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Abstract

Perception and action are inextricably tied together.
We propose an agent model which consists of perceptual
and proprioceptive pathways. The agent actively sam-
ples a sequence of percepts from its environment using the
perception-action loop. The model predicts to complete
the partial percept and propriocept sequences observed till
each sampling instant, and learns where and what to sam-
ple from the prediction error, without supervision or rein-
forcement. The model is implemented using a multimodal
variational recurrent neural network. The model is exposed
to videos of two-person interactions, where one person is
the modeled agent and the other person’s actions constitute
its visual observation. For each interaction class, the model
learns to selectively attend to locations in the other person’s
body. The proposed attention-based agent is the first of its
kind to interact with and learn end-to-end from human in-
teractions, and generate realistic interactions with perfor-
mance comparable to models without attention and using
significantly more computational resources.

1. Introduction

The human visual system operates efficiently by attend-
ing to the environment selectively in space and time, and
combines information from fixations over time to build up
an internal representation of the observation [25], guiding
future eye movements and decision making. Inspired by
the human visual system, we propose a predictive agent'
model which observes its visual environment via a sequence
of glimpses. The agent is implemented in software; its ac-
tions are limited to sampling the visual environment and its
own body movements. The predictive agent actively makes
inferences (predictive and causal), acts and learns by mini-
mizing sensory prediction error in a perception-action loop.

! An agent is anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through actuators [26].
There are many applications of such agent (e.g., [1,2, 18, 19,24]).
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Figure 1: First and second rows show the actual and pre-
dicted data respectively for interactions push, hug, kick and
punch from SBU Kinect interaction dataset. As the videos
are short in length, continuous frames are shown. Third
and fourth rows show the actual and predicted data respec-
tively for interactions push, shake hands, kick and punch
from K3HI interaction dataset. As the videos are longer in
length, the frames are shown in intervals. Older frames are
lighter in shade than more recent frames.

The model is unsupervised, and does not require reinforce-
ment or utilities/values of states.

We apply the model for forecasting human interactions
using 3D skeletal data. Interaction forecasting is a chal-



lenging problem as the model has to learn how the be-
havior of one person determines the behavior of the other.
Spatiotemporal relations between different skeletal joints
of a person as well as the two interacting persons have to
be learned for accurate prediction. The ability to model
dynamics of human interaction is useful for applications
such as video surveillance, human-robot interaction, assis-
tive robotics, and robotic surveillance. Though a large vol-
ume of work has been done on predicting actions using 3D
skeletal data of a single person (e.g., [5,6, 11,12,22,32]) as
well as predicting human motion in crowded scenes (e.g.,
[10,15,28,29]), much less has been done on predicting in-
teraction of two persons using 3D skeletal data.

In this paper, we model the environment from the per-
spective of one of the interacting persons; the other per-
son constitutes his environment. The novelty of our ap-
proach is threefold: (1) the modeled person (agent) learns
to sample (or attend to) the most informative (or salient?)
locations of the other persons body using a saliency map at
each glimpse; (2) taking into account the past observations
and its learned knowledge, the agent completes the entire
perceptual and proprioceptive patterns after each glimpse;
and (3) the pattern completion component in our agent is
a multimodal generative model where the prediction error
in a perceptual modality provides the observation for the
proprioceptive modality. Attending the environment selec-
tively introduces sparsity in the agent’s observations, lead-
ing to efficiency. To the best of our knowledge, the pro-
posed agent is the first of its kind to interact with and learn
end-to-end from two-person interaction environments, with
performance comparable to models without attention that
uses significantly less sparse observations.

