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Abstract

Estimating 3D orientation and translation of objects is

essential for infrastructure-less autonomous navigation and

driving. In case of monocular vision, successful methods

have been mainly based on two ingredients: (i) a network

generating 2D region proposals, (ii) a R-CNN structure pre-

dicting 3D object pose by utilizing the acquired regions of

interest. We argue that the 2D detection network is redun-

dant and introduces non-negligible noise for 3D detection.

Hence, we propose a novel 3D object detection method,

named SMOKE, in this paper that predicts a 3D bounding

box for each detected object by combining a single keypoint

estimate with regressed 3D variables. As a second con-

tribution, we propose a multi-step disentangling approach

for constructing the 3D bounding box, which significantly

improves both training convergence and detection accu-

racy. In contrast to previous 3D detection techniques, our

method does not require complicated pre/post-processing,

extra data, and a refinement stage. Despite of its struc-

tural simplicity, our proposed SMOKE network outperforms

all existing monocular 3D detection methods on the KITTI

dataset, giving the best state-of-the-art result on both 3D

object detection and Bird’s eye view evaluation. The code

is available at https://github.com/lzccccc/SMOKE.

1. Introduction

Vision-based object detection is an essential ingredient

of autonomous vehicle perception and infrastructure-less

robot navigation in general. This type of detection meth-

ods is used to perceive the surrounding environment by de-

tecting and classifying object instances into categories and

identifying their locations and orientations. Recent devel-

opments in 2D object detection [28, 20, 27, 18, 12, 42] have

achieved promising performance on both detection accu-

racy and speed. In contrast, 3D object detection [3, 16, 43]

has proven to be a more challenging task as it aims to esti-

mate pose and location for each object simultaneously.

Currently, the most successful 3D object detection meth-

ods heavily depend on LiDAR point cloud [43, 30, 40]

SMOKE

Figure 1. SMOKE directly predicts the 3D projected keypoint and

3D regression parameters on a single image. The whole network

is trained end-to-end in a single stage.

or LiDAR-Image fusion information [17, 33, 5] (features

learned from the point cloud are key components of the de-

tection network). However, LiDAR sensors are extremely

expensive, have a short service life time and are too heavy

for autonomous robots. Hence, LiDARs are currently not

considered to be economical to support autonomous vehicle

operations. Alternatively, cameras are cost-effective, easily

mountable and light-weight solutions for 3D object detec-

tion with long expected service time. Unlike LiDAR sen-

sors, a single camera in itself can not obtain sufficient spa-

tial information for the whole environment as single RGB

images can not supply object location information or di-

mensional contour in the real world. While binocular vision

restores the missing spatial information, in many robotics

applications, especially Unmanned Aerial Vehicles (UAVs),

it is difficult to realize binocular vision. Hence, it is desir-

able to perform 3D detection on a monocular image even if

it is a more difficult and challenging task.

Previous state-of-the-art monocular 3D object detection

algorithms [25, 1, 21] heavily depend on region-based con-

volutional neural networks (R-CNN) or region proposal net-

work (RPN) structures [28, 18, 7]. Based on the learned

high number of 2D proposals, these approaches attach an

additional network branch to either learn 3D information

or to generate a pseudo point cloud and feed it into point-

cloud-detection network. The resulting multi-stage com-

plex process introduces persistent noise from 2D detection,

which significantly increases the difficulty for the network

to learn 3D geometry. To enhance performance, geometry

reasoning [25], synthetic data [22] and post 3D-2D process-

ing [1] have also been used to improve 3D object detec-

tion on single image. To the best knowledge of the authors,

no reliable monocular 3D detection method has been intro-
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Figure 2. Network Structure of SMOKE. We leverage DLA-34 [41] to extract features from images. The size of the feature map is 1:4

due to downsampling by 4 of the original image. Two separate branches are attached to the feature map to perform keypoint classification

(pink) and 3D box regression (green) jointly. The 3D bounding box is obtained by combining information from two branches.

duced so far to learn 3D information directly from the image

plane avoiding the performance decrease that is inevitable

with multi-stage methods.

