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Abstract

Deep archetypal analysis (DAA) has recently been pro-

posed as an unsupervised approach for discovering latent

structures in data. However, while a few approaches have

used classical archetypal analysis (AA), DAA has not been

incorporated in medical image analysis as yet. The pur-

pose of this study is to develop a precognition framework to

identify preclinical signs of glaucomatous vision loss using

convex representations derived from DAA. We first develop

an AA structure and a novel DAA framework to recognize

hidden patterns of visual functional loss, and then project

visual field data over the identified patterns to obtain a rep-

resentation for glaucoma precognition several years prior

to disease onset. We then develop a glaucoma classifica-

tion framework using class-balanced bagging with neural

networks to address the class imbalance problem. In con-

trast to other classification approaches, DAA, applied to a

unique prospective longitudinal dataset with approximately

eight years of visual field tests from normal eyes that devel-

oped glaucoma, has allowed visualization of the early signs

of glaucoma and development of a construct for glaucoma

precognition. Our findings suggest that our proposed glau-

coma precognition approach could significantly advance

state-of-the-art glaucoma prediction.

1. Introduction

Dictionary learning approaches can discover latent struc-

tures in data in an unsupervised manner. Archetypal

analysis (AA) and its several variations have been long

used in different applications including dictionary learn-

ing [2, 3, 10, 25]. Recently, deep archetypal analysis (DAA)

has been proposed to address several limitations of the

AA [16, 26, 27]. Deep AA could learn relevant transfor-

mations and incorporate appropriate information into the

learning process thus providing an effective representation

in most applications. Such models may aid uncovering hid-

den visual functional patterns of vision loss that may lead

to glaucoma.

Glaucoma is the second leading causes of blindness

worldwide [21]. Risk factors for glaucoma include ad-

vanced age, African American ethnicity, elevated intraocu-

lar pressure (IOP), and thinner central corneal thickness [13,

22]. A key issue is that glaucoma is typically asymptomatic,

particularly at the early stages of the disease, thus most sub-

jects with glaucoma are often unaware of the disease until

visual functional loss becomes significant [29]. These is-

sues underlie the challenges inherent in attempts to forecast

glaucoma and likewise, highlight the potential clinical im-

portance and economic impact of developing new methods

for early prediction of glaucoma.

Currently, glaucoma-induced visual field loss is mainly

assessed using well-established standard automated perime-

try (SAP) [15]. The Humphrey 30-2 (30 ◦ field with 2 dB

resolution in brightness) testing system generates a map of

74 (after excluding two test locations corresponding to blind

spot) local retinal sensitivities to the light. A visual field

map is typically used by clinicians to subjectively determine

the severity of glaucoma-induced functional loss and thus,

is accepted as an important component of glaucoma assess-

ment. Nonetheless, this process is highly subjective and

prone to inter- and intra-observer variability. Another chal-
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Figure 1. Three certified visual field readers identified 18 patterns

of visual field loss (in total deviation format) from the OHTS par-

ticipants who developed glaucoma in 2003 [17].

Figure 2. Sample patterns of visual field loss identified by GMM-

EM [30] (visualized in total deviation format).

lenge is that visual fields are highly variable (noisy) partic-

ularly as the visