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Abstract

Keypoints that do not meet the needs of a given applica-

tion are a very common accuracy and efficiency bottleneck

in many computer vision tasks, including keypoint match-

ing and 3D reconstruction. Many computer vision and ma-

chine learning methods have dealt with this issue, trying to

improve keypoint detection or the matching process. We in-

troduce an algorithm that filters detected keypoints before

the matching is even attempted, by predicting the probabil-

ity of each point to be successfully matched. This is realised

using a flexible and time efficient Random Forest classifier.

Experiments on stereo and multi-view datasets of building

facades show that the proposed method decreases the com-

putational cost of a subsequent keypoint matching and 3D

reconstruction, by correctly filtering 50% of the points that

wouldn’t be matched while preserving 73% of the match-

able keypoints. This enables a subsequent processing with

minimal mismatches, provides reliable matches, and point

clouds. The presented filtering leads to an improved 3D re-

construction of the scene, even in the hard case of repetitive

patterns and vegetation.

1. Introduction

Keypoint matching is a basic operation in almost ev-

ery computer vision application, including image registra-

tion, image retrieval, Structure from Motion (SfM) and

Multi-View Stereo (MVS). The standard workflow of im-

age matching starts with the detection and description of

keypoints and continues with matching. The detection step

searches for adequate and locally distinctive keypoints that

can not be easily confused (uniqueness) and that could be

easily detected in different images (reliability). The de-

scription step represents the detected points using a multi-

dimensional vector (descriptor). Finally, for every descrip-

tor in one image, the approximately nearest neighbour in

every other overlapping image is searched for. This way,

each pair of matched points represents a single point in the

scene, which is projected onto the two corresponding im-

Figure 1. Initially detected keypoints (in red) and those predicted

as matchable by the proposed method (in green). Note that most

keypoints representing vegetation and repetitive structures are fil-

tered out.

ages captured from different viewpoints.

Regarding the computational cost and accuracy of key-

point matching, the main challenge is the large amount

of detected keypoints, many of which being unreliable for

matching, leading to confusion, false correspondences, and

even failure of the reconstruction. The unreliability of the

keypoints comes mostly from the varying representation of

the same space point within the different images due to dif-

ferent environmental conditions, viewpoints and capturing

distances, and equipment. Another reason for confusion is

the nature, texture, and complexity of the depicted object

itself, especially for vegetation (big amount of unstable, but

highly distinctive keypoints) and repetitive patterns (hardly

distinguishable keypoints).

We propose an algorithm to improve both, the accuracy

and time efficiency of keypoint matching and thus of a com-

plete 3D reconstruction of a scene. We present an alterna-

tive approach that decreases the amount of keypoints be-

fore matching by filtering the detected keypoints that are

unlikely to be matched, as shown in Figure 1. The main

contribution is to state the problem as a binary classifica-

tion task, i.e. classifying a keypoint either as being able to
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be matched or not. The developed method proposes a com-

plete classification procedure, suggesting pioneering fea-

tures for the training of the applied classifier. The algorithm

requires only a single input image on which it detects and

then describes the keypoints, using widely applied detection

and description algorithms. Afterwards and before the key-

point matching, comes its main contribution. In this step, a

keypoint classification is performed to predict and preserve

the matchable keypoints. The conducted experiments show

that the proposed method does reduce the computation cost

and increases the accuracy of the example application, i.e.

image-based 3D reconstruction.

2. Related Work

Reducing keypoints to improve the accuracy and compu-

tational cost of keypoint matching and also any subsequent

image processing has seen considerable research efforts in

the last years. However, most of the proposed approaches

reduce the amount of keypoints independent of the charac-

teristics of the depicted scene.

