes for the

driving data and t-SNE coordinates respectively.

Figure 4. Total plot of the t-SNE coordinates for the Udacity data.

The colors correspond to the average sign of the angles in each

length 3m vector used to generate the points. The horizontal and

vertical axes correspond to the two t-SNE dimensions.

Figure 5. K-Means clustering (k=20) of the TSNE coordinates of

the Udacity data with the centroids pictured in red. Not only do

distinct clusters form in the data, but each cluster corresponds to a

unique action of the vehicle.

3.2. Subroutine ID

For a hierarchical framework, we aim to classify the

steering angles into their temporally abstracted subroutines,

also called options or macro-actions, associated with high-

way driving such as “follow the sharp right bend”, “bumper-

to-bumper traffic”, “bear left slightly”. This could be done

by hand, but it would be a lengthy process, and the cre-

ated subroutines would most likely be too simplistic to de-

scribe the wide variety of driving scenarios a vehicle may

encounter. For driving, the high level tasks are numerous

and it is preferable to compute or learn subroutine ids rather

than manually label semantic tasks. We demonstrate that

our automatically extracted subroutine ids have observable

semantic meaning in terms of driving tasks (see Figure 6).

3.3. t-SNE Embedding as Subroutine ID

We explore using t-SNE [20] as an embedding space for

our driving data and as the subroutine ids themselves. To

do this, we arranged the steering angle, braking, and throt-

tle pressure data into vectors of length m. Then, the vectors

from each category that correspond to the same time steps

are concatenated together to make vectors of length 3m.

During training, the collection of these vectors is passed

through the unsupervised t-SNE algorithm to create a co-

ordinate space for the driving data. For our networks, we

use m = 10, however this is a hyperparameter that can be

tuned.

Each vector of length 3m is given one x and y coordinate

pair as illustrated in Figure 3. The greater collection of all

of the generated points is shown in Figure 4. The coloring

of the points in this figure is hard coded. The points corre-

sponding to vectors with primarily negative steering angles

are in blue. The points corresponding to vectors with pos-

itive steering angles are in green. The orange points cor-

respond to vectors with steering angles that are relatively

close to zero.

Once we have the t-SNE embedding of the data, we use

K-Means clustering on the coordinates and take the cen-

troids of the clusters as our new subroutine ids, as shown in

Figure 5. We vary k from ten to twenty to determine if dif-

ferent numbers of clusters improve prediction performance.

Then, we train our manager network to predict subroutines

similar to the t-SNE centroids given a sequence of images

as input. In order to ensure that no data pertaining to the

predicted steering angle is used as input to this network,

we use the t-SNE centroid corresponding to the previous m

steering, braking, and throttle data as input to the network.

To illustrate, refer back to Figure 3. If we are predicting

an angle from the range t ∈ [2m, 3m], then the t-SNE cen-

troid used for the subroutine id input to the angle prediction

network will be the centroid at τ = 2, which was made with

the steering, braking, and throttle data from t ∈ [m, 2m]. In

this way, the angle we are attempting to predict will not be

Figure 6. Example training images are shown with their corresponding t-SNE centroids. Notice the bottom right of the figure contains

sharp right turns. Moving upwards and to the left, the right turn gets less sharp until the vehicle begins to go straight. Eventually this

straight behavior starts to become a left turn until the vehicle is making sharp left turns in the upper left hand corner.

used to compute the t-SNE centroid that is input to the net-

work as the subroutine id. This shift also incorporates an

extra level of temporal abstraction into our network.

Figure 6 shows example training images that correspond

to some of the t-SNE centroids. Notice that the bottom right

of the figure contains sharp right turns. Moving diagonally

upwards, the right turns get less sharp until the vehicle be-

gins to go straight. Then, this straight motion gradually be-

gins to become a left turn until, by the top left of the fig-

ure, the vehicle is making sharp left turns. Figure 7 shows

that the points contained in each cluster exhibit the same,

or comparable, behavior. The left column of images are a

subset of the t-SNE centroid frames from Figure 6. Each

row contains frames from points adjacent to the associated

centroid that are contained within the same cluster. The be-

havior in each row is consistent, showing that the points in

each cluster behave similarly.

