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Abstract

Perception and action are inextricably tied together.

We propose an agent model which consists of perceptual

and proprioceptive pathways. The agent actively sam-

ples a sequence of percepts from its environment using the

perception-action loop. The model predicts to complete

the partial percept and propriocept sequences observed till

each sampling instant, and learns where and what to sam-

ple from the prediction error, without supervision or rein-

forcement. The model is implemented using a multimodal

variational recurrent neural network. The model is exposed

to videos of two-person interactions, where one person is

the modeled agent and the other person’s actions constitute

its visual observation. For each interaction class, the model

learns to selectively attend to locations in the other person’s

body. The proposed attention-based agent is the first of its

kind to interact with and learn end-to-end from human in-

teractions, and generate realistic interactions with perfor-

mance comparable to models without attention and using

significantly more computational resources.

1. Introduction

The human visual system operates efficiently by attend-

ing to the environment selectively in space and time, and

combines information from fixations over time to build up

an internal representation of the observation [25], guiding

future eye movements and decision making. Inspired by

the human visual system, we propose a predictive agent1

model which observes its visual environment via a sequence

of glimpses. The agent is implemented in software; its ac-

tions are limited to sampling the visual environment and its

own body movements. The predictive agent actively makes

inferences (predictive and causal), acts and learns by mini-

mizing sensory prediction error in a perception-action loop.

1An agent is anything that can be viewed as perceiving its environment

through sensors and acting upon that environment through actuators [26].

There are many applications of such agent (e.g., [1, 2, 18, 19, 24]).
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Figure 1: First and second rows show the actual and pre-

dicted data respectively for interactions push, hug, kick and

punch from SBU Kinect interaction dataset. As the videos

are short in length, continuous frames are shown. Third

and fourth rows show the actual and predicted data respec-

tively for interactions push, shake hands, kick and punch

from K3HI interaction dataset. As the videos are longer in

length, the frames are shown in intervals. Older frames are

lighter in shade than more recent frames.

The model is unsupervised, and does not require reinforce-

ment or utilities/values of states.

We apply the model for forecasting human interactions

using 3D skeletal data. Interaction forecasting is a chal-



lenging problem as the model has to learn how the be-

havior of one person determines the behavior of the other.

Spatiotemporal relations between different skeletal joints

of a person as well as the two interacting persons have to

be learned for accurate prediction. The ability to model

dynamics of human interaction is useful for applications

such as video surveillance, human-robot interaction, assis-

tive robotics, and robotic surveillance. Though a large vol-

ume of work has been done on predicting actions using 3D

skeletal data of a single person (e.g., [5,6,11,12,22,32]) as

well as predicting human motion in crowded scenes (e.g.,

[10, 15, 28, 29]), much less has been done on predicting in-

teraction of two persons using 3D skeletal data.

In this paper, we model the environment from the per-

spective of one of the interacting persons; the other per-

son constitutes his environment. The novelty of our ap-

proach is threefold: (1) the modeled person (agent) learns

to sample (or attend to) the most informative (or salient2)

locations of the other persons body using a saliency map at

each glimpse; (2) taking into account the past observations

and its learned knowledge, the agent completes the entire

perceptual and proprioceptive patterns after each glimpse;

and (3) the pattern completion component in our agent is

a multimodal generative model where the prediction error

in a perceptual modality provides the observation for the

proprioceptive modality. Attending the environment selec-

tively introduces sparsity in the agent’s observations, lead-

ing to efficiency. To the best of our knowledge, the pro-

posed agent is the first of its kind to interact with and learn

end-to-end from two-person interaction environments, with

performance comparable to models without attention that

uses significantly less sparse observations.

2. Related Work

A taxonomy of the models used for generating actions

with 3D skeletons is presented below.

3D skeletal data generation models

Single-person action generation

Non-attentional models

[4--6,11--13,22,23,32,34]

Attentional models [30]

Two-person interaction generation

Non-attentional models [17]

Attentional models [Our proposed

model]

The model in [17] frames dual agent interaction as an op-

timal control problem by observing actions from one agent

and predicting actions of the other agent. It does not model

the observing agent’s movement and predicts for short term

2Saliency is a property of each location in a predictive agent’s envi-

ronment. The attention mechanism is a function of the agent’s prediction

error [3, 18, 19, 24, 27]. Other definitions of saliency (e.g., [8, 9]) are not

relevant to this paper.

only, unlike our proposed model. Work on predicting dual

agent interactions using 3D skeletal data is limited. Most

works report predicting motion of a single person using 3D

skeletal data.