Keypoint detectors usually detect keypoints by comput-

ing some kind of score on the image points. Hand-crafted

detectors (Moravec [23], Förstner [12], Harris [15] and

Difference-of-Gaussians (DoG) [20]) tend to detect vast

amounts of keypoints, especially on error prone areas like

vegetation and repetitive patterns. Recently developed de-

tectors suggest the use of machine learning and introduce

new keypoint scores, to reduce the amount of detected key-

points. Such detectors have dealt with detection either as

a classification problem (e.g. Task (Task Specific Keypoint

detector, [33]) uses a WaldBoost classifier for this task) or

as a regression problem (e.g. TILDE (Temporary Invariant

Learned Detector, [35])). The very recent work of Barroso-

Laguna et al. [4] combines hand-crafted and learned CNN

filters in a shallow multi-scale architecture. Sample detec-

tion scores that have been proposed lately are the repeata-

bility of the keypoints on textured images [37] and succinct-

ness [10], meaning the points need to obtain certain inliers

given a detector and a matching algorithm.

In contrast to these methods, the algorithm that is intro-

duced here does not provide a new detector. It suggests to

use SIFT [19] because it provides very satisfying results,

but it could be easily adapted to other detectors, as long as

they provide the information needed for the used features.

Similar approaches to the one introduced here suggest also

new application-related evaluation criteria (scores). Such a

score is keypoint saliency, i.e. a function of the detectabil-

ity, distinctiveness and repeatability of the points, even un-

der various conditions [8] and the use of points on texture

maps [25]. Another powerful criterion is the confusion

risk [28, 29], which addresses the problem of mismatches

due to repetitive patterns in the scene.

Other approaches that cast keypoint reduction as a clas-

sification problem include for example methods based on

multi-layer perceptrons (e.g. [9] that exploits keypoint dis-

tinctiveness and robustness) as well as Random Forest (RF)

classifiers (e.g. in [16]). The latter is probably the most

relevant approach to the one presented in this work. Sim-

ilar to us, they use a RF classifier to predict which SIFT

keypoints would probably not survive the matching. Their

approach was shown to be very time and precision efficient

even in cases of viewpoint changes or images containing

highly confusing gradients, like vegetation. The main dif-

ferences to our approach are the model architecture and the

features that are fed to the RF. Hartmann et al. used the 128

elements of the SIFT descriptor while our work is based on

simple keypoint properties that can be possibly calculated

for different detectors, making it more widely applicable. A

much faster and more flexible RF of five trees with depth

five (compared to 25 trees of depth 25 in [16]) is sufficient

to reach similar performance.

In the context of obtaining faster and more reliable

matches, several approaches have been developed for reduc-

ing image pairs [13], improving descriptors [5, 24, 17, 26,

3, 36, 14, 27, 11, 1] and filtering matches [22, 6, 2, 32, 21]

- most notably the work in [18] which casts the matching

itself as classification task that is solved with a RF.

3. Methodology

The proposed method - illustrated in Figure 2 - aims to

improve accuracy and decrease the computational cost of

keypoint matching by filtering out keypoints prior to the

matching or any further image processing. This filtering

is realized through a two-class classification (matchable vs.

non-matchable keypoints) using a RF classifier. While this

is similar to Hartmann et al. [16], who trained a classifier

on the keypoint descriptor, we train the classifier on sev-

eral distinct keypoint characteristics that go beyond mere

appearance.

The training of the classifier requires adequate, represen-

tative, and reliable training data. These are obtained off-line

using a typical SIFT-based SfM pipeline. Keypoint match-

ing is based on the L2 distance between SIFT descriptors

followed by a ratio test [20], a symmetry cross check and

outlier removal via RANSAC. We focussed on a typical 3D

reconstruction task within urban environments, i.e. of build-

ing facades. Thus, mismatches are mostly caused by differ-

ent image capture conditions, vegetation, and repetitive pat-

terns. The surviving keypoints serve as positive examples,

i.e. instances of the matchable class, while the filtered key-

points are used as negative examples, i.e. instances of the

non-matchable class.