3.4. t-SNE Prediction Network

Since our results (Section 4) show that t-SNE coordi-

nates prove useful as a subroutine ID, we also explore pre-

diction of t-SNE coordinates directly from images, as a t-

SNE network following a concept introduced in prior work

[32]. The t-SNE prediction network is jointly trained with

and our steering angle prediction network. For this t-SNE

manager network, we fine tune the FBResNet152 model

[10, 3]. We train the steering angle prediction network to

take in the predicted centroids as the subroutine id, as well

as a sequence of images, in order to predict the next steering

angle.

3.5. Subroutine ID Prediction Network

While t-SNE provides convenient visualization of the

subroutine id semantic meaning, we take inspiration from

[16] to allow the manager learn the subroutines over the

Figure 7. The left column of images are a subset of centroid frames

from Figure 6. The images to the right of each centroid frame

come from different, adjacent points in the corresponding cluster

for each centroid. Notice that the points in each cluster display

similar behavior as their respective centroids.

driving data. This work trains multiple networks on com-

pletely unlabeled data in order to label frames based on an

agent’s actions during an initial exploration of an environ-

ment. The subroutines across these labeled frames are then

learned and represented as discrete random variables. How-

ever, the Udacity dataset [29] already provides low-level ac-

tion labels between consecutive frames in the form of steer-

ing angles. So we only need to create a network to learn

subroutines across these actions.

In summary, we obtain subroutine ids using three meth-

ods: 1) Set the subroutine id to the ground truth t-SNE clus-

ter centroids where t-SNE is computed on steering, throttle,

and braking data m time steps prior to the prediction time

n. 2) Set the subroutine id to the t-SNE network output fol-

lowing the general concept introduced in [32] by predicting

t-SNE coordinates from images. 3) Learn subroutine ids

jointly with steering angle prediction with a subroutine id

network. The best results are obtained by the third method.

4. Experiments and Results

4.1. Dataset and Augmentation

We test our feudal networks in the domain of au-

tonomous vehicles using the Udacity driving dataset[29],

Figure 8. Results of steering angle prediction when the ground

truth t-SNE coordinates of the input data are used as the subroutine

ids in the steering angle prediction network of Feudal Steering.

Notice that, for these results, we use a network that does not take

the previous angle as input.

which provides steering angles, first-person dash cam im-

ages, braking, and throttle pressure data. We use frames

from the CH2 002 partition of the dataset and use a

75%/25% train/test split. We augment our training data to

increase its size and influence model training by implement-

ing a horizontal flip, which effectively doubles the size of

the dataset. For this change, we negate the angles associ-

ated with the flipped images. Additionally, all images are

scaled and normalized so that their pixel values lie in the

range [−1, 1].

4.2. t-SNE as Subroutine ID

First, we use t-SNE as the embedding space for our sub-

routine ids by embedding the data into 2D space, using K-

means clustering to create centroids, and using the coordi-

nate pairs of those clusters as the subroutine ids. However,

before we attempt to predict the t-SNE coordinates from

the image data, we determine if the t-SNE coordinates will

function as subroutine ids. We use the ground truth value

of the t-SNE centroids as the subroutine id in our angle pre-

diction network, along with an image sequence of length

ten, to determine whether or not it would be worthwhile to

attempt to predict the centroids.

The results of this experiment are in Figure 8. The blue

lines are the real steering angle, and the orange lines are the

predicted angle. While the results in this figure show that

the predicted angles diverge slightly from the ground truth

angles, these predictions are more relevant to real world ap-

plications because they are computed using only visual in-

put. Additionally, the quality of these predictions is high

Figure 9. The steering angle prediction results using the predicted

t-SNE network as the manager are pictured above in orange. The

blue represents the ground truth angles. While these results as

worse than our subroutine id netowrk, they were achieved without

using the previous steering angle as input to the network.

Number of Centroids 10 15 20

RMSE 0.2093 0.2240 0.2251

Table 1. The manager network predicts subroutine ids to be close

to the t-SNE centroids of the training data embedding space. We

test 10, 15, and 20 centroids in our network and find that 10 cen-

troids has the lowest RMSE.

enough to motivate us to use additional methods of predict-

ing the subroutine id’s with the manager network.