2. Related Work

A taxonomy of the models used for generating actions
with 3D skeletons is presented below.
3D skeletal data generation models
Single—person action generation
Non-attentional models
[ 9y - ’ ’ ’ ’ ]
Attentional models | ]
Two-person interaction generation

t:Nonfattentional models [17]
Attentional models [Our proposed
model]

The model in [17] frames dual agent interaction as an op-
timal control problem by observing actions from one agent
and predicting actions of the other agent. It does not model
the observing agent’s movement and predicts for short term

2Saliency is a property of each location in a predictive agent’s envi-
ronment. The attention mechanism is a function of the agent’s prediction
error [3, 18, 19,24,27]. Other definitions of saliency (e.g., [8, 9]) are not
relevant to this paper.

only, unlike our proposed model. Work on predicting dual
agent interactions using 3D skeletal data is limited. Most
works report predicting motion of a single person using 3D
skeletal data.

Few models have been proposed with attention mechanism
for generating 3D skeletal data. The model in [30] predicts
the 3D skeletal data of a person using a temporal attention
layer which generates an attention parameter at each time
step. In this model, attention is defined by internal parame-
ters and is not a function of the model’s sensory prediction
error, making it difficult to interpret the model’s behavior.
It also requires a fixed length of the input sequence to be
observed in order to calculate an attention value for each
time step, which may not be realistic for online application.
We propose a novel attention mechanism based on sensory
prediction error, that can complete the observation from any
time step, with an interpretable behavior.

3. Models and Methods

This section defines the problem and describes the proposed
agent model.

3.1. Problem Statement

Let X = {X(l),X(2),...,X(”)} be a set of observable
variables representing an environment in n modalities.
The variable representing the ¢-th modality is a sequence:
X = <X{i),X2(i), .. ,X¥)>, where T is the sequence
length. Let x<; = {x(,x® ... x(™} be a partial ob-
servation of X such that x( = (xgi), ce azgi)>, 1<t<T.
We define pattern completion as the problem of generating
X as accurately as possible from its partial observation x<;.
Given X<, and a generative model pg with parameters 6 and
latent variables z<, the generative process of X is:

po(X|xer) = / po(X|xer, z<t: Opa(zee)de (1)

At any time ¢, the objective for pattern comple-
tion is to maximize the log-likelihood of X, i.e.

arg s [ log(pa(X|xce,2cti6)paee))de

3.2. Agent Architecture

The proposed predictive agent architecture comprises of
five components: environment, observation, pattern com-
pletion, action selection, and learning. See Fig. 2a.
Environment. The environment is the source of sensory
data and is dynamic (time-varying).

Observation. The agent interacts with the environment via
a sequence of glimpses. The observations, sampled from
the environment at each glimpse, are in two modalities: per-
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(a) Predictive agent architecture.

(b) Pattern completion model.

Figure 2: (a) Components of the proposed agent. The red
skeleton is the agent’s own body while the blue is that of
the other person. (b) Graphical illustration of all operations
of the multimodal VRNN used for pattern completion. Red
arrows show computation of the conditional prior, blue ar-
rows show the generation process, black arrows show the
updating process of the RNN’s hidden states, and green ar-
rows show the inference of the approximated posterior.

ceptual® and proprioceptive*. In the context of interaction
generation, we define perceptual and proprioceptive sensory
observations for an interacting person as follows.
Perceptual sensory observation. Perceptual sensory re-
ports the visual observation at some location or region in the
environment. xV = (z{" .. 2}, where 2 € R3*N
denotes the other person’s IV 3D skeletal joints at time ¢.

3Perception is the mechanism that allows an agent to interpret sensory
signals from the external environment [14].

“4Proprioception is perception where the environment is the agent’s own
body. Proprioception allows an agent to internally perceive the location,
movement and action of parts of its body [14].

Proprioceptive sensory observation. Proprioceptive sen-
sory reports the activations of the agent’s joint muscles due
to body movement and oculomotor muscles due to fixation.
The activations of joint muscles over time (or body propri-
ocept sequence) is x(2) = (:c§2) :ch?)), where :chz) €
R3*N denotes N 3D skeletal joints at time ¢. The activation
of oculomotor muscles over time (or visual propriocept se-
quence) is represented by the sequence of fixation locations

in the environment, denoted as x®) = (z{* . 2{¥),

where 2{®) € {0,1} is the activation at time ¢ of skele-
tal joints reduced to M fixated regions (see Fig. 3).
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Figure 3: The M (=5) regions in the 3D human skeleton.