We selected eight features that on the one hand capture

geometrical, textural, topological, and appearance proper-

ties but are on the other hand also easy and fast to be com-

puted. The latter is of importance as one goal of the pro-
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Figure 2. Overall workflow of the proposed algorithm.

posed method is to decrease the computational load which

would be hindered by computationally expensive features.

The x- and y-coordinates: The position of a keypoint in an

image of a typical sequence often correlates with its value

for the matching process, i.e. image borders tend to have

a higher probability to overlap with other images than the

image centre.

Size s, orientation θ, response r, and octave o as com-

puted by the keypoint detector (i.e. SIFT in our case): The

size indicates the neighbourhood used for the description of

each keypoint. The response is the score computed by the

detector to decide whether a certain image coordinate does

depict a keypoint. The octave of the scale space is the pyra-

mid layer at which the keypoint was detected.

The number of dominant orientations (do) as computed

by SIFT: This can be interpreted as a measure of textural

complexity as well as of reliability of the computed key-

point orientation.

Intensity of the green channel g: Vegetation is often prob-

lematic in keypoint matching as it leads to many detections

which can be hardly matched due to the temporal decorre-

lation of the corresponding 3D position and high occlusion.

In principle, more sophisticated features are possible as

well. As an example we tested the in-image-similarity of

a keypoint, i.e. the minimum distance of a keypoint to all

other keypoints within the same image. However, including

this feature did not significantly increase accuracy. On the

contrary it changed the complexity of the algorithm a lot.

The above stated features are used as input to a RF clas-

sifier. We selected a RF due to its efficiency, robustness,

and generality regarding used features (e.g. it does not re-

quire preprocessing of the features such as whitening). The

RF is trained on the obtained samples and features to distin-

guish between keypoints that were successfully matched by

the used SfM pipeline and those that could not be matched.

If successful, the trained RF can then be used to pre-filter

detected keypoints in a new image based on their predicted

probability to be matchable. Consequently, matching would

only be performed on a small fraction of all keypoints for

which the corresponding matching probability is high.

4. Experiments and Evaluation

The introduced algorithm is tested and evaluated on var-

ious stereo and multi-view datasets. In the following we

not only report a visual and statistical analysis of the key-

point classifier, but also analyse its actual impact on sub-

sequent computer vision processes, as a good classifica-

tion performance does not automatically imply good per-

formance in subsequent matching or other processing steps.

While Section 4.2 analyses the relevance of the individual

features, Section 4.3 analyses the use of this RF to filter

non-matchable keypoints and to provide matchable points

to subsequent processes. Sections 4.4 and 4.5 illustrate two

possible examples, namely matching of a stereo image pair

and a 3D reconstruction via SfM.

We compare the proposed method to the standard proce-

dure without any (non-standard) keypoint filtering, as well

as to filtering using the features and RF hyperparameters as

proposed by Hartmann et al. [16]. For the rest of the paper

these methods will be called Proposed-Filter, No-Filter and

Filter-by [16], respectively. All experiments are performed

using identical data, procedures (except for the setup of the

corresponding filtering), and hardware.

4.1. Datasets

The used datasets are images depicting human struc-

tures, i.e. building facades. Such environments usually con-

tain a lot of error prone areas like vegetation and repetitive

patterns, that lead to confusion and mismatches.

We used 150 images for training, resulting in roughly

150,000 sample keypoints even after down-sampling. All

images were captured with various cameras and have vari-

ous resolutions. The total amount of test images is 456. Of

these, 68 were taken from [34] and the rest were captured

by a CANON 1300D or similar cameras. The images from

[34] have a resolution of 3072× 2048 pixels, while the rest

have 5184× 3456 pixels.

