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Abstract

Many autonomous vehicles rely on an array of sen-

sors for safe navigation, where each sensor captures dif-

ferent visual attributes from the surrounding environment.

For example, a single conventional camera captures high-

resolution images but no 3D information; a LiDAR provides

excellent range information but poor spatial resolution; and

a prototype single-photon LiDAR (SP-LiDAR) can provide

a dense but noisy representation of the 3D scene. Although

the outputs of these sensors vary dramatically (e.g., 2D im-

ages, point clouds, 3D volumes), they all derive from the

same 3D scene. We propose an extensible sensor fusion

framework that (1) lifts the sensor output to volumetric rep-

resentations of the 3D scene, (2) fuses these volumes to-

gether, and (3) processes the resulting volume with a deep

neural network to generate a depth (or disparity) map. Al-

though our framework can potentially extend to many types

of sensors, we focus on fusing combinations of three imag-

ing systems: monocular/stereo cameras, regular LiDARs,

and SP-LiDARs. To train our neural network, we generate

a synthetic dataset through CARLA that contains the indi-

vidual measurements. We also conduct various fusion abla-

tion experiments and evaluate the results of different sensor

combinations.

1. Introduction

An important challenge faced by the self-driving car in-

dustry is safety. When driving down a road, an autonomous

vehicle needs to reliably “see” its surroundings in order to

make safe decisions. Moreover, it is important to drive re-

liably in adverse weather conditions (rain, snow, or fog),

operate at different times of the day under different lighting

conditions (day or night), and detect pedestrians, bicyclists,

or other cars in the presence of partial occluders.

Many self-driving cars are therefore equipped with

a wide variety of sensors, such as cameras, LiDARs,

RADARs, and IMUs, to perceive their 3D environment re-
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Figure 1: Disparity maps generated with our framework,

using two sensor combinations: LiDAR only (top), and the

fusion of a SP-LiDAR, a stereo camera, and a LiDAR (bot-

tom). The highlighted insets on the right show the preser-

vation of fine details when combining multiple sensors to-

gether. Note that we report all results in terms of dispar-

ity, because our network builds on PSMNet [4]: a stereo

matching framework. All depth values (e.g., measurements

captured with the LiDARs) are therefore converted into dis-

parity values.

liably. The high-resolution 2D images from conventional

cameras can be used to identify cars, signs, or pedestrians

on the road, but provide poor depth perception by them-

selves. LiDARs are ideal for detecting the 3D position of

objects on the road, but provide limited spatial resolution.

New computational sensors are also on the horizon,

such as the emergence of single-photon LiDARs (SP-

LiDAR) [20]. A SP-LiDAR uses an extremely-sensitive

photo-detector known as a single-photon avalanche diode

(SPAD) [29], which can detect 3D points with far fewer



photons than a conventional multi-photon LiDAR. How-

ever, SP-LiDARs are also sensitive to ambient photons (e.g.,

light emitted by our sun), resulting in both denser but noisier

measurements. SP-LiDARs have been used for 3D imaging

at 10 km range [17, 28], sensing through hazy environments

(e.g., fog or murky water) [22, 31], and even imaging ob-

jects hidden around corners [27].

Combining sensory data from multiple sources helps to

overcome the limitations of any one sensor. In this work,

we propose an extensible framework for fusing the output

of a heterogeneous sensor array. Our approach involves lift-

ing the sensors’ measurements (e.g., a 2D image, a collec-

tion of 3D points, or a noisy 3D volume) to a temporary 4D

volume, referred to as a cost volume. Similar lifting opera-

tions have been used for 3D geometric reasoning tasks [33],

where the volume can be interpreted as a voxelized repre-

sentation of the scene. We process the resulting cost volume

with a deep neural network to extract the disparity map of

a scene, as shown in Figure 1. Note that we report results

in terms of disparity, because the basis for our solution is a

stereo matching framework called PSMNet [4].