Few models have been proposed with attention mechanism

for generating 3D skeletal data. The model in [30] predicts

the 3D skeletal data of a person using a temporal attention

layer which generates an attention parameter at each time

step. In this model, attention is defined by internal parame-

ters and is not a function of the model’s sensory prediction

error, making it difficult to interpret the model’s behavior.

It also requires a fixed length of the input sequence to be

observed in order to calculate an attention value for each

time step, which may not be realistic for online application.

We propose a novel attention mechanism based on sensory

prediction error, that can complete the observation from any

time step, with an interpretable behavior.

3. Models and Methods

This section defines the problem and describes the proposed

agent model.

3.1. Problem Statement

Let X = {X(1),X(2), . . . ,X(n)} be a set of observable

variables representing an environment in n modalities.

The variable representing the i-th modality is a sequence:

X(i) = 〈X
(i)
1 , X

(i)
2 , . . . , X

(i)
T 〉, where T is the sequence

length. Let x≤t = {x(1), x(2), . . . , x(n)} be a partial ob-

servation of X such that x(i) = 〈x
(i)
1 , . . . , x

(i)
t 〉, 1 ≤ t ≤ T .

We define pattern completion as the problem of generating

X as accurately as possible from its partial observation x≤t.

Given x≤t and a generative model pθ with parameters θ and

latent variables z≤t, the generative process of X is:

pθ(X|x≤t) =

∫

pθ(X|x≤t, z≤t; θ)pθ(z≤t)dz (1)

At any time t, the objective for pattern comple-

tion is to maximize the log-likelihood of X, i.e.

argmax
θ

∫

log(pθ(X|x≤t, z≤t; θ)pθ(z≤t))dz.

3.2. Agent Architecture

The proposed predictive agent architecture comprises of

five components: environment, observation, pattern com-

pletion, action selection, and learning. See Fig. 2a.

Environment. The environment is the source of sensory

data and is dynamic (time-varying).

Observation. The agent interacts with the environment via

a sequence of glimpses. The observations, sampled from

the environment at each glimpse, are in two modalities: per-



(a) Predictive agent architecture.

(b) Pattern completion model.

Figure 2: (a) Components of the proposed agent. The red

skeleton is the agent’s own body while the blue is that of

the other person. (b) Graphical illustration of all operations

of the multimodal VRNN used for pattern completion. Red

arrows show computation of the conditional prior, blue ar-

rows show the generation process, black arrows show the

updating process of the RNN’s hidden states, and green ar-

rows show the inference of the approximated posterior.

ceptual3 and proprioceptive4. In the context of interaction

generation, we define perceptual and proprioceptive sensory

observations for an interacting person as follows.

Perceptual sensory observation. Perceptual sensory re-

ports the visual observation at some location or region in the

environment. x(1) = 〈x
(1)
1 , . . . , x

(1)
T 〉, where x

(1)
t ∈ R

3×N

denotes the other person’s N 3D skeletal joints at time t.

3Perception is the mechanism that allows an agent to interpret sensory

signals from the external environment [14].
4Proprioception is perception where the environment is the agent’s own

body. Proprioception allows an agent to internally perceive the location,

movement and action of parts of its body [14].

Proprioceptive sensory observation. Proprioceptive sen-

sory reports the activations of the agent’s joint muscles due

to body movement and oculomotor muscles due to fixation.

The activations of joint muscles over time (or body propri-

ocept sequence) is x(2) = 〈x
(2)
1 , . . . , x

(2)
T 〉, where x

(2)
t ∈

R
3×N denotes N 3D skeletal joints at time t. The activation

of oculomotor muscles over time (or visual propriocept se-

quence) is represented by the sequence of fixation locations

in the environment, denoted as x(3) = 〈x
(3)
1 , . . . , x

(3)
T 〉,

where x
(3)
t ∈ {0, 1}M is the activation at time t of skele-

tal joints reduced to M fixated regions (see Fig. 3).