Apart from the resolution, these images were taken in

different places and under different lighting conditions, cap-

turing geometries and intrinsic parameters (different cam-

eras). They all depict building facades, but encounter a great

variety of different architectures and construction materi-

als, which lead to different perspective distortions and tex-

tures. Moreover, problems that are usually met in urban en-

vironments like repetitive patterns, vegetation and pedestri-

ans were not avoided while capturing, but instead included

and successfully faced by the algorithm. The camera-object

distance in all cases did not exceed roughly 50m and the

baseline was roughly 20m.



4.2. Feature Importance

The features and structure of the used RF classifier are

selected to provide reliable, robust, yet efficient results. As

a first step, we analyse the relevance of the proposed fea-

tures based on the permute importance (Mean Decreased

Accuracy (MDA [7], i.e. shuffling the values of a single

feature and observing the change of performance) and se-

lection frequency (i.e. counting how often a certain feature

dimension is selected by the nodes of the decision trees to

perform a split).

x y s θ r o do g

MDA 7.77 5.12 21.33 2.37 7.83 3.14 19.13 33.31

SF 10.46 6.96 29.21 1.41 8.52 2.15 21.18 20.11

Table 1. Feature importance based on Mean Decreased Accuracy

(MDA, [7]) and Selection Frequency (SF)

Table 1 shows that feature relevance is mostly consis-

tent between both methods. Size s, color g, and the num-

ber of dominant orientations do are most important. Re-

sponse r and spatial coordinates x, y have a medium im-

portance, while octave o and orientation angle θ have low

importance. As all of them contribute to the final perfor-

mance (some only by a small margin but none is decreasing

accuracy) and all are easy to compute, we included all fea-

tures into the feature set used in the following experiments.

The small number of such simple yet descriptive features

allows a well performing, small, flexible and fast classifier,

which doesn’t require huge amounts of training data.

4.3. Keypoint Filtering

This section evaluates the classification performance of

the designed RF classifier on the test data. We opted for

a simple and compact architecture to avoid overfitting and

keep the computational cost low, i.e. a Random Forest with

five trees of depth five. The number of split candidates per

node is set to the commonly used square root of the number

of features (i.e.
√
#features =

√
8 ≈ 3), the minimum

amount of samples per node is set to two. Experiments to

optimise these parameters have been performed on the train-

ing data.

Figures 1 and 3 show two example results. SIFT detects

a large number of keypoints (depicted in red), especially

on vegetation, repetitive patterns on the walls and windows

frames. The proposed method filters mostly keypoints that

lie on repetitive patterns, vegetation, moving objects (such

as pedestrians), as well as on homogeneous and texture-less

areas while preserving more stable keypoints (i.e. predicted

as matchable and shown in green). Most of the keypoints

predicted as matchable are actually successfully matched by

the subsequent matching algorithm (depicted in green solid

circles).

Table 2 provides a quantitative performance evaluation.

Figure 3. Image containing repetitive patterns, homogeneous areas

and pedestrians. Initially detected keypoints are depicted in red,

predicted as matchable in green, and the finally matched as filled

circles.

Sample

% Specificity Recall Precision Accuracy reduction

Proposed Filter 50.36 73.12 15.51 52.89 48

Filter by [16] 51.65 71.72 15.60 53.88 49

Table 2. Statistical evaluation of the filtering performance for

Proposed-Filter and Filter-by [16] methods.

Specificity and recall indicate the effectiveness of the clas-

sifier in identifying the negative and positive class respec-

tively. Accuracy describes the overall correctly classified

samples and precision the amount of correct true positive

samples. In the specific application recall is the most use-

ful measure in terms of the final ability of the algorithm to

correctly preserve the matchable keypoints in the images.

However, since the time efficiency is related to proper fil-

tering of non-matchable keypoints, precision, accuracy and

specificity should be as high as possible.

As there are usually much more keypoints detected than

are successfully matched, the used test data is highly im-

balanced, i.e. there is an order of magnitude less match-

able samples than non-matchable samples. The proposed

method leads to a recall that exceeds 73%, i.e. preserving

most of the matchable keypoints. The specificity of roughly

50% means that half of the non-matchable keypoints are

successfully filtered out. The low precision of less than 16%

and medium accuracy are mainly caused by the unbalanced

data and the survival of a lot of non-matchable keypoints.