Our framework is able to fuse different sensor combi-

nations, including monocular cameras, stereo cameras, Li-

DARs, and SP-LiDARs. Because all these sensor combi-

nations do not exist in current available datasets, we simu-

late our data using CARLA [10], an open source simulated

environment that supports development of autonomous ur-

ban driving systems. We also experiment with different

signal-to-background noise ratios (SBR) for SP-LiDARs,

and find that fusion with SP-LiDAR produces good results

even when subjected to very poor SBR conditions.

The key contributions of our work include

• an extensible fusion framework for heterogeneous sen-

sor arrays that lift measurements into a common volu-

metric representation;

• a new simulated dataset that contains measurements

for stereo cameras, LiDARs, and SP-LiDARs; and

• an evaluation of sensor fusion on the task of disparity

estimation using different combinations of sensors, in-

cluding a monocular camera, stereo camera, LiDAR,

and SP-LiDAR.

2. Related Work

2.1. 3D Sensors used in Autonomous Vehicles

Light Detection and Ranging (LiDAR) systems [12] are

commonly used in autonomous vehicles. These systems

work by firing a pulse of light at an object, measuring the

time required for the light to return in response, and us-

ing this response to infer the 3D position and reflectivity

of the object. The photodectors used in conventional Li-

DARs may require upwards of hundreds or thousands of

photons to measure a single 3D point. The LiDAR repeats

this process multiple times while scanning the environment

to produce a 3D point cloud. These point clouds tend to be

sparse however, especially for objects far from the sensor;

see Figure 3 for an example.

A single-photon LiDAR (SP-LiDAR) uses a single-

photon sensor (e.g., a single photon avalanche diode, or

SPAD [29]) to produce measurements from individual pho-

tons. SP-LiDARs are therefore much more efficient than

conventional multi-photon LiDARs, and can produce higher

resolution scans and detect objects at longer distances [17,

34, 35]. Unfortunately, SP-LiDARs are also far more sen-

sitive to the ambient light present in an environment (e.g.,

sunlight), resulting in many spurious 3D points. Recovering

3D shape thus requires censoring the noisy photon present

in the measurements [20].

In this work, we focus on fusing both current and emerg-

ing LiDAR systems with mono or stereo camera systems.

We aim to combine the best features of all available sensors,

by leveraging the high-spatial resolution of regular cameras

and 3D information recovered from LiDARs.

2.2. Sensor Fusion for Vision tasks

Besides 3D sensing, many works aim to solve higher-

level vision tasks, such 3D object detection and segmen-

tation. Prior approaches have focused on using a single

imaging modality, such as monocular cameras [6], stereo

cameras [7], and LiDARs [24, 41]. More recently, pseudo-

LiDAR based approaches [40, 37] have also shown signifi-

cant improvements for 3D object detection; these methods

convert the depth maps from a stereo camera into 3D point

cloud, and process this point cloud directly to solve the de-

tection task.

Fusion architectures have also been proposed for 3D ob-

ject detection, combining information from multiple imag-

ing modalities [11]. Fusion generally occurs either in 2D

space or 3D space, and typically focuses on fusing camera

and LiDAR information. For 2D fusion, LiDAR data is pro-

cessed in either range view (LiDAR’s native view) [23] or

Bird’s Eye View (BEV) [18, 19, 32, 38] and fused with RGB

images. Cheng et al. [9] employ fusion in 3D space where

the sensor data is used to create a volumetric representation

and given as input to the fusion network. Road segmen-

tation tasks have also been performed using LiDAR and

camera fusion [3, 8, 21]. Other combinations of sensors,

e.g., RADARs and cameras, have been used recently for 3D

object detection [25, 26]. However, fusion with emerging

sensor technologies, like SP-LiDARs, have not received as

much attention.