In this paper, we propose an innovative single-stage 3D

object detection method that pairs each object with a sin-

gle keypoint. We argue and later show that a 2D detection,

which introduces nonnegligible noise in 3D parameter esti-

mation, is redundant to perform 3D object detection. Fur-

thermore, 2D information can be naturally obtained if the

3D variables and camera intrinsic matrix are already known.

Consequently, our designed network eliminates the 2D de-

tection branch and estimates the projected 3D points on the

image plane instead. A 3D parameter regression branch

is added in parallel. This design results in a simple net-

work structure with two estimation threads. Rather than re-

gressing variables in a separate method by using multiple

loss functions, we transform these variables together with

projected keypoint to 8 corner representation of 3D boxes

and regress them with a unified loss function. As in most

single-stage 2D object detection algorithms, our 3D detec-

tion approach only contains one classification and regres-

sion branch. Benefiting from the simple structure, the net-

work exhibits improved accuracy in learning 3D variables,

and has better convergence and less overall computational

needs.

The second contribution of our work is a multi-step dis-

entanglement approach for 3D bounding box regression.

Since all the geometry information is grouped into one pa-

rameter, it is difficult for the network to learn each variable

accurately in a unified way. Our proposed method isolates

the contribution of each parameter in both the 3D bounding

box encoding phase and the regression loss function, which

significantly helps to train the whole network effectively.

Our contribution is summarized as follows:

• We propose a one-stage monocular 3D object detection

with a simple architecture that can precisely learn 3D

geometry in an end-to-end fashion.

• We provide a multi-step disentanglement approach to

improve the convergence of 3D parameters and detec-

tion accuracy.

• The resulting method outperforms all existing state-of-

the-art monocular 3D object detection algorithms on

the challenging KITTI dataset at the submission date

November 12, 2019.

2. Related Work

In this section, we provide an in-depth overview of the

state-of-the-art of 3D object detection based on the used

sensor inputs. We first discuss LiDAR based and LiDAR-

image fusion methods. After that, stereo image based meth-

ods are overviewed. Finally, we summarize approaches that

only depend on single RGB images.

LiDAR/Fusion Based Methods: LiDAR-based 3D object

detection methods achieve high detection precision by pro-

cessing sparse point clouds into various representations.

Some existing methods, e.g., [15, 39], project point clouds

into a 2D Bird’s eye view and equip standard 2D detec-

tion networks to perform object classification and 3D box

regression. Other methods, like [43, 11, 13, 38], repre-

sent point clouds in voxel grid and then leverage 2D/3D

CNNs to generate proposals. LiDAR-image fusion methods

[17, 33, 5] learn relevant features from both the point clouds

and the images together. These features are then combined

and fed into a joint network trained for detection and clas-

sification.

Stereo Images Based Methods: The early work 3DOP [4]

generates 3D proposals by exploring many handcrafted fea-



tures such as stereo reconstruction, depth features, and ob-

ject size priors. TLNet [26] introduces a triangulation based

learning network to pair detected regions of interests be-

tween left and right images. Stereo R-CNN [16] creates

2D proposals simultaneously on stereo images. Then, the

methods utilize keypoint prediction to generate a coarse 3D

bounding box per region. A 3D box alignment w.r.t. stereo

images is finally used on the object instance to improve

the detection accuracy. Pseudo-LiDAR methods, e.g., [32],

generate a “fake” point cloud and then feed these features

into a point cloud based 3D detection network.