Pattern completion. A multimodal variational recurrent
neural network (VRNN) for variable length sequences is
used for completing the pattern for the three modalities (see
Fig. 2b). The two processes involved in the operation of a
VRNN are recognition and generation [7].

Recognition (Encoder). The recognition model,
qs(2¢|X<t, 2<¢), is a probabilistic encoder [21]. Given the
observations X<, it produces a Gaussian distribution over
the possible values of the code z; from which the obser-
vations x<; could have been generated. The recognition
model consists of three RNNs, each with one layer of long-
short term memory (LSTM) units. Each RNN generates
the parameters for the approximate posterior distribution
(ugl, agzi) and the prior distribution (M(()i,?w aéf%) for each
modality ¢ (¢« = 1,2,3), as in [7]. The parameters from
each modality and for each distribution are combined
using product of experts (PoE), as in [31], to generate
the joint distribution parameters (see Fig. 2b) for both
the prior pg(z¢|X<t,2<¢) and the approximate posterior
qe(2t|X<t, 2<t) given by (pot,004) and (e, 02)
respectively. The recognition model can be formulated as:

[ (%) (1)}

Kot prwr(hfkwﬁ

Zr ™~ N(Mo,t, Uo,t),

00,t = (ZUU)72>_1; Ozt = (20(7) 2)
MOt = (ZMO tO’f 2)0’0,2&; /'czt — (Zﬂ(zlgilt )O-z7t

1) o)) = pere(al? ni )

Zt|$t ~ N(Mz ty Oz, t)



where P"°" and ©¢"¢ are functions representing neural
networks. It is assumed that the prior z; and the ap-
proximated posterior z¢|z; are sampled from an isotropic
multivariate Gaussian distribution.

Generation (Decoder). The generative model,
po(Xit1|2<t,X<t), generates the data from the latent
variables, z<;, at each time step. The generative model has
three RNNs with one layer of hidden LSTM units. Each
RNN generates the parameters of the distribution of the
sensory data for a modality. The sensory data is sampled
from this distribution which can be multivariate Gaussian
or Bernoulli. In our model, Xt(}r)l |z, Xt(i)l |z are sampled
from an isotropic multivariate Gaussian distribution and

Xt(i)l\zt from a Bernoulli distribution. The generative

model can be formulated as:

h = folz,at” i), (1, o) ) = pdee(a, ).
(73)_ )
x( i)t m(b) N2
For Bernoulli distribution, Xt Y1lze = fU( ) Here pdec,
fo are functions representing neural networks, and f, is a
sigmoid function. The above equations facilitate one step
ahead prediction. Beyond time ¢, for long term predictions
or pattern completion, the input is the prediction from the
previous time steps. Pattern completion is done at every
time step.
Action selection. In the proposed agent model, action se-
lection is to decide which location in the environment to
sample from. The environment is a 3D skeleton of the in-
teracting person. As the movement of a joint in the skeleton
is dependent on its adjacent joints, we cluster the NV skeletal
joints into M regions (see Fig 3). Location refers to all the
skeletal joints in top k; salient regions, 1 < k; < M, and
k; is not fixed. At any time step, the agent selects k; re-
gions using a threshold. At any time, there are Z,]:f;ll (% )
possible actions to choose from.
An action at time ¢ is generated as a function of the saliency
map. We denote the saliency map at time t as S; € RV

For Gaussian distribution, X, +1|zt ~ N (

and the value of the saliency map at region ¢ as St(e). The
saliency map is a function of the prediction error computed
as S, = | XY — XY)|1, where XV, XV € R3*N are
the true and predicted perceptual data (skeleton joint coordi-
nates) respectively, and ||.||; denotes L1 norm. We consider
saliency over M = 5 regions in the skeleton. This region-
based saliency map, SY € RM, is obtained by averaging
the saliencies over the joints in each region. The region ¢
is considered salient if Sf > L S°M 'Sr. Thus, at any
time, at least one region will be salient. A variable number
of salient regions at each time step is more effective. Set-
ting the number of salient regions to a constant value might
occasionally lead to selection of regions with low saliency
or discard regions with high saliency as saliency, S, is a

function of time, the agent’s observations and its predictive
model. In the proposed model, for the salient joints, the
observation is sampled from the environment; for the non-
salient joints, the observation is predicted from the last time
step.