2.3. Disparity Estimation

Unsupervised learning based approaches, such as [9],

perform depth estimation using a LiDAR and stereo cam-



Figure 2: Overview of our proposed model. We take as input raw sensor measurements from three sensors: a stereo camera

system, SP-LiDAR, and LiDAR. We first calculate a cost volume representation for each of the three sensory inputs (Sec-

tion 3.1). We then normalize these cost volumes and fuse them by addition (Section 3.2). Finally, we pass the fused volume

through a series of 3D CNNs that regress towards a disparity map of the scene.

era fusion architecture with noisy LiDAR points. Recently,

a lot of progress has been made in disparity estimation using

stereo image pairs [13, 14, 30, 39]. We formulate our prob-

lem of fusing multiple sensors for the task of disparity es-

timation. Specifically, we use PSMNet [4] as a base model

which is used for disparity estimation using a stereo image

pair. The model architecture first captures global contextual

information using spatial pyramid pooling layers, and pro-

duces a cost volume. The 3D convolution layers then reg-

ularize this cost volume using stacked multiple hourglass

networks.

We extend the PSMNet architecture to add fusion

branches for SP-LiDAR and a regular LiDAR, generating

cost volumes for each imaging modalities. Recently, Lin-

dell et al. [20] showcased that fusing information from

a SP-LiDAR and a high-resolution camera image signifi-

cantly improves depth estimation, even with low signal-to-

background noise ratio. However, their current architecture

does not handle information from stereo image pairs. We

therefore take inspiration from both [4] and [20] to propose

a novel fusion architecture that forms cost volume represen-

tation for a stereo camera system, SP-LiDAR, and LiDAR.

3. Proposed Approach

Our objective is to fuse sensor data obtained from mul-

tiple sources, and output a disparity map of the scene. The

core idea of our approach is to convert all sensor data into

volumetric representations of the scene, referred to as cost

volumes. Our 4D cost volumes (height × width × dispar-

ity × features) encode features over 3D space; specifically,

we discretize 3D space according to the spatial resolution

of our camera (height = 256, width = 512) across a range

of disparity values for a given baseline (disparity = 192).

We hypothesize that fusion can be done efficiently by first

lifting sensor data into this common representation of 3D

space. Moreover, this lifting operation can be extended to

other sensors as well, provided that there exists a logical

mapping of sensor data to its corresponding cost volume.

Figure 2 provides an overview of our proposed approach.

The input consists of a pair of 2D images from a stereo cam-

era system, a sparse 3D point cloud obtained by a LiDAR,

and a dense but noisy volume given by a SP-LiDAR; see

Figure 3 for visualizations of the input. First, we map the

sensor data to cost volumes. These volumes capture com-

plementary information of the same 3D scene. Second, we

pass each of these individual volumes through 3D CNNs

that learn respective features associated with each of these

volumes. Third, we normalize each of these volumes and

fuse them by addition. Normalization converts the cost vol-

ume to the same scale, thereby making fusion by addition

robust. Fourth, we pass the normalized-fused intermedi-

ate cost volume to a stacked hourglass architecture [4] and

regress towards a 2D disparity map.

In the remainder of this section, we describe the cost vol-

ume construction and sensor fusion network in more detail.

3.1. Cost Volume Constructions

Mono- and Stereo-Camera Systems We assume a stereo

camera system captures left and right RGB images with a

spatial resolution of 512 × 256 and a 90◦ horizontal field

of view. Given a camera baseline B and focal length f , the

disparity image d is

d =
Bf

z
(1)

where z is the corresponding depth map.

We follow the approach used in PSMNet [4] to construct

our initial cost volume from this stereo image pair. Left and

right images are first passed through a weight-sharing CNN



followed by spatial pyramid pooling layers to capture con-

textual information. The corresponding feature maps are

then concatenated across every disparity level to generate a

4D cost volume CVC , with dimension (height × width ×
disparity × features).

We can also construct a 4D cost volume for a monocular

camera, where only the left image is used as an input to

the network. The cost volume is constructed by replicating

the values in the image along the disparity dimension, and

passing the result through a 3D CNN network to generate

the 4D cost volume.

Note that all disparity maps and cost volumes are com-

puted with respect to the left camera.

LiDAR Systems We assume a 64 channel LiDAR cap-

tures a point cloud for a standard full 360◦ scan. Our objec-

tive is to lift the sparse LiDAR point cloud into a 4D cost

volume CVL, where the entries in both CVC and CVL rep-

resent the same points in 3D space. This will ensure that the

cost volumes are spatially compatible.