Monocular Image Based Methods: 3D object detection

based on a single perspective image has been extensively

studied and it is considered to be a challenging task. A com-

mon approach is to apply an additional 3D network branch

to regress orientation and translation of object instances, see

[3, 23, 37, 19, 14, 25, 22, 31]. Mono3D [3] generates 3D

anchors by using a massive amount of features via seman-

tic segmentation, object contour, and location priors. These

features are then evaluated via an energy function to accom-

modate learning of relative information. Deep3DBox [23]

introduces bin-based discretization for the estimation of lo-

cal orientation for each object and 2D-3D bounding box

constraint relationships to obtain the full 3D pose. Mono-

GRNet [25] subdivides the 3D object localization task into

four tasks that estimate instance depth, 3D location of ob-

jects, and local corners respectively. These components are

then stacked together to refine the 3D box in a global con-

text. The network is trained in a stage-wise fashion and then

trained end-to-end to obtain the final result. Some methods,

like [36, 2, 10], rely on features detected in a 2D object

box and leverage external data to pair information from 2D

to 3D. DeepMANTA [2] proposes a coarse-to-fine process

to generate accurate 2D object proposals, which are then

used to match a 3D CAD model from an external annotated

dataset. 3D-RCNN [10] also uses 3D models to pair the

outputs from a 2D detection network. They then recover

the 3D instance shape and pose by deploying a render-and-

compare loss. Other approaches, like [21, 34, 9], gener-

ate hand-crafted features by transforming region of interest

on images to other representations. AM3D transforms 2D

imagery to a 3D point cloud plane by combining it with a

depth map. A PointNet [24] is then used to estimate 3D di-

mensions, locations and orientations. The only one-stage

method M3D-RPN [1] proposes a standalone network to

generate 2D and 3D object proposals simultaneously. They

further leverage a depth-aware network and post 3D-2D op-

timization technique to improve precision. OFTNet [29]

maps the 2D feature map to bird’s eye view by leveraging

orthographic feature transform and regress each 3D variable

independently. Consequently, none of the above methods

can estimate 3D information accurately without generating

2D proposals.

Figure 3. Visualization of difference between 2D center points

(red) and 3D projected points (orange). Best viewed in color.

3. Detection Problem

We formulate the monocular 3D object detection prob-

lem as follows: given a single RGB image I ∈ R
W×H×3,

with W being the width and H being the height of the im-

age, find for each present object its category label C and

its 3D bounding box B, where the latter is parameterized

by 7 variables (h,w, l, x, y, z, θ). Here, (h,w, l) represent

the height, weight, and length of each object in meters, and

(x, y, z) is the coordinates (in meters) of the object center

in the camera coordinate frame. Variable θ is the yaw ori-

entation of the corresponding cubic box. The roll and pitch

angles are set to zero by following the KITTI [6] annotation.

Additionally, we make the mild assumption that the camera

intrinsic matrix K is known for both training and inference.

4. SMOKE Approach

In this section, we describe the SMOKE network that

directly estimates 3D bounding boxes for detected object

instances from monocular imagery. In contrast to previ-

ous techniques that leverage 2D proposals to predict a 3D

bounding box, our method can detect 3D information with

a simple single stage. The proposed method can be divided

into three parts: (i) backbone, (ii) 3D detection, (iii) loss

function. First, we briefly discuss the backbone for feature

extraction, followed by the introduction of the 3D detection

network consisting of two separated branches. Finally, we

discuss the loss function design and the multi-step disen-

tanglement to compute the regression loss. The overview of

the network structure is depicted in Fig. 2.

4.1. Backbone

We use a hierarchical layer fusion network DLA-34 [41]

as the backbone to extract features since it can aggregate in-

formation across different layers. Following the same struc-

ture as in [42], all the hierarchical aggregation connections

are replaced by a Deformable Convolution Network (DCN)

[44]. The output feature map is downsampled 4 times with

respect to the original image. Compared with the original

implementation, we replace all BatchNorm (BN) [8] oper-

ation with GroupNorm (GN) [35] since it has been proven

to be less sensitive to batch size and more robust to train-

ing noise. We also use this technique in the two prediction
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Figure 4. Relation of the observation angle αx and αz . αx is pro-

vided in KITTI, while αz is the value we choose to regress.

branches, which will be discussed in Sec. 4.2. This adjust-

ment not only improves detection accuracy, but it also re-

duces considerably the training time. In Sec. 5.2, we pro-

vide performance comparison of BN and GN to demon-

strate these properties.