4.3. Predicted t-SNE as Subroutine ID

Next, we jointly train a t-SNE prediction and steering

angle prediction networks. The input to both is an image

sequence of length ten. The t-SNE prediction network out-

puts the coordinates to the corresponding t-SNE centroid of

the image input. To train this network, we minimize the

MSE loss between the output and the ground truth t-SNE

coordinates. The steering angle prediction network takes

in this predicted centroid and produces the corresponding

steering angle. We also minimize the MSE loss between

the predicted and real angles. We conducted this experi-

ment using 10, 15, and 20 t-SNE centroids and found that

10 centroids produced the best results, as shown in Table

1. Figure 9 shows the prediction results. The blue line rep-

resents the ground truth angles, and the orange line is the

predicted angles.

4.4. Subroutine ID Network

To create this subroutine id network, we mimic the struc-

ture of the steering angle network. However, the input to

the subroutine id network is a one dimensional sequence

of steering angles, so the network uses 1D convolutions in-

stead of 3D. Additionally, we only use three sets of convo-

lutions for this network instead of four.

We jointly train the subroutine id and steering angle pre-

diction networks. The subroutine id network takes a se-

quence of historical steering angles as input and outputs a

goal vector representing the subroutine id for those angles.

The steering angle network takes in the subroutine id, a se-

quence of images, and the previous predicted angle and out-

puts the next steering angle in the sequence.

During training and testing, the sequence of an-

gles fed into the subroutine id network consists of

[an−1−m, an−1−(m−1), ..., an−1], in order to ensure that

we only use the sequence of angles preceding the angle

we aim to predict. The subroutine id is a single num-

ber that is able to take on any value in IR. The sequence

of images input to the steering angle network range from

[in−m, in−(m−1), ..., in], and the previous angle used as in-

put is an−1. We choose m = 10 for our experiments, but

this is a hyperparameter that can be fine tuned.

We use a learning rate of 1 × 10−4 with an Adam opti-

mizer. The other hyperparameters for the optimizer are un-

changed from their pytorch defaults of β = (.9, .999). We

train our model under multiple loss functions and compare

the performance. These loss functions are MSE,

LMSE =
1

N

N
∑

i=0

(αi − ai)
2

RMSE,

LRMSE =

√

√

√

√

1

N

N
∑

i=0

(αi − ai)2

and MAE

LMAE =
1

N

N
∑

i=0

|αi − ai|

where N is the number of predictions, α is the ground truth

angle, and a is the predicted angle. We find that we achieve

the best results using MSE loss, but we report our MAE loss

for comparison purposes in the results section as well.

Our final experiment is predicting steering angles and

subroutines based on visual input using this subroutine id

network. We create an image sequence of ten frames that we

feed into our feudal network along with the previous steer-

ing angle to predict the next steering angle. Figure 10 shows

the prediction results. The top graph shows the steering an-

gle predictions. The corresponding subset of real steering

angles from the Udacity [29] dataset are in blue, and the

predicted steering angles are in orange. The bottom graph

in Figure 10 shows the predicted subroutine ids. We can see

from these predictions that the learned subroutine ids fol-

low the general pattern of the steering angles, but vary in

Figure 10. Angle (top) and subroutine id (bottom) prediction re-

sults on the Udacity dataset obtained using our Feudal Steering

network are shown above. The real angle is pictured in blue and

the predicted angle is in orange. The subroutine ids are plotted

alone. Notice that the subroutine id’s behavior mimics the real

angle behavior, but differs in scale.

scale, showing that the subroutine id is a stepping stone to

the final steering angle prediction.

We compare this method with several state of the art

(SOTA) implementations in Table 2. We show that our

RMSE and MAE are lower than [14, 21, 5, 8]. While we did

not achieve better loss values than [12], we achieved com-

parable MSE and MAE values using a much smaller, sim-

pler network. This is beneficial in the autonomous driving

domain where memory and latency are limited for efficient,

real world applications.

RMSE MAE

Interpretable Attention [14] - 0.07191

Event Based Camera[21] 0.07156 -

Deep Steering [5] 0.0609 -

Udacity Challenge[8] 0.0483 -

Feudal Steering (Ours) 0.04659 0.01902

Learning by Mimicking [12] 0.04110 0.02834

Table 2. The RMSE and MAE of Feudal Steering is compared

with other steering angle prediction methods. We outperform all

but one of the SOTA methods. We produce comparable RMSE

and MAE to [12] despite using a much smaller model.