Let’s assume that the LiDAR and the left camera of the

stereo system share the same center of projection. We trim

the point cloud data to a 90◦ field of view to match our

left camera. The depth measurements obtained from Li-

DAR are then converted to the disparity domain by using

Equation (1). This produces a sparse 3D volume, where a

voxel with a value of 1 indicates the position of a 3D Li-

DAR point. Finally, we process the result with a 3D CNN

network to form our 4D cost volume CVL.

SP-LiDAR Systems We follow the same approach de-

scribed by Lindell et al. [20] to generate dense and noisy

SP-LiDAR volumes, except that we discretize our volumes

with respect to disparity levels instead of depth values.

In order to evaluate the robustness of our fusion strat-

egy, we explored three different signal-to-background ra-

tios (SBR) between the signal and ambient photons: SBR

0.052, SBR 0.0052 and SBR 0.00052.1 In each of these ex-

periments, we simulate SP-LiDAR data using just 1 signal

photon per pixel on average; as a result, the number of 3D

points captured with a SP-LiDAR is higher than a regular

LiDAR. We then add a number of random ambient photons

according to our target SBR value. For example, at a SBR

of 0.0052, there are 192 ambient photons (an average of 1

ambient photon per histogram bin).

Photons detected by a SP-LiDAR are modeled using a

Poissonian process [29]. Hence, in our SP-LiDAR simula-

tion, we introduce Poisson noise to both the signal and the

ambient light level to replicate the single-photon character-

istics. Figure 4 shows responses across different disparity

1We abbreviate these values as SBR 0.05, 0.005, and 0.0005 for the rest

of this paper. Note that these values represent noisier measurements than

those evaluated by Lindell et al. [20], where SBR was 1.0, 0.1, and 0.04.

Figure 3: Inputs to our proposed model. (a) Dense and

noisy volume representing photons detected with a SP-

LiDAR, using an SBR of 0.005. (b) Sparse point cloud from

a conventional LiDAR. (c) Left and right camera images of

the scene.

values for a few SBR values. Figure 4(a) represents the sce-

nario when there is no noise or ambient light, and hence the

position of the peak represents the disparity value (i.e., the

object’s distance from the SP-LiDAR). Figure 4(b-d) repre-

sents the same signal but with Poisson noise for SBR values

0.05, 0.005, and 0.0005 respectively. An increase in the

number of ambient photons produces a noisier SP-LiDAR

volume, hence making it more difficult to extract the correct

disparity values.

Our cost volume construction for SP-LiDARs is similar

to that of LiDARs. For every detected photon, we increment

by 1 the value of the corresponding voxel. This results in a

dense and noisy volume. This volume is once again passed

through 3D CNNs to generate the 4D feature volume CVS ,

sharing the same dimensions as the other cost volumes.



Figure 4: Visualization of one sample of SP-LiDAR data,

i.e., representing the signal received by a specific pixel. (a)

When no noise is present, the object reflects light back at a

specific time, which can be converted into a disparity value.

(b-d) In practice, the same signal shown in (a) is corrupted

by ambient photons, which arrive at random times. Here,

for the ground truth signal shown in (a), we illustrate three

different signal-to-background noise ratios: (b) SBR 0.05,

(c) SBR 0.005, and (d) SBR 0.0005.

3.2. Sensor Fusion Network

The last step of our pipeline is to combine and process

the individual cost volumes. Each of the cost volumes ob-

tained have the dimension (height × width × disparity ×
features), where the feature dimension has length 64. The

individual cost volumes are now instance normalized and

then added together to output a fusion vector (CVF ) of the

same size as these individual cost volumes.

CVF = Norm(CVC)+Norm(CVS)+Norm(CVL) (2)

The fused cost volume CVF is then passed to the stacked

hourglass 3D CNN architecture as described in [4]. This

is followed by an upsampling layer to output a 3D vector

of dimension (height × width × disparity) via bilinear in-

terpolation. Finally, as described in [14], we regress to the

disparity map of size (height × width).