4.2. 3D Detection Network

Keypoint Branch: We define the keypoint estimation net-

work similar to [42] such that each object is represented by

one specific keypoint. Instead of identifying the center of a

2D bounding box, the key point is defined as the projected

3D center of the object on the image plane. The compar-

ison between 2D center points and 3D projected points is

visualized in Fig. 3. The projected keypoints allow to fully

recover 3D location for each object with camera parame-

ters. Let
[

x y z
]⊤

represent the 3D center of each object

in the camera frame. The projection of 3D points to points
[

xc yc
]⊤

on the image plane can be obtained with the cam-

era intrinsic matrix K in a homogeneous form:





z · xc

z · yc
z



 = K3×3





x
y
z



 . (1)

For each ground truth keypoint, its corresponding down-

sampled location on the feature map is computed and dis-

tributed using a Gaussian Kernel following [42]. The

standard deviation is allocated based on the 3D bounding

boxes of the ground truth projected to the image plane.

Each 3D box on the image is represented by 8 2D points
[

xb,1∼8 yb,1∼8

]⊤
and the standard deviation is computed

by the smallest 2D box with {xmin
b , ymin

b , xmax
b , ymax

b } that

encircles the 3D box.

Regression Branch: Our regression head predicts the es-

sential variables to construct a 3D bounding box for each

keypoint on the heatmap. Similar to other monocular 3D de-

tection framework [22, 31], the 3D information is encoded

as an 8-tuple τ =
[

δz δxc
δyc

δh δw δl sinα cosα
]⊤

.

Here δz denotes the depth offset, δxc
, δyc

is the discretiza-

tion offset due to downsampling, δh, δw, δl denotes the

residual dimensions, sin(α), cos(α) is the vectorial repre-

sentation of the rotational angle α. We encode all variables

to be learned in residual representation to reduce the learn-

ing interval and ease the training task. The size of feature

map for regression results in Sr ∈ R
H

R
×

W

R
×8. Inspired by

the lifting transformation described in [22], we introduce a

similar operation F that converts projected 3D points to a

3D bounding box B = F(τ) ∈ R
3×8. For each object,

its depth z can be recovered by pre-defined scale and shift

parameters σz and µz as

z = µz + δzσz. (2)

Given the object depth z, the location for each object in the

camera frame can be recovered by using its discretized pro-

jected centroid
[

xc yc
]⊤

on the image plane and the down-

sampling offset
[

δxc
δyc

]⊤
:





x
y
z



 = K−1
3×3





z · (xc + δxc
)

z · (yc + δyc
)

z



 . (3)

This operation is the inverse of Eq. (1). In order to re-

trieve object dimensions
[

h w l
]⊤

, we use a pre-calculated

category-wise average dimension
[

h̄ w̄ l̄
]⊤

computed over

the whole dataset. Each object dimension can be recovered

by using the residual dimension offset
[

δh δw δl
]⊤

:





h
w
l



 =





h̄ · eδh

w̄ · eδw

l̄ · eδl



 . (4)

Inspired by [23], we choose to regress the observation angle

α instead of the yaw rotation θ for each object. We further

change the observation angle with respect to the object head

αx, instead of the commonly used observation angle value

αz , by simply adding π
2

. The difference between these two

angles is shown in Fig. 4. Moreover, each α is encoded

as the vector
[

sin(α) cos(α)
]⊤

. The yaw angle θ can be

obtained by utilizing αz and the object location:

θ = αz + arctan
(x

z

)

. (5)

Finally, we can construct the 8 corners of the 3D bounding

box in the camera frame by using the yaw rotation matrix

Rθ, object dimensions
[

h w l
]⊤

and location
[

x y z
]⊤

:

B = Rθ





±h/2
±w/2
±l/2



+





x
y
z



 . (6)