This however has no effect on the objectively good perfor-

mance on preserving the matchable keypoints (high recall).

The last row of Table 2 presents the corresponding

statistics for the Filter-by [16] method. Both filtering

methods lead to statistically similar results. The Filter-

by [16] method filtered out slightly more non-matchable

keypoints (specificity 51.65% instead of 50.36%) leading



Figure 4. Matches without (top) and with (bottom) keypoint filter-

ing.

to a marginally better keypoint reduction. This comes with

the cost of losing a few more matchable keypoints (recall

71.71% instead of 73.12%). It should be noted that Filter-

by [16] is based on a much larger RF of 25 trees of depth 25

as well as 128 features (the SIFT descriptor).

4.4. Impact on Pairwise Matching

The previous Section 4.3 showed that the proposed clas-

sifier is able to filter a large portion of non-matchable key-

points while preserving the majority of matchable key-

points. However, a good filtering does not guarantee a

subsequent good matching. Since the classification is per-

formed independently for every image, it is possible that

essential matches are lost, if the corresponding points are

not preserved in both images (i.e. note that correctly classi-

fying a matchable keypoint pair has a chance probability of

p2 = 53% where p = 73% is the recall of Section 4.3).

In order to investigate how the proposed filtering af-

fects the matching, several stereo-pairs are matched with

and without pre-filtering using Colmap [30, 31]. The pro-

posed method preserves up to 73% of the matches provided

by the standard matching without filtering which is consid-

erably larger than chance and shows that the prediction is

stable. The loss of some matches is expected since the pro-

posed method filters around 27% of matchable keypoints

(see Section 4.3). Furthermore, even though the matches

after filtering are fewer, they might still be more reliable,

since matches on error prone areas are avoided. Figure 4

shows an example where matches are avoided that lie at the

top of the building on repeated identical columns and can

easily cause mismatches.

The computation time of the proposed method, the

Filter-by [16] method, as well as applying no filter at all are

reported in Table 3. We excluded the keypoint detection and

description by SIFT as this is identical for all three meth-

Prediction time per image Pairwise matching time

No Filter 0 16

Proposed Filter 0.2 11

Filter by [16] 2 10

Table 3. Prediction and matching time performance in seconds(s).

Reprojection Error Number of reconstructed points

No Filter 0.64 100570

Proposed Filter 0.55 107717

Filter by [16] 0.56 94501

Table 4. 3D Reconstruction performance.

ods. The first column reports the prediction time per image

which is obviously zero if no prediction-based filtering is

applied. For the proposed method this accumulates to only

0.2s, i.e. 10 times less time than the Filter-by [16] method.

This significant performance improvement is achieved by

using fast computable features and a small (in number of

trees and maximal tree depth) RF model.

By reducing the amount of keypoints by around 50%,

both filtering methods accelerate the actual pairwise match-

ing by approximately 32-37%. It should be noted that the

time in the cases of pre-filtering include loading the corre-

sponding keypoint files from disk which is not necessary

in the case of no filtering. Consequently, if the filtering

is incorporated into the SfM pipeline directly, this margin

will even increase. The proposed method leads to a slightly

slower pairwise matching time than filtering by [16] (11 in-

stead of 10s), because it filters slightly less keypoints (48%

instead of 49%). The overall image pair matching using

the proposed filter is around 7% faster than using the fil-

ter by [16], but still slower than if no filtering is applied.

It should be noted that the time for keypoint filtering grows

linearly with the number of images, while the matching cost

grows quadratically. It can thus be expected that for larger

image collections the overhead in keypoint filtering is more

than compensated by the smaller matching cost.