Figure 3: The M (=5) regions in the 3D human skeleton.

Pattern completion. A multimodal variational recurrent

neural network (VRNN) for variable length sequences is

used for completing the pattern for the three modalities (see

Fig. 2b). The two processes involved in the operation of a

VRNN are recognition and generation [7].

Recognition (Encoder). The recognition model,

qφ(zt|x≤t, z<t), is a probabilistic encoder [21]. Given the

observations x≤t, it produces a Gaussian distribution over

the possible values of the code zt from which the obser-

vations x≤t could have been generated. The recognition

model consists of three RNNs, each with one layer of long-

short term memory (LSTM) units. Each RNN generates

the parameters for the approximate posterior distribution

(µ
(i)
z,t, σ

(i)
z,t) and the prior distribution (µ

(i)
0,t, σ

(i)
0,t) for each

modality i (i = 1, 2, 3), as in [7]. The parameters from

each modality and for each distribution are combined

using product of experts (PoE), as in [31], to generate

the joint distribution parameters (see Fig. 2b) for both

the prior pθ(zt|x<t, z<t) and the approximate posterior

qφ(zt|x≤t, z<t) given by (µ0,t, σ0,t) and (µz,t, σz,t)
respectively. The recognition model can be formulated as:

[µ
(i)
0,t σ

(i)
0,t] = ϕprior

τ (h
(i)
t−1), [µ

(i)
z,t σ

(i)
z,t] = ϕenc

τ (x
(i)
t , h

(i)
t−1)

zt ∼ N (µ0,t, σ0,t), zt|xt ∼ N (µz,t, σz,t)

σ0,t =
(

∑

i

σ
(i)
0,t

−2)−1

, σz,t =
(

∑

i

σ
(i)
z,t

−2)−1

µ0,t =
(

∑

i

µ
(i)
0,tσ

(i)
0,t

−2)

σ0,t, µz,t =
(

∑

i

µ
(i)
z,tσ

(i)
z,t

−2)

σz,t



where ϕprior
τ and ϕenc

τ are functions representing neural

networks. It is assumed that the prior zt and the ap-

proximated posterior zt|xt are sampled from an isotropic

multivariate Gaussian distribution.

Generation (Decoder). The generative model,

pθ(Xt+1|z≤t, x≤t), generates the data from the latent

variables, z≤t, at each time step. The generative model has

three RNNs with one layer of hidden LSTM units. Each

RNN generates the parameters of the distribution of the

sensory data for a modality. The sensory data is sampled

from this distribution which can be multivariate Gaussian

or Bernoulli. In our model, X
(1)
t+1|zt, X

(2)
t+1|zt are sampled

from an isotropic multivariate Gaussian distribution and

X
(3)
t+1|zt from a Bernoulli distribution. The generative

model can be formulated as:

h
(i)
t = fθ(zt, x

(i)
t , h

(i)
t−1), [µ

(i)

x(i),t
σ
(i)

x(i),t
] = ϕdec

τ (zt, h
(i)
t ).

For Gaussian distribution, X
(i)
t+1|zt ∼ N (µ

(i)

x(i),t
, σ

(i)

x(i),t
).

For Bernoulli distribution, X
(i)
t+1|zt = fσ(h

(i)
t ). Here ϕdec

τ ,

fθ are functions representing neural networks, and fσ is a

sigmoid function. The above equations facilitate one step

ahead prediction. Beyond time t, for long term predictions

or pattern completion, the input is the prediction from the

previous time steps. Pattern completion is done at every

time step.

Action selection. In the proposed agent model, action se-

lection is to decide which location in the environment to

sample from. The environment is a 3D skeleton of the in-

teracting person. As the movement of a joint in the skeleton

is dependent on its adjacent joints, we cluster the N skeletal

joints into M regions (see Fig 3). Location refers to all the

skeletal joints in top kt salient regions, 1 ≤ kt ≤ M , and

kt is not fixed. At any time step, the agent selects kt re-

gions using a threshold. At any time, there are
∑M−1

kt=1

(

M
kt

)

possible actions to choose from.