4.3. Loss Function

Keypoint Classification Loss: We employ the penalty-

reduced focal loss [12, 42] in a point-wise manner on the

downsampled heatmap. Let si,j be the predicted score at the

heatmap location (i, j) and yi,j be the ground-truth value of

each point assigned by Gaussian Kernel. Define y̆i,j and

s̆i,j as:

y̆i,j=

{

0 if yi,j = 1

yi,j otherwise
, s̆i,j=

{

si,j if yi,j = 1

1− si,j otherwise
,

For simplicity, we only consider a single object class

here. Then, the classification loss function is constructed

as

Lcls = −
1

N

h,w
∑

i,j=1

(1− y̆i,j)
β(1− s̆i,j)

γ log(s̆i,j), (7)

where γ and β are tunable hyper-parameters and N is

the number of keypoints per image. The term (1 − yi,j)
corresponds to penalty reduction for points around the

groundtruth location.

Regression Loss: We regress the 8D tuple τ to construct

the 3D bounding box for each object. We also add channel-

wise activation to the regressed parameters of dimension

and orientation at each feature map location to preserve con-

sistency. The activation functions for the dimension and the

orientation are chosen to be the sigmoid function σ and the

ℓ2 norm, respectively:





δh
δw
δl



 = σ









oh
ow
ol







−
1

2
,

[

sinα
cosα

]

=

[

osin/
√

o2sin + o2cos
ocos/

√

o2sin + o2cos

]

,

Here o stands for the specific output of network. By

adopting the keypoint lifting transformation introduced in

Sec. 4.2, we define the 3D bounding box regression loss as

the ℓ1 distance between the predicted transform B̂ and the

groundtruth B:

Lreg =
λ

N
‖B̂ −B‖1, (8)

where λ is a scaling factor. This is used to ensure that

neither the classification, nor the regression dominates the

other. The disentangling transformation of loss has been

proven to be an effective dynamic method to optimize 3D

regression loss functions in [31]. Following this design, we

extend the concept of loss disentanglement into a multi-step

form. In Eq. (3), we use the projected 3D groundtruth points

on the image plane
[

xc yc
]⊤

with the network predicted

discretization offset
[

δ̂xc
δ̂yc

]⊤

and depth ẑ to retrieve the

location
[

x̂ ŷ ẑ
]⊤

of each object. In Eq. (5), we use the

groundtruth location
[

x y z
]⊤

and the predicted observa-

tion angle α̂z to construct the estimated yaw orientation θ̂.

The 8 corners representation of the 3D bounding box is also

isolated into three different groups following the concept of

disentanglement, namely orientation, dimension and loca-

tion. The final loss function can be represented by:

L = Lcls +
3

∑

i=1

Lreg(B̂i), (9)

where i represents the number of groups we define in the

3D regression branch. The multi-step disentangling trans-

formation divides the contribution of each parameter group

to the final loss. In Sec. 5.2, we show that this method sig-

nificantly improves detection accuracy.

4.4. Implementation

In this section, we discuss the implementation of our pro-

posed methodology in detail together with selection of the

hyperparemeters.

Preprocessing: We avoid applying any complicated pre-

processing method on the dataset. Instead, we only elimi-

nate objects whose 3D projected center point on the image

plane is out of the image range. Note that the total number

of projected center points outside the image boundary for

the car instance is 1582. This accounts for only the 5.5% of

the entire set of 28742 labeled cars

Data Augmentation: Data augmentation techniques we

used are random horizontal flip, random scale and shift. The

scale ratio is set to 9 steps from 0.6 to 1.4, and the shift ra-

tio is set to 5 steps from −0.2 to 0.2. Note that the scale

and shift augmentation methods are only used for heatmap

classification since the 3D information becomes inconsis-

tent with data augmentation.