4.5. Non-Hierarchical Steering Angle Prediction

We attempted to use the steering angle prediction net-

work without a manager network to compare hierarchi-

cal and non-hierarchical networks. However, the non-

hierarchical network (worker network only) failed to predict

any reasonably accurate steering angles.

5. Discussion

In this work, we show that the feudal networks from hier-

archical reinforcement learning are more effective than re-

inforcement learning at the task of steering angle prediction.

This effect is due to temporal abstraction. Breaking down

the problem into more tractable pieces narrows the focus of

the worker agent and allows the optimal policy to be found

more quickly. Additionally, temporal abstraction also helps

alleviate the problems of long term credit assignment and

sparse reward signals. The lower temporal resolution of the

manager shortens the period of time between rewards over-

all.

We also explore a t-SNE embedding space as the goal

space for the manager in our steering angle predictions. We

use the centroid corresponding to steering angle, braking,

and throttle data from the previous m time steps as the sub-

routine id in our angle prediction network and were able to

predict future steering angles without the direct use of the

steering angle from the previous time step. However, this

network had worse performance than our subroutine id net-

work because of the limitations on the subroutine represen-

tation. When we allow the manager network the freedom

to be able to define its subroutines for itself, performance

increases and surpasses the current SOTA.

Acknowledgements

We acknowledge Lockheed Martin for support during

this project. We thank Sanipa Arnold, Jeff Cammerata, and

Matthew Purri for their suggestions and comments.

References

[1] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-

critic architecture. In Thirty-First AAAI Conference on Arti-

ficial Intelligence, 2017. 2

[2] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski,

Bernhard Firner, Beat Flepp, Prasoon Goyal, Lawrence D

Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al.

End to end learning for self-driving cars. arXiv preprint

arXiv:1604.07316, 2016. 3

[3] Remi Cadene. Pretrained models for pytorch. URL

https://github. com/Cadene/pretrained-models. pytorch,

2018. 5

[4] Jianyu Chen, Zining Wang, and Masayoshi Tomizuka. Deep

hierarchical reinforcement learning for autonomous driving

with distinct behaviors. In 2018 IEEE Intelligent Vehicles

Symposium (IV), pages 1239–1244. IEEE, 2018. 2

[5] Lu Chi and Yadong Mu. Deep steering: Learning end-to-end

driving model from spatial and temporal visual cues. arXiv

preprint arXiv:1708.03798, 2017. 3, 8

[6] Peter Dayan and Geoffrey E Hinton. Feudal reinforcement

learning. In Advances in neural information processing sys-

tems, pages 271–278, 1993. 1

[7] Jingliang Duan, Shengbo Li, Yang Guan, Qi Sun, and Cheng

Bo. Hierarchical reinforcement learning for self-driving

decision-making without reliance on labeled driving data.

IET Intelligent Transport Systems, 2020. 2

[8] Ilya Edrenkin. Komanda team solution, udacity chal-

lenge 1st place winner. https://github.com/udacity/self-

driving-car/blob/master/steering-models/community-

models/komanda/solution-komanda.ipynb, 2016. 3, 8

[9] Tuomas Haarnoja, Kristian Hartikainen, Pieter Abbeel, and

Sergey Levine. Latent space policies for hierarchical rein-

forcement learning. arXiv preprint arXiv:1804.02808, 2018.

2

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 5

[11] Sen He, Dmitry Kangin, Yang Mi, and Nicolas Pugeault. Ag-

gregated sparse attention for steering angle prediction. In

2018 24th International Conference on Pattern Recognition

(ICPR), pages 2398–2403. IEEE, 2018. 2

[12] Yuenan Hou, Zheng Ma, Chunxiao Liu, and Chen Change

Loy. Learning to steer by mimicking features from heteroge-

neous auxiliary networks. In Proceedings of the AAAI Con-

ference on Artificial Intelligence, volume 33, pages 8433–

8440, 2019. 2, 8

[13] Qadeer Khan, Torsten Schön, and Patrick Wenzel. Latent

space reinforcement learning for steering angle prediction.