An action at time t is generated as a function of the saliency

map. We denote the saliency map at time t as St ∈ R
N

and the value of the saliency map at region ℓ as S
(ℓ)
t . The

saliency map is a function of the prediction error computed

as St = ‖X
(1)
t − X̂

(1)
t ‖1, where X

(1)
t , X̂

(1)
t ∈ R

3×N are

the true and predicted perceptual data (skeleton joint coordi-

nates) respectively, and ‖.‖1 denotes L1 norm. We consider

saliency over M = 5 regions in the skeleton. This region-

based saliency map, Sℓ
t ∈ R

M , is obtained by averaging

the saliencies over the joints in each region. The region ℓ

is considered salient if Sℓ
t ≥ 1

M

∑M

r=1 S
r
t . Thus, at any

time, at least one region will be salient. A variable number

of salient regions at each time step is more effective. Set-

ting the number of salient regions to a constant value might

occasionally lead to selection of regions with low saliency

or discard regions with high saliency as saliency, St, is a

function of time, the agent’s observations and its predictive

model. In the proposed model, for the salient joints, the

observation is sampled from the environment; for the non-

salient joints, the observation is predicted from the last time

step.

The salient regions at any time t is the proprioceptive obser-

vation x
(3)
t+1 for time t+ 1. Therefore, the salient regions at

t = 0, 1, 2, . . . , T − 1 constitutes the proprioceptive pattern

X(3). Hence, prediction error (saliency) guides the sam-

pling of the observations in our model. Unlike typical mul-

timodal models, the modalities in our model interact at the

observation level as the perceptual prediction error provides

the observation for the proprioceptive modality.

The agent learns a policy to generate the proprioceptive pat-

tern or the sequence of expected salient locations by mini-

mizing the proprioceptive prediction error (first term in Eq.

2 for i = 3). This error, at any time, is a function of the dif-

ference between predicted fixation location from the learned

policy and the most salient location in the scene.

The most salient location is the most informative location in

the environment. These are the locations where the agent’s

prediction error is the highest given all the past observa-

tions. The agent attends to these locations to update its in-

ternal model.

Learning. The recognition and generative model param-

eters are jointly learned by maximizing the ELBO for the

multimodal VRNN. This objective function, obtained by

modifying the objective for multimodal VAE (Eq. 2 in [31])

with VRNN (Eq. 1 in [7]), is as follows:

Eqφ(z≤T |x≤T )

[

T−1
∑

t=1

[

n
∑

i=1

λi log pθ(X
(i)
t+1|z≤t, x

(i)
≤t)

− βKL[qφ(zt|x≤t, z<t), pθ(zt|x<t, z<t)]
]]

(2)

where n is the number of modalities, the first term for i =
1, 2, 3 is the expected negative prediction error for the three

modalities. The KL-divergence is a regularizer to prevent

overfitting during training.

The negative of the ELBO is also referred to as negative

log-likelihood (NLL). In this paper, we refer to the negative

of the first term in Eq. 2 for i = 1 and i = 2, 3 as perceptual

NLL and proprioceptive NLLs respectively.

4. Experimental Results

4.1. Datasets

SBU Kinect Interaction Dataset [33] is a two-person inter-

action dataset comprising of eight interactions: approach-

ing, departing, pushing, kicking, punching, exchanging ob-

jects, hugging, and shaking hands. The data is recorded

from 7 participants forming a total of 21 sets such that each



(a) SBU Kinect Interaction Dataset (b) K3HI Interaction Dataset

Figure 4: AFD averaged over all actions and each dataset

for different percentage of ground truth given as input. For

any percentage p, p% of the actual data is given as input and

the prediction is considered as input for the rest of the time

steps.

set consists of a unique pair of participants performing all

actions. The dataset has approximately 300 interactions of

duration 9 to 46 frames. The dataset is divided into five

distinct train test split.

K3HI: Kinect-based 3D Human Interaction Dataset [16] is a

two-person interaction dataset comprising of eight interac-

tions: approaching, departing, kicking, punching, pointing,

pushing, exchanging an object, and shaking hands. The data

is recorded from 15 volunteers. Each pair of participants

performs all the actions. The dataset has approximately 320

interactions of duration 20 to 104 frames. The dataset is

divided into three distinct train test split.