The salient regions at any time ¢ is the proprioceptive obser-

vation x§ /; for time t + 1. Therefore, the salient regions at

t=20,1,2,...,T — 1 constitutes the proprioceptive pattern
X Hence, prediction error (saliency) guides the sam-
pling of the observations in our model. Unlike typical mul-
timodal models, the modalities in our model interact at the
observation level as the perceptual prediction error provides
the observation for the proprioceptive modality.

The agent learns a policy to generate the proprioceptive pat-
tern or the sequence of expected salient locations by mini-
mizing the proprioceptive prediction error (first term in Eq.
2 for ¢ = 3). This error, at any time, is a function of the dif-
ference between predicted fixation location from the learned
policy and the most salient location in the scene.

The most salient location is the most informative location in
the environment. These are the locations where the agent’s
prediction error is the highest given all the past observa-
tions. The agent attends to these locations to update its in-
ternal model.

Learning. The recognition and generative model param-
eters are jointly learned by maximizing the ELBO for the
multimodal VRNN. This objective function, obtained by
modifying the objective for multimodal VAE (Eq. 2 in [31])
with VRNN (Eq. 1 in [7]), is as follows:

T-1
E [Z/\ log pg( f+1\Z<t,$<1)

t=1 =1

- 5KL[CI¢>(Zt |X§t7 Z<t)»P0 (Zt|X<tv Z<tﬂ] } ()

a6 (z<7|X<T) [

where n is the number of modalities, the first term for ¢ =
1,2, 3 is the expected negative prediction error for the three
modalities. The KL-divergence is a regularizer to prevent
overfitting during training.

The negative of the ELBO is also referred to as negative
log-likelihood (NLL). In this paper, we refer to the negative
of the first term in Eq. 2 for+ = 1 and ¢ = 2, 3 as perceptual
NLL and proprioceptive NLLs respectively.

4. Experimental Results
4.1. Datasets

SBU Kinect Interaction Dataset [33] is a two-person inter-
action dataset comprising of eight interactions: approach-
ing, departing, pushing, kicking, punching, exchanging ob-
jects, hugging, and shaking hands. The data is recorded
from 7 participants forming a total of 21 sets such that each
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Figure 4: AFD averaged over all actions and each dataset
for different percentage of ground truth given as input. For
any percentage p, p% of the actual data is given as input and
the prediction is considered as input for the rest of the time
steps.

set consists of a unique pair of participants performing all
actions. The dataset has approximately 300 interactions of
duration 9 to 46 frames. The dataset is divided into five
distinct train test split.

K3HI: Kinect-based 3D Human Interaction Dataset [16] is a
two-person interaction dataset comprising of eight interac-
tions: approaching, departing, kicking, punching, pointing,
pushing, exchanging an object, and shaking hands. The data
is recorded from 15 volunteers. Each pair of participants
performs all the actions. The dataset has approximately 320
interactions of duration 20 to 104 frames. The dataset is
divided into three distinct train test split.

4.2. Experimental setup

Each dataset consists of interactions where one person ini-
tiates an action and the other person reacts to it. In our
experiments, we model one interacting person irrespective
of its initiating or reacting nature. We consider 15 skeletal
joints from each person for each dataset. Each skeletal joint
is normalized before training.

Each modality in the agent architecture (ref. Fig. 2b) has a
recurrent hidden layer of 256 hidden units and a latent layer
of 10 latent variables.