Summarising, the proposed method provides very stable

matches. It preserves the majority of good matches while

minimising mismatches by filtering out keypoints on error

prone areas containing vegetation, repetitive patterns and

moving objects. Finally, by reducing the number of key-

points it decreases the required pairwise comparisons and

thus the time needed for keypoint matching.

4.5. Impact on 3D Reconstruction

This section evaluates the proposed method in an end-

to-end SfM and 3D reconstruction pipeline. We use

Colmap [30, 31] as well as several multi-view datasets of

21-98 images of building facades. These datasets have dif-

ferent geometries and characteristics of the scene, that fa-

cilitates the evaluation of the performance of the proposed

filtering for different conditions.



Figure 5. Dense point clouds after applying Proposed-Filter (top)

and Filter-by [16] (bottom) methods. The purple points indicate

wrongly reconstructed points.

The results reported in Table 4 show that the proposed

method outperforms the compared methods regarding the

final 3D reconstruction accuracy of the scene. Compared

to SfM without filtering and SfM with filtering based on

[16], it achieves 14% and 1.5% smaller reprojection error

while having 7% and 14% more reconstructed points, re-

spectively.

Figure 5 presents different point clouds of building fa-

cades produced by applying the two different filtering meth-

ods. The scene contains a large amount of repetitive pattern,

e.g. identical and symmetric windows. In this example, the

proposed method reconstructed 32% more points than filter-

ing based on [16]. This large difference comes mainly (but

not only) from the reconstruction of the right-most facade

which is correctly reconstructed by the proposed method

while large parts are either missing or mismatched with the

center facade (marked in purple) if filtering is based on [16].

Figure 6 provides another characteristic example show-

ing point clouds of the inner yard of a rectangular building

(the lower part of the figure shows a horizontal slice to bet-

ter illustrate the differences between the different methods).

We construct a reference dense point cloud (shown in blue)

based on 30 images using Agisoft’s PhotoScan R© software

representing the whole building, preserving its rectangular

geometry. An orthogonal corner of this building facade is

reconstructed based on two images only using the proposed

filter (shown in green), the Filter-by [16] (shown in ma-

genta) and No-Filter (shown in orange if based on Colmap

and red if based on VisualSFM). Obviously, none of the ap-

plied methods leads to very dense point clouds as only two

images are used. However, the only point cloud that recon-

structs the two facades as being orthogonal and coincides

with the control point cloud is the one produced by using

the proposed filtering.

Figure 6. The 90◦ corner of the building is reconstructed correctly

only by the Proposed-Filter SfM point cloud (green), which co-

incides with the reference one (blue). Point clouds produced by

the Filter-by [16] (magenta) and No-Fiter SfM (orange if using

Colmap and red if using VisualSFM) fail to preserve the geom-

etry, providing much wider angles. The lower part of the figure

shows a horizontal slice to better illustrate the differences between

the different methods.

Summarising, the proposed keypoint filtering improves

the 3D reconstruction significantly in particular in hard

cases with repetitive patterns, vegetation, etc. It outper-

forms the reference method in terms of accuracy (reprojec-

tion error and SfM points), precision (reconstruction close

to ground truth), time efficiency (fast filtering) and data pre-

requisites.

5. Conclusions

We suggest keypoint filtering prior to matching by cast-

ing it as a classification task and predicting the probability

of a keypoint being part of a valid match. This is achieved

by using a very small but time efficient RF classifier with

only eight simple features and five trees with depth five. The

method preserves 73% of the all matchable keypoints and

filters 50% of the non-matchable keypoints especially those

on error prone areas with vegetation, repetitive patterns,

moving objects like pedestrians as well as homogeneous

and texture-less areas. By reducing the keypoints, mis-

matches are avoided and pairwise matching is accelarated

by more than 30%. The proposed filtering increases sig-

nificantly the accuracy (lower reprojection error and more

complete point cloud) and precision (true scene geometry)

of a 3D reconstruction, compared to SfM without filtering

and SfM with filtering according to [16].
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