Hyperparameter Choice: In the backbone, the group

number for GroupNorm is set to 32. For channels less than

32, it is set to be 16. For Eq. (7), we set γ = 2 and β = 4 in

all experiments. Based on [31], the reference car size and

depth statistics we use are
[

h̄ w̄ l̄
]⊤

= [1.63 1.53 3.88]⊤

and
[

µz σz

]⊤
= [28.01 16.32]⊤ (measured in meters).

Training: Our optimization schedule is easy and straight-

forward. We use the original image resolution and pad it

to 1280 × 384. We train the network with a batch size of

32 on 4 Geforce TITAN X GPUs for 60 epochs. The learn-

ing rate is set at 2.5 × 10−4 and drops at 25 and 40 epochs

by a factor of 10. During testing, we use the top 100 de-

tected 3D projected points and filter it with a threshold of

0.25. No data augmentation method and NMS are used in

the test procedure. Our implementation platform is Pytorch

1.1, CUDA 10.0, and CUDNN 7.5.



Method Backbone Runtime(s)
3D Object Detection Birds’ Eye View

Easy Moderate Hard Easy Moderate Hard

OFTNet[29] ResNet-18 0.50 1.32 1.61 1.00 7.16 5.69 4.61

GS3D[14] VGG-16 2.00 4.47 2.90 2.47 8.47 6.08 4.94

MonoGR[25] VGG-16 0.06 9.61 5.74 4.25 18.19 11.17 8.73

ROI-10D[22] ResNet-34 0.20 4.32 2.02 1.46 9.78 4.91 3.74

MonoDIS[31] ResNet-34 0.10 10.37 7.94 6.40 17.23 13.19 11.12

M3D-RPN[1] DenseNet-121 0.16 14.76 9.71 7.42 21.02 13.67 10.23

Ours DLA-34 0.03 14.03 9.76 7.84 20.83 14.49 12.75

Table 1. Test set performance. 3D object detection and Bird’s eye view performance w.r.t. the car class on the official KITTI data set

using the test split. Both metrics are evaluated by AP|R40
at 0.7 IoU threshold.

Method
3D Object Detection / Birds’ Eye View

Easy Moderate Hard

CenterNet[42] 0.86 / 3.91 1.06 / 4.46 0.66 / 3.53

Mono3D[3] 2.53 / 5.22 2.31 / 5.19 2.31 / 4.13

OFTNet[29] 4.07 / 11.06 3.27 / 8.79 3.29 / 8.91

GS3D[14] 11.63 / - 10.51 / - 10.51 / -

MonoGR[25] 13.88 / - 10.19 / - 7.62 / -

ROI-10D[22] 9.61 / 14.50 6.63 / 9.91 6.29 / 8.73

MonoDIS[31] 18.05 / 24.26 14.98 / 18.43 13.42 / 16.95

M3D-RPN[1] 20.40 / 26.86 16.48 / 21.15 13.34 / 17.14

Ours 14.76 / 19.99 12.85 / 15.61 11.50 / 15.28

Table 2. Validation set performance. 3D object detection and

Bird’s eye view performance w.r.t. the car class on the official

KITTI data set using the val split. Both metrics are evaluated by

AP|R11
at 0.7 IoU threshold.

5. Performance Evaluation

We evaluate the performance of our proposed framework

on the challenging KITTI dataset. The KITTI dataset is a

broadly used publicly available dataset to evaluate visual

algorithms on a driving scene considered representative for

autonomous driving. It contains 7481 images for training

and 7518 images for testing. The test metric is divided into

easy, moderate and hard cases based on the height of the 2D

bounding box of object instances, occlusion and truncation

level. Frequently, the training set is split into 3712 train-

ing examples and 3769 validation examples as mentioned

in [3]. For the 3D detection task of our proposed method,

the 3D Object Detection and Bird’s Eye View benchmarks

are available for evaluation.