We use Adam optimizer with a learning rate of 0.001, and
default hyper-parameters 5; = 0.9 and S5 = 0.999 [20]. A
minibatch size of 100 is used and number of training iter-
ations is fixed at 25,000 (SBU Kinect) and 10,000 (K3HI).
To avoid overfitting, we use a dropout probability of 0.8 at
the generation layer (final layer). All the hyperparameters
are determined experimentally.

For evaluation, we consider three variants of our model:

1. Model 1: VRNN with 2 modalities. Perceptual and
body proprioceptive are the two modalities. Here, 1 =
1,21in Eq. 2.

2. Model 2: VRNN with 3 modalities. Ref. Section 2.

3. Model 3: VRNN with 3 modalities and perceptual
input sampled from predicted visual propriocep-
tion. This is a special case of Model 2. Here the
perceptual input is sampled from the prediction, X t(g),
instead of the true saliency map, S;, at all time steps.

The difference between Model 1 and the other two models
is the addition of the third modality x(®) to the model. This
difference will show the effect of adding modalities in the
model. The difference between Model 3 and the other two
models is the data from which the perceptual input is sam-
pled. This difference will show how well the model learns
to predict the salient joints.

We evaluate the model by comparing it with models without
attention. The perceptual observation is sampled from the

ground truth, X t(l), at all time steps.

1. RNN (without attention). We use a standard LSTM
encoder-decoder model and to generate data for two
modalities: perceptual and body proprioceptive. The
two modalities interact at the latent layer, where the
latent variables are concatenated; it thus has a total of
20 latent variables.

2. VRNN (without attention). We use a variational
LSTM autoencoder model to generate data for two
modalities: perceptual and body proprioceptive. The
two modalities interact at the latent layer, where the
latent variables are combined using PoE.

For fair comparison, the number of layers and number of
neurons are kept consistent for both models with respect to
the proposed models.

We evaluate results from the perceptual modality (i = 1)
and body proprioceptive modality (¢ = 2) using aver-
age frame distance (AFD), as in [17]: ﬁ 2322 ||Xt(l) -

)A(t(i)||2, where Xt(i) and )A(t(i) are the true and predicted
skeletal joint coordinates respectively at time ¢, and T is
the sequence length.

We use percentage measure to evaluate the two propriocep-
tive modalities in Model 2. The measure reflects how good
the learned policy (generated sequence of salient regions) is
when compared to the true policy (true sequence of salient
regions). At each time step, the true policy can generate
multiple salient regions. We define the average percentage
as:

1 Z No. of correctly predicted salient regions

T-1 - Total no. of salient regions

4.3. Evaluation Results

Fig. 1 shows one time step ahead prediction of the two
skeletons (perception and body proprioception) for four



Table 1: Performance comparison for different versions of the proposed model and other models for different interactions
on the SBU Kinect Interaction dataset for one step ahead prediction. The reported AFD is the average of the perceptual
(Perc.) AFD and proprioceptive (Prop.) AFD averaged over all examples in the test set and all the train-test splits. The visual

proprioceptive performance is shown in the last column.

Interaction Perc. error and Body Prop. error (AFD) Visual Prop. (%)
[17] RNN VRNN Model 1 Model 2 Model 3 Model 2
(w/o attn) | (w/o attn) | (VRNN, attn) | (VRNN, attn+ | (VRNN, attn+ | (VRNN, attn+
true policy) pred. policy) true policy)
Approaching | - 0.0097 0.0082 0.0128 0.0138 0.0189 61.08
Departing - 0.0117 0.0098 0.0140 0.0150 0.0199 61.41
Kicking 0.660 | 0.0210 0.0192 0.0358 0.0360 0.0411 61.77
Pushing 0.413 | 0.0142 0.0125 0.0212 0.0215 0.0267 64.79
Shaking 0.389 | 0.0094 0.0079 0.0130 0.0130 0.0276 62.25
Hugging 0.504 | 0.0197 0.0181 0.0273 0.0272 0.0412 63.80
Exchanging | 0.574 | 0.0111 0.0095 0.0136 0.0145 0.0195 65.16
Punching 0.510 | 0.0175 0.0159 0.0252 0.0258 0.0326 63.19
Average 0.508 | 0.0143 0.0126 0.0204 0.0208 0.0284 62.93

Table 2: Performance comparison for different versions of the proposed model and other models for different interactions
on the K3HI dataset for one step ahead prediction. The reported AFD is the average of the perceptual (Perc.) AFD and
proprioceptive (Prop.) AFD averaged over all examples in the test set and all the train-test splits. The visual proprioceptive

performance is shown in the last column.