Given the ground truth disparity d, the predicted dispar-

ity d̂, and the number of labeled pixels M , we minimize a

smooth L1 loss function [4]

L(d, d̂) =
1

M

M
∑

i=1

SL1
(di − d̂i), (3)

where

SL1
(y) =

{

0.5y2, if |y| < 1,

|y| − 0.5, otherwise.

4. Experiments

Our proposed fusion algorithm is evaluated on data sim-

ulated with CARLA [10]. We also perform ablation stud-

ies with different sensor inputs to the fusion network and

evaluate the performance of each sensor combination. We

describe our dataset and its properties, followed by experi-

mental details. We then showcase our results, both quantita-

tively and qualitatively, and finally discuss the implications

of our proposed fusion approach.

Dataset SP-LiDAR LiDAR Stereo

nuScenes [2] ✗ ✓ ✗

Argoverse [5] ✗ ✓ ✓

Lyft Level 5 [15] ✗ ✓ ✗

Waymo Dataset [1] ✗ ✓ ✗

Ours (CARLA) ✓ ✓ ✓

Table 1: Different datasets and available sensors.

4.1. CARLA Dataset

Recently, many real world datasets have been released

by various self driving car companies, a summary of which

is presented in Table 1. However, none of these datasets

capture SP-LiDAR measurements and only Argoverse [5]

provides stereo data. Moreover, our task is to fuse sensor

information to compute a disparity map of the scene, which

requires ground truth depth values to train our network; this

information is not directly available in real-world datasets.

We therefore collect our own data using CARLA, an

open source simulator designed to develop and test al-

gorithms for autonomous vehicle driving systems [10].

CARLA gives access to different virtual driving routes

where we can place other actors like vehicles, pedestrians,

and cyclists. For our data collection, we select one such ve-

hicle to drive in the autopilot mode around different driving

routes. We mount 4 different sensors on top of the vehicle

to capture scenes: two cameras to capture the stereo pair,

one LiDAR, and one depth sensor to capture the ground

truth disparity values. We simulate SP-LiDAR measure-

ments from the ground truth disparity values, as discussed

in Section 3.1.

Figure 5 shows sample frames captured in CARLA,

highlighting scene diversity. To make our dataset robust and

challenging, we collected data under different ambient con-

ditions and varying road traffic. Stereo images have a res-

olution of 256 × 512, and the LiDAR has 64 channels and

detects objects up to a range of 100m. In all, we captured

10,000 frames (8,000 for training and 2,000 for testing).

4.2. Experiment Details

Our proposed model is implemented in PyTorch, build-

ing on top of the current PSMNet architecture. Our network



Figure 5: Sample frames captured in CARLA. We captured

scenes under different ambient and traffic conditions.

is trained end-to-end with the Adam optimizer [16] with a

learning rate of 0.001. The maximum disparity value d is

192. To compare our fusion performance with stereo match-

ing networks, we use as our metric the average root mean

square error (RMSE) between the predicted and ground

truth disparity values. We also report the percentage of pix-

els that have disparity error greater than three pixels (>3px)

and one pixel (>1px) respectively. Our model is trained

from randomly initialized weights for each of the ablation

experiments (detailed in Section 4.3). Training time for the

network is approximately 24 hours on two NVIDIA RTX

2080Ti GPUs with a batch size of 4.

4.3. Ablation Experiments and Results

We divide our ablation studies into three sections and list

both quantitative and qualitative results. In Section 4.3.1,

we discuss the performance of the system when only one

sensor is given as input to the network. In Section 4.3.2, we

perform monocular + LiDAR and monocular + SP-LiDAR

fusion, and compare the performance of the two LiDARs.

Finally, in Section 4.3.3, we fuse stereo + LiDAR and stereo

+ SP-LiDAR, and compare the results with monocular fu-

sion. We also discuss the results of combining all available

sensors: stereo + SP-LiDAR + LiDAR.

4.3.1 Unimodal Experiments

In our first set of ablation experiments, we compute the dis-

parity map by utilizing only one modality at a time. This

is done by weighting the other input branches to zero in the

fusion network. Table 2 summarizes the results of different

single sensor experiments quantitatively and Figure 6 pro-

vides a qualitative analysis.