4.2. Experimental setup

Each dataset consists of interactions where one person ini-

tiates an action and the other person reacts to it. In our

experiments, we model one interacting person irrespective

of its initiating or reacting nature. We consider 15 skeletal

joints from each person for each dataset. Each skeletal joint

is normalized before training.

Each modality in the agent architecture (ref. Fig. 2b) has a

recurrent hidden layer of 256 hidden units and a latent layer

of 10 latent variables.

We use Adam optimizer with a learning rate of 0.001, and

default hyper-parameters β1 = 0.9 and β2 = 0.999 [20]. A

minibatch size of 100 is used and number of training iter-

ations is fixed at 25,000 (SBU Kinect) and 10,000 (K3HI).

To avoid overfitting, we use a dropout probability of 0.8 at

the generation layer (final layer). All the hyperparameters

are determined experimentally.

For evaluation, we consider three variants of our model:

1. Model 1: VRNN with 2 modalities. Perceptual and

body proprioceptive are the two modalities. Here, i =
1, 2 in Eq. 2.

2. Model 2: VRNN with 3 modalities. Ref. Section 2.

3. Model 3: VRNN with 3 modalities and perceptual

input sampled from predicted visual propriocep-

tion. This is a special case of Model 2. Here the

perceptual input is sampled from the prediction, X̂
(3)
t ,

instead of the true saliency map, St, at all time steps.

The difference between Model 1 and the other two models

is the addition of the third modality x(3) to the model. This

difference will show the effect of adding modalities in the

model. The difference between Model 3 and the other two

models is the data from which the perceptual input is sam-

pled. This difference will show how well the model learns

to predict the salient joints.

We evaluate the model by comparing it with models without

attention. The perceptual observation is sampled from the

ground truth, X
(1)
t , at all time steps.

1. RNN (without attention). We use a standard LSTM

encoder-decoder model and to generate data for two

modalities: perceptual and body proprioceptive. The

two modalities interact at the latent layer, where the

latent variables are concatenated; it thus has a total of

20 latent variables.

2. VRNN (without attention). We use a variational

LSTM autoencoder model to generate data for two

modalities: perceptual and body proprioceptive. The

two modalities interact at the latent layer, where the

latent variables are combined using PoE.

For fair comparison, the number of layers and number of

neurons are kept consistent for both models with respect to

the proposed models.

We evaluate results from the perceptual modality (i = 1)

and body proprioceptive modality (i = 2) using aver-

age frame distance (AFD), as in [17]: 1
T−1

∑T

t=2 ‖X
(i)
t −

X̂
(i)
t ‖2, where X

(i)
t and X̂

(i)
t are the true and predicted

skeletal joint coordinates respectively at time t, and T is

the sequence length.

We use percentage measure to evaluate the two propriocep-

tive modalities in Model 2. The measure reflects how good

the learned policy (generated sequence of salient regions) is

when compared to the true policy (true sequence of salient

regions). At each time step, the true policy can generate

multiple salient regions. We define the average percentage

as:

1

T − 1

∑

t

No. of correctly predicted salient regions

Total no. of salient regions

4.3. Evaluation Results

Fig. 1 shows one time step ahead prediction of the two

skeletons (perception and body proprioception) for four



Table 1: Performance comparison for different versions of the proposed model and other models for different interactions

on the SBU Kinect Interaction dataset for one step ahead prediction. The reported AFD is the average of the perceptual

(Perc.) AFD and proprioceptive (Prop.) AFD averaged over all examples in the test set and all the train-test splits. The visual

proprioceptive performance is shown in the last column.