5.1. Detection on KITTI

3D Object Detection Performance: The 3D detection re-

sults of our proposed method on the split sets test and val

are compared with the state-of-the-art single image-based

methods in Tabs. 1 and 2. We principally focus on the car

class since it has been at the focus of previous cooperative

studies. For both tasks, the average precision (AP) with In-

tersection over Union (IoU) greater than 0.7 is used as the

metric for evaluation. Note that as pointed out by [31], the

Method
2D Object Detection

Easy Moderate Hard

Mono3D[3] 94.52 89.37 79.15

OFTNet[29] - - -

GS3D[14] 86.23 76.35 62.67

MonoGR[25] 88.65 77.94 63.31

ROI-10D[22] 76.56 70.16 61.15

MonoDIS[31] 94.61 89.15 78.37

M3D-RPN[1] 89.04 85.08 69.26

Ours 92.88 86.95 77.04

Table 3. 2D detection. AP|R40
performance w.r.t. the car class on

the official KITTI data set using the test split.

official KITTI evaluation has been using 40 recall points

instead of 11 recall points to measure the AP value since

October 8, 2019. However, previous methods only report

accuracy at 11 points on the val set. For fair comparison,

we report the average precision on 40 points AP|R40
on the

test set and AP|R11
on the val set.

Results on the test split, shown in Tab. 1, show that

SMOKE outperforms all existing monocular methods on

both 3D object detection and Bird’s eye view evaluation

metrics. We achieve improvement in the moderate and

hard sets and comparable results on the easy set in the 3D

object detection task. For Bird’s eye view detection, we

also achieve notable improvement on the moderate and hard

sets. Compared with other methods that increase image size

for better performance, our approach uses relatively low-

resolution input and still achieves competitive results on the

hard set in 3D detection. Next to these, SMOKE shows a

significant improvement on detection speed. Without the

time-consuming region proposal process and by the ben-

efits of single-stage structure, our proposed method only

needs 30ms to run on a TITAN XP. Note that we only com-

pare our method with methods that directly learn features

from images. Approaches based on hand-crafted features

[34, 21] are not listed in the table. However, with respect to

the val set of KITTI, the performance degrades as reported

in Tab. 2. We argue that this is due to a lack of training

objects. A similar problem has been reported in [42].
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Figure 5. Average depth estimation error visualized in intervals of

10 meters. Best viewed in color.

Estimation of object location in a monocular image is

difficult since the incompleteness of spatial information.

We evaluate the depth estimation of SMOKE using two dif-

ferent distance measures. In Fig. 5, the achieved depth error

is displayed in intervals of 10 meters. The error is com-

puted if the 2D bounding box of a detection with any of

the ground truth objects has an IoU larger than 0.7. As

shown in the figure, the depth estimation error increases as

the distance grows. This phenomenon has been observed

in many monocular image-based detection algorithms since

small objects have large distance distribution. We compare

our method with two other methods Mono3D [3] and 3DOP

[4] on the same val set. The curve indicates that our pro-

posed SMOKE method outperforms both methods largely

on depth error. Especially at distances larger than 40m, our

method achieves more robust and accurate depth estimation.

2D Object Detection: The 2D detection performance on

the official KITTI test set is depicted in Tab. 3. Although the

2D bounding box is not directly regressed in the SMOKE

network, we observe that our method achieves compara-

ble results on the 2D object detection task. The 2D detec-

tion box is obtained as the smallest rectangle that contains

the projected 3D bounding box on the image plane. Un-

like other approaches following a 2D→3D structure, our

proposed method reverse this process in a 3D→2D fash-

ion and outperforms many of the existing methods. This

clearly shows that 3D object detection provides more abun-

dant information than 2D detection, hence 2D proposals are

redundant and not needed for 3D detection. Furthermore,

our proposed method does not use extra data, complicated

networks and high-resolution input compared to other meth-

ods.

5.2. Ablation Study

In this section, we show the results of experiments we

conducted to compare different normalization choices, loss

function, and rotation angle parameterizations. All exper-

Option
3D Object Detection / Bird’s Eye View

Easy Moderate Hard

BN 8.20 / 17.85 8.27 / 15.46 6.50 / 15.21

GN 10.60 / 18.06 8.33 / 16.07 6.98 / 15.39

Table 4. Normalization Strategy. GN perfoms better than BN on

all difficulty sets and in both evaluation metrics.