Interaction Perc. error and Body Prop. error (AFD) Visual Prop. (%)

RNN VRNN Model 1 Model 2 Model 3 Model 2

(w/o attn) | (w/o attn) | (VRNN, attn) | (VRNN, attn+ | (VRNN, attn+ | (VRNN, attn+

true policy) pred. policy) | true policy)

Approaching | 0.0844 0.0912 0.0714 0.0735 0.0796 72.68
Departing 0.0065 0.0067 0.0097 0.0102 0.0130 69.44
Exchanging | 0.0022 0.0024 0.0036 0.0038 0.0072 73.54
Kicking 0.0047 0.0049 0.0078 0.0078 0.0117 69.43
Pointing 0.0025 0.0028 0.0048 0.0048 0.0089 69.77
Punching 0.0038 0.0040 0.0064 0.0067 0.0101 70.35
Pushing 0.0035 0.0038 0.0062 0.0065 0.0090 66.99
Shaking 0.0019 0.0021 0.0031 0.0034 0.0065 67.86
Average 0.0137 0.0147 0.0141 0.0146 0.0182 70.00

kinds of interactions from each dataset. The prediction over
space and time looks quite realistic for all the cases.

For long term predictions, the prediction improves expo-
nentially with the percentage of data given as ground truth
(see Fig. 4). For SBU Kinect dataset, the performance
of RNN (without attention), VRNN (without attention) and
Model 1 (with attention) is slightly poorer than the proposed
Model 2 (with attention) and Model 3 (with attention) until
around 50% of the ground truth is given as the input. For
ground truth > 50%, the AFD for non-attention models and
proposed Model 1 slightly improves compared to proposed
Models 2 and 3. For K3HI dataset, the performance of RNN
is poorer than Model 1, Model 2, Model 3, and VRNN until
around 75% of the ground truth is given as the input. For
ground truth > 75%, the AFD for all the models except

Model 3 are close. Thus, overall performance of attention
and non-attention models are comparable.

RNN and VRNN without attention are more prone to er-
ror propagation as the predicted data is fed as the input for
consecutive prediction whereas during training, the ground
truth is fed as input to the model. Our model is more robust
to noise as during training, for the non-salient joints, the
predicted data is fed as the input for consecutive prediction.
VRNNSs though in general are more robust to noise, adding
the proposed attention mechanism with sparsity can help in
combating error propagation and improve long-term predic-
tions. Detailed AFD for all the interactions for one time step
ahead prediction are shown in Tables | and 2. The AFD for
all the interactions is lower than the results reported in [17]
for SBU Kinect dataset. This shows that our model is able



Table 3: Average percentage of saliency joints for both SBU Kinect Interaction and K3HI dataset for all cases in an interac-
tion. This percentage is also the proportion of joints that are sampled from the observation (ground truth).

R1 R2 R3 Ra RS R1 R2 R3 Ra RS

(a) SBU true dist. (b) SBU predicted dist.

SBU Approaching | Departing | Kicking | Pushing | Shaking | Exchanging | Punch Hugging | Average
46.21 46.99 44.87 47.54 47.23 47.36 47.80 47.45 46.93
K3HI Approaching | Departing | Kicking | Pushing | Shaking | Exchanging | Punching | Pointing | Average
45.19 46.27 43.79 48.06 48.11 50.00 47.57 47.70 47.09
= Departing | 0.0391 0:1371 'ﬁw‘ = Departing 0
s R o 1 T

R1 R2 R3 R4 RS R1 R2 R3 Ra RS

(c) K3HI true dist. (d) K3HI predicted dist.