Interaction
Perc. error and Body Prop. error (AFD) Visual Prop. (%)

[17] RNN VRNN Model 1 Model 2 Model 3 Model 2

(w/o attn) (w/o attn) (VRNN, attn) (VRNN, attn+ (VRNN, attn+ (VRNN, attn+

true policy) pred. policy) true policy)

Approaching - 0.0097 0.0082 0.0128 0.0138 0.0189 61.08

Departing - 0.0117 0.0098 0.0140 0.0150 0.0199 61.41

Kicking 0.660 0.0210 0.0192 0.0358 0.0360 0.0411 61.77

Pushing 0.413 0.0142 0.0125 0.0212 0.0215 0.0267 64.79

Shaking 0.389 0.0094 0.0079 0.0130 0.0130 0.0276 62.25

Hugging 0.504 0.0197 0.0181 0.0273 0.0272 0.0412 63.80

Exchanging 0.574 0.0111 0.0095 0.0136 0.0145 0.0195 65.16

Punching 0.510 0.0175 0.0159 0.0252 0.0258 0.0326 63.19

Average 0.508 0.0143 0.0126 0.0204 0.0208 0.0284 62.93

Table 2: Performance comparison for different versions of the proposed model and other models for different interactions

on the K3HI dataset for one step ahead prediction. The reported AFD is the average of the perceptual (Perc.) AFD and

proprioceptive (Prop.) AFD averaged over all examples in the test set and all the train-test splits. The visual proprioceptive

performance is shown in the last column.

Interaction
Perc. error and Body Prop. error (AFD) Visual Prop. (%)

RNN VRNN Model 1 Model 2 Model 3 Model 2

(w/o attn) (w/o attn) (VRNN, attn) (VRNN, attn+ (VRNN, attn+ (VRNN, attn+

true policy) pred. policy) true policy)

Approaching 0.0844 0.0912 0.0714 0.0735 0.0796 72.68

Departing 0.0065 0.0067 0.0097 0.0102 0.0130 69.44

Exchanging 0.0022 0.0024 0.0036 0.0038 0.0072 73.54

Kicking 0.0047 0.0049 0.0078 0.0078 0.0117 69.43

Pointing 0.0025 0.0028 0.0048 0.0048 0.0089 69.77

Punching 0.0038 0.0040 0.0064 0.0067 0.0101 70.35

Pushing 0.0035 0.0038 0.0062 0.0065 0.0090 66.99

Shaking 0.0019 0.0021 0.0031 0.0034 0.0065 67.86

Average 0.0137 0.0147 0.0141 0.0146 0.0182 70.00

kinds of interactions from each dataset. The prediction over

space and time looks quite realistic for all the cases.

For long term predictions, the prediction improves expo-

nentially with the percentage of data given as ground truth

(see Fig. 4). For SBU Kinect dataset, the performance

of RNN (without attention), VRNN (without attention) and

Model 1 (with attention) is slightly poorer than the proposed

Model 2 (with attention) and Model 3 (with attention) until

around 50% of the ground truth is given as the input. For

ground truth ≥ 50%, the AFD for non-attention models and

proposed Model 1 slightly improves compared to proposed

Models 2 and 3. For K3HI dataset, the performance of RNN

is poorer than Model 1, Model 2, Model 3, and VRNN until

around 75% of the ground truth is given as the input. For

ground truth ≥ 75%, the AFD for all the models except

Model 3 are close. Thus, overall performance of attention

and non-attention models are comparable.

RNN and VRNN without attention are more prone to er-

ror propagation as the predicted data is fed as the input for

consecutive prediction whereas during training, the ground

truth is fed as input to the model. Our model is more robust

to noise as during training, for the non-salient joints, the

predicted data is fed as the input for consecutive prediction.

VRNNs though in general are more robust to noise, adding

the proposed attention mechanism with sparsity can help in

combating error propagation and improve long-term predic-

tions. Detailed AFD for all the interactions for one time step

ahead prediction are shown in Tables 1 and 2. The AFD for

all the interactions is lower than the results reported in [17]

for SBU Kinect dataset. This shows that our model is able



Table 3: Average percentage of saliency joints for both SBU Kinect Interaction and K3HI dataset for all cases in an interac-

tion. This percentage is also the proportion of joints that are sampled from the observation (ground truth).

SBU
Approaching Departing Kicking Pushing Shaking Exchanging Punch Hugging Average

46.21 46.99 44.87 47.54 47.23 47.36 47.80 47.45 46.93

K3HI
Approaching Departing Kicking Pushing Shaking Exchanging Punching Pointing Average

45.19 46.27 43.79 48.06 48.11 50.00 47.57 47.70 47.09

(a) SBU true dist. (b) SBU predicted dist. (c) K3HI true dist. (d) K3HI predicted dist.