We observe that having just the LiDAR modality or a

single camera as independent inputs produce poor results.

The stereo camera and SP-LiDAR perform better, with low

average RMSE and low pixel error rates. For example, in

Figure 6, we observe that finer details like the inside of the

vehicle are captured more accurately for both SP-LiDAR

and the stereo camera. With a LiDAR or a monocular cam-

era, we observe a fair amount of noise, especially for distant

regions in the scene. We also compute the metrics for SP-

LiDAR with decreasing SBR values and observe that, al-

Experiment/Metric RMSE >3px >1px

Monocular 2.021 4.1 13.9

LiDAR 3.081 7.7 18.0

Stereo 1.719 3.0 10.2

SP-LiDAR (SBR 0.05) 1.576 2.3 6.9

SP-LiDAR (SBR 0.005) 1.610 2.3 7.4

SP-LiDAR (SBR

0.0005)
1.701 2.6 9.0

Table 2: Ablation experiments with single sensor input. Our

framework performs well for both SP-LiDAR and stereo

camera.

though the performance degrades slightly, SP-LiDAR per-

forms better than regular LiDAR even under poor ambient

light conditions.

4.3.2 Monocular Fusion Experiments

For the next set of experiments, we fuse a monocular cam-

era with either a LiDAR or SP-LiDAR. The quantitative re-

sults are presented in Table 3.

We observe that fusing LiDAR with a monocular camera

slightly improves all the metrics as opposed to using just

one sensor at a time, thus confirming that the fusion net-

work is leveraging complementary information from both

sensors. This can also be verified qualitatively in Figure 7;

finer geometric details, such as the shape of the vehicle, are

estimated more accurately.

Quantitatively, the fusion results of the SP-LiDAR +

monocular camera are better than LiDAR + monocular cam-

era fusion. Even with low SBR values, SP-LiDAR fusion

is more effective than LiDAR-based fusion. However, we

do not observe a significant improvement with monocular

+ SP-LiDAR fusion when compared to just SP-LiDAR. We

hypothesize that SP-LiDAR data captures both range and

spatial information fairly well, as can be seen in the volume

constructed in Figure 3; we notice little benefit in fusing

these measurements with a regular image in our framework.

Note that this experiment is similar to Lindell et al. [20]

work, which does improve depth reconstructions by fusing

a high-resolution image and the output of a SP-LiDAR.

4.3.3 Stereo Fusion Experiments

Finally, we fuse information from a stereo camera with the

LiDARs. Quantitative results are presented in Table 4. The

table shows that fusing stereo information with both LiDAR

and SP-LiDAR data significantly improves all the metrics.

SP-LiDAR and stereo fusion with a SBR of 0.05

achieves the best results. In Figure 8, under noisier settings

(SBR of 0.005), we observe that the tree trunk is not accu-

rately captured with any one sensor but the fusion of SP-



Figure 6: Qualitative results for the unimodal experiments. The SP-LiDAR and stereo camera capture finer geometric details

like the interior of a vehicle (see highlighted inset), when compared to the LiDAR and monocular camera. LiDAR also

produces noisy depth maps for distant regions in the scene as opposed to SP-LiDAR (highlighted by the arrow).

Figure 7: Qualitative fusion results of the two LiDARs with a monocular camera. Fusion captures finer details such as the

contour of the vehicle (see highlighted inset).

Figure 8: Qualitative fusion results of the two LiDARs with a stereo camera. Fine details like the trunk of the tree (see

highlighted inset) are captured accurately with sensor fusion.

Figure 9: Qualitative fusion results for all the three sensors combined: stereo + SP-LiDAR + LiDAR. The overall predicted

disparity map with three sensor fusion captures very intricate details and produces fewer artifacts when compared to any two

sensor fusion combination.



Experiment/Metric RMSE >3px >1px

LiDAR + Mono 2.017 3.7 12.3

SP-LiDAR + Mono

(SBR 0.05)
1.489 2.0 6.6

SP-LiDAR + Mono

(SBR 0.005)
1.670 2.3 7.1

SP-LiDAR + Mono

(SBR 0.0005)
1.684 2.6 9.0

Table 3: Ablation fusion experiments with monocular cam-

era and different LiDARs, based on Lindell et al. [20].