arXiv preprint arXiv:1902.03765, 2019. 2

[14] Jinkyu Kim and John Canny. Interpretable learning for self-

driving cars by visualizing causal attention. In Proceedings

of the IEEE international conference on computer vision,

pages 2942–2950, 2017. 2, 8

[15] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and

Josh Tenenbaum. Hierarchical deep reinforcement learning:

Integrating temporal abstraction and intrinsic motivation. In

Advances in neural information processing systems, pages

3675–3683, 2016. 2

[16] Ashish Kumar, Saurabh Gupta, and Jitendra Malik. Learning

navigation subroutines by watching videos. arXiv preprint

arXiv:1905.12612, 2019. 2, 5

[17] Xiaodan Liang, Tairui Wang, Luona Yang, and Eric Xing.

Cirl: Controllable imitative reinforcement learning for

vision-based self-driving. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 584–599,

2018. 2

[18] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt

Skach, Md E Haque, Lingjia Tang, and Jason Mars. The ar-

chitectural implications of autonomous driving: Constraints

and acceleration. In Proceedings of the Twenty-Third Inter-

national Conference on Architectural Support for Program-

ming Languages and Operating Systems, pages 751–766,

2018. 2

[19] Shikun Liu, Edward Johns, and Andrew J Davison. End-to-

end multi-task learning with attention. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1871–1880, 2019. 2

[20] Laurens van der Maaten and Geoffrey Hinton. Visualiz-

ing data using t-sne. Journal of machine learning research,

9(Nov):2579–2605, 2008. 4

[21] Ana I Maqueda, Antonio Loquercio, Guillermo Gallego,

Narciso Garcı́a, and Davide Scaramuzza. Event-based vision

meets deep learning on steering prediction for self-driving

cars. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 5419–5427, 2018. 2,

8

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex

Graves, Ioannis Antonoglou, Daan Wierstra, and Martin

Riedmiller. Playing atari with deep reinforcement learning.

arXiv preprint arXiv:1312.5602, 2013. 1

[23] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey

Levine. Data-efficient hierarchical reinforcement learn-

ing. In Advances in Neural Information Processing Systems,

pages 3303–3313, 2018. 2

[24] Jacob Rafati and David C Noelle. Learning representations

in model-free hierarchical reinforcement learning. In Pro-

ceedings of the AAAI Conference on Artificial Intelligence,

volume 33, pages 10009–10010, 2019. 2

[25] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis

Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Lau-

rent Sifre, Dharshan Kumaran, Thore Graepel, et al. Master-

ing chess and shogi by self-play with a general reinforcement

learning algorithm. arXiv preprint arXiv:1712.01815, 2017.

1

[26] Yuhang Song, Jianyi Wang, Thomas Lukasiewicz, Zhenghua

Xu, and Mai Xu. Diversity-driven extensible hierarchical

reinforcement learning. In Proceedings of the AAAI Confer-

ence on Artificial Intelligence, volume 33, pages 4992–4999,

2019. 2

[27] Richard S Sutton, Doina Precup, and Satinder Singh. Be-

tween mdps and semi-mdps: A framework for temporal ab-

straction in reinforcement learning. Artificial intelligence,

112(1-2):181–211, 1999. 2

[28] Chen Tessler, Shahar Givony, Tom Zahavy, Daniel J

Mankowitz, and Shie Mannor. A deep hierarchical approach

to lifelong learning in minecraft. In Thirty-First AAAI Con-

ference on Artificial Intelligence, 2017. 2

[29] Udacity. Udacity self-driving car driving data 10/3/2016

(dataset-2-2.bag.tar.gz). 2, 6, 7

[30] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul,

Nicolas Heess, Max Jaderberg, David Silver, and Koray

Kavukcuoglu. Feudal networks for hierarchical reinforce-

ment learning. In Proceedings of the 34th International Con-

ference on Machine Learning-Volume 70, pages 3540–3549.

JMLR. org, 2017. 2

[31] Huazhe Xu, Yang Gao, Fisher Yu, and Trevor Darrell. End-

to-end learning of driving models from large-scale video

datasets. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 2174–2182, 2017. 3

[32] Jia Xue, Hang Zhang, and Kristin Dana. Deep texture man-

ifold for ground terrain recognition. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 558–567, 2018. 5, 6