Figure 5: Salient region distribution (dist.) over all interactions shown in (a–d) averaged over all the examples in an inter-

action. True salient distribution obtained from the saliency map for SBU Kinect Interaction dataset is shown in (a) and for

K3HI dataset is shown in (c). The predicted salient distribution obtained from the predicted joints as in proposed Model 2

are shown for SBU Kinect Interaction dataset and K3HI dataset in (b) and (d) respectively.

to learn better representation of the underlying dynamics of

interaction. For K3HI dataset, we are the first to report the

AFD. Among the three variants of the proposed model, for

one step ahead prediction, Model 1 performs the best. No

significant difference in long-term prediction performance

is observed among the three variants (see Fig. 4). However,

from a practical standpoint, Model 2 and Model 3 can be

more useful as they can learn the policy and automatically

determine salient regions for future time steps. So the agent

can decide what action to take much earlier than the actual

event occurs.

Predictions closer to the current time step are better, as ob-

served from Figs. 6, 7. There is continuity and the two

predicted skeletons are well synchronized. The agent’s pre-

dicted action or reaction at each time step also complies

with the actual interaction.

It is also observed that the number of actual salient regions

may change at each time step depending on the prediction

error (highlighted with markers in the joints of the skele-

tons). This change may occur quite randomly depending

on what the model has learned. Therefore, learning to pre-

dict the salient regions is a challenging task. However, our

model is able to predict them correctly most of the time

(ref. Tables 1, 2, and Fig. 5). Ideally, the joint trajecto-

ries that occur rarely are more difficult to learn, and hence

more salient. Thus, the actual salient regions for punching,

exchange objects, push, handshake and hug are mostly the

hands while for action kicking its the legs. In our case, as

the modeled agent can be the reacting or interacting agent,

the salient region distribution is similar but not exactly the

same as the ideal case.

We compute the average (over all the cases for an interac-

tion) of the percentage of number of salient joints chosen by

the model at each time step (ref. Table 3). On average, for

all the interactions, our approach considers less than 50%
of the joints in a skeleton as observation to the model. For

both datasets, the highest sparsity is for kicking, the low-

est is for punching and shaking hands for SBU Kinect and

K3HI datasets respectively. Selectively attending to fewer

joints makes our model more efficient without compromis-

ing its accuracy.

5. Conclusions

A multimodal predictive agent with perceptual and propri-

oceptive pathways is proposed. It completes the observed

pattern for perceptual and proprioceptive modalities after

each glimpse. The perceptual prediction error provides the

observation for the proprioceptive modality. Experimental

results using our agent for two-person interaction forecast-

ing are comparable to non-attentional models even though

our agent’s observations have higher than 50% sparsity. The

agent model is learned end-to-end in an unsupervised man-

ner, without any reinforcement signal or utilities/values of

states. This is the first work on an attention-based agent that

actively samples its environment guided by prediction error

and generates realistic 3D human skeleton interactions.



(a) Actual

(b) Predicted (30% ground truth given)

(c) Predicted (50% ground truth given)

(d) Predicted (70% ground truth given)

Figure 6: The top row represents true skeletal data for the prediction at alternate time steps for SBU Kinect Intersection data

for exchanging object. Each skeleton in rows 2, 3 and 4 shows one step ahead prediction until 30%, 50% and 70% of the

ground truth is given (highlighted by the grey line) respectively. Beyond that, the model uses its own prediction as input for

completing the patterns until the final time step is reached. The salient joints are marked red.

(a) Actual

(b) Predicted (30% ground truth given)

(c) Predicted (50% ground truth given)

(d) Predicted (70% ground truth given)

Figure 7: The top row represents true skeletal data for the prediction at every third instant for K3HI Intersection data for

shaking hands. Each skeleton in rows 2, 3 and 4 shows one step ahead prediction until 30%, 50% and 70% of the ground truth

is given (highlighted by the grey line) respectively. Beyond that, the model uses its own prediction as input for completing

the patterns until the final time step is reached. The salient joints are marked red.
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