Option
3D Object Detection / Bird’s Eye View

Easy Moderate Hard

Smooth ℓ1 10.60 / 18.06 8.33 / 16.07 6.98 / 15.39

ℓ1 11.03 / 20.90 10.53 / 15.95 9.14 / 15.57

Dis. ℓ1 14.76 / 19.99 12.85 / 16.07 11.50 / 15.39

Table 5. Regression Loss. ℓ1 loss gains better performance than

Smooth ℓ1 loss. The disentanglement form further improves de-

tection result.

Option
3D Object Detection / Bird’s Eye View

Easy Moderate Hard

Quaternion 13.36 / 17.81 12.52 / 15.16 11.31 / 15.00

Vectorial 14.76 / 19.99 12.85 / 16.07 11.50 / 15.39

Table 6. Rotation Parametrization. Vectorial representation of

angles yileds better result than the quaternion representation.

iments are performed on the train/val split on the KITTI

dataset. Moreover, we use car class to evaluate our model.

Normalization Strategy: We chose GN as the normaliza-

tion strategy since it is less sensitive to batch size and cross-

GPU training issues. We compare the performance differ-

ence in the 3D detection task of BN and GN used in the

backbone network. As illustrated in Tab. 4, GN achieves

noticeable improvement over BN on the val set. In addi-

tion, we notice that GN can save considerable time in train-

ing. For each epoch, GN consumes around 5 minutes while

BN needs 8 minutes which takes 60% more time compared

to GN.

Regression Loss: As shown in Tab. 5, we compare differ-

ent regression loss functions for 3D bounding box estima-

tion performance. We observe that ℓ1 loss performs better

than Smooth ℓ1 loss. Same phenomenon is also found in the

keypoint estimation problem [42] where ℓ1 loss yields better

performance than ℓ2 loss. Moreover, applying disentangle-

ment to 3D bounding box regression achieves significantly

better performance on both 3D object detection and Birds’

eye view evaluation.

Rotation Parametrization: We compare the performance

of SMOKE with respect to different representations of rota-

tion. Following prior work [22, 31], the orientation can be

encoded as a 4D quaternion to formulate 3D bounding box.

The result with this representation is illustrated in Tab. 6.

We observe that our simple vectorial representation yields

slightly better result than the quaternion representation on

both 3D detection and Bird’s eye view evaluation.



Figure 6. Qualitative examples from the validation (left) and test (right) sets in KITTI. The non-transparent side of the bounding box

represents the front part of each car. Bird’s eye view is also provided to show that SMOKE can recover object distances accurately. Note

that all these images are not included in the training phase.

5.3. Qualitative Results

Qualitative results on both the test and val sets are dis-

played in Fig. 6. For better visualization and comparison,

we also plot the object localization in Bird’s eye view. The

results clearly demonstrate that SMOKE can recover object

distances accurately

6. Conclusion and Future Work

In this paper, we presented a novel single-stage monoc-

ular 3D object detection method based on projected 3D

points on the image plane. Unlike previous methods, which

depend on 2D proposals to estimate 3D information, our

approach regresses 3D bounding boxes directly. This leads

to a simple and efficient architecture. To further improve

the convergence of regression loss, we proposed a multi-

step disentanglement method to isolate the contribution of

various parameter groups. In addition, our model does not

need synthetic data, complicated pre/post-processing, and

multi-stage training. Overall, we largely improve both the

detection accuracy and speed on KITTI 3D object detection

and Bird’s eye view tasks.

Our proposed SMOKE 3D detection framework achieves

promising accuracy and efficiency, which can be further ex-

tended and used on autonomous vehicles and in robotic nav-

igation. In the future, we aim at extending our method to

stereo images and further improving the estimation of pro-

jected 3D keypoints and their depth.
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