Experiment/Metric RMSE >3px >1px

LiDAR + Stereo 1.645 2.6 8.8

SP-LiDAR + Stereo

(SBR 0.05)
1.341 1.6 5.2

SP-LiDAR + Stereo

(SBR 0.005)
1.398 1.7 5.5

SP-LiDAR + Stereo

(SBR 0.0005)
1.570 2.1 7.3

SP-LiDAR + LiDAR +

Stereo (SBR 0.005)
1.453 1.9 5.3

Table 4: Ablation fusion experiments with stereo pair and

different LiDARs.

LiDAR and stereo information significantly improves per-

formance. Even at the lowest SBR value of 0.0005, the fu-

sion results shown in Table 4 achieves significant improve-

ments when compared to individual sensors, demonstrating

the effectiveness of our proposed fusion network.

To test the robustness of our proposed fusion architec-

ture, we also fuse all three input modalities, i.e., stereo +

SP-LiDAR + LiDAR using a SBR of 0.005. Qualitatively,

we observe that three sensor fusion significantly improves

the disparity maps. For example, in Figure 9, we find that

the base of the overhead bridge is captured accurately in

the three sensor fusion, when compared to two sensor fu-

sion. However, quantitatively, we do not find a significant

improvement in the metrics, with only the >1-pixel error

improving slightly. This may be attributed to how the Li-

DAR is simulated in CARLA, where the SP-LiDAR mea-

surements do not benefit from the inclusion of sparse Li-

DAR measurements.

4.4. Further Discussion

CARLA’s simulation of a standard LiDAR generates a

sparse point cloud, as shown in Figure 3, whereas the SP-

LiDAR simulation produces dense, noisy measurements.

We observe that denser data produces much better disparity

maps despite the additional noise, and is effective in fusion

experiments. In all our fusion experiments, a SP-LiDAR al-

ways produces the more accurate disparity map when com-

pared to a regular LiDAR.

RGB information comes from two sources: a monocu-

lar camera or a stereo camera. We show in our proposed

model that the cost volume constructed for a stereo camera

provides more reliable fusion results when compared to the

monocular case. Lindell et al. [20] showcased that fusing

a high-resolution camera with a SP-LiDAR improves depth

estimation results. Our proposed stereo + SP-LiDAR fusion

further improves results compared to monocular fusion, sig-

nificantly reducing disparity pixel error rates.

We perform various ablation experiments with different

sensor fusion combinations. We also observe that the sen-

sor combination SP-LiDAR + stereo produces equally good

results as the three sensor fusion combination. This may

be attributed to sparse LiDAR measurements not providing

much information beyond what is already captured with a

SP-LiDAR and stereo camera.

5. Conclusion

In this work, we present a fusion framework that takes

measurements from a heterogeneous sensor array, lifts them

to a shared 4D cost volume representing the surrounding

3D environment, and processes the result to obtain a high-

quality disparity map of the scene. We estimate these dis-

parity maps by fusing LiDARs, monocular cameras, stereo

cameras, and SP-LiDARs, and we conduct ablation exper-

iments to evaluate the results of different sensor combina-

tions. We also present a new simulated dataset that includes

measurements for all the sensors discussed in this paper.

In our experiments, multi-sensor fusion significantly im-

proves the depth prediction when compared to working with

a single sensor. We also observe that dense SP-LiDAR mea-

surements produce more accurate depth maps when com-

pared to sparse LiDAR point clouds, and stereo cameras

provide useful information for fusion over monocular cam-

eras. These observations are of critical importance when

designing the sensing capabilities of any self-driving car.

We believe that our proposed fusion architecture can be

extended to support other sensors as well, including ex-

isting RADAR technologies used for automotive applica-

tions and novel computational imaging systems that provide

unique 3D sensing capabilities (e.g., programmable light

curtains [36]). Importantly, we believe this fusion frame-

work can also be used to address higher-level vision tasks

such as 3D object detection and segmentation, and is an im-

portant step towards achieving full driving automation.
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