Figure 5: Salient region distribution (dist.) over all interactions shown in (a—d) averaged over all the examples in an inter-
action. True salient distribution obtained from the saliency map for SBU Kinect Interaction dataset is shown in (a) and for
K3HI dataset is shown in (c). The predicted salient distribution obtained from the predicted joints as in proposed Model 2
are shown for SBU Kinect Interaction dataset and K3HI dataset in (b) and (d) respectively.

to learn better representation of the underlying dynamics of
interaction. For K3HI dataset, we are the first to report the
AFD. Among the three variants of the proposed model, for
one step ahead prediction, Model 1 performs the best. No
significant difference in long-term prediction performance
is observed among the three variants (see Fig. 4). However,
from a practical standpoint, Model 2 and Model 3 can be
more useful as they can learn the policy and automatically
determine salient regions for future time steps. So the agent
can decide what action to take much earlier than the actual
event occurs.

Predictions closer to the current time step are better, as ob-
served from Figs. 6, 7. There is continuity and the two
predicted skeletons are well synchronized. The agent’s pre-
dicted action or reaction at each time step also complies
with the actual interaction.

It is also observed that the number of actual salient regions
may change at each time step depending on the prediction
error (highlighted with markers in the joints of the skele-
tons). This change may occur quite randomly depending
on what the model has learned. Therefore, learning to pre-
dict the salient regions is a challenging task. However, our
model is able to predict them correctly most of the time
(ref. Tables 1, 2, and Fig. 5). Ideally, the joint trajecto-
ries that occur rarely are more difficult to learn, and hence
more salient. Thus, the actual salient regions for punching,
exchange objects, push, handshake and hug are mostly the
hands while for action kicking its the legs. In our case, as
the modeled agent can be the reacting or interacting agent,

the salient region distribution is similar but not exactly the
same as the ideal case.

We compute the average (over all the cases for an interac-
tion) of the percentage of number of salient joints chosen by
the model at each time step (ref. Table 3). On average, for
all the interactions, our approach considers less than 50%
of the joints in a skeleton as observation to the model. For
both datasets, the highest sparsity is for kicking, the low-
est is for punching and shaking hands for SBU Kinect and
K3HI datasets respectively. Selectively attending to fewer
joints makes our model more efficient without compromis-
ing its accuracy.

5. Conclusions

A multimodal predictive agent with perceptual and propri-
oceptive pathways is proposed. It completes the observed
pattern for perceptual and proprioceptive modalities after
each glimpse. The perceptual prediction error provides the
observation for the proprioceptive modality. Experimental
results using our agent for two-person interaction forecast-
ing are comparable to non-attentional models even though
our agent’s observations have higher than 50% sparsity. The
agent model is learned end-to-end in an unsupervised man-
ner, without any reinforcement signal or utilities/values of
states. This is the first work on an attention-based agent that
actively samples its environment guided by prediction error
and generates realistic 3D human skeleton interactions.



O BB B TR R A A A A A

(a) Actual

AR R R R AR R A AR 100

(b) Predicted (30% ground truth given)

VIR B S T IR R e R A A 0

(c) Predicted (50% ground truth given)

VIR B B SR TR e A 0

(d) Predicted (70% ground truth given)

Figure 6: The top row represents true skeletal data for the prediction at alternate time steps for SBU Kinect Intersection data
for exchanging object. Each skeleton in rows 2, 3 and 4 shows one step ahead prediction until 30%, 50% and 70% of the
ground truth is given (highlighted by the grey line) respectively. Beyond that, the model uses its own prediction as input for
completing the patterns until the final time step is reached. The salient joints are marked red.
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Figure 7: The top row represents true skeletal data for the prediction at every third instant for K3HI Intersection data for
shaking hands. Each skeleton in rows 2, 3 and 4 shows one step ahead prediction until 30%, 50% and 70% of the ground truth
is given (highlighted by the grey line) respectively. Beyond that, the model uses its own prediction as input for completing
the patterns until the final time step is reached. The salient joints are marked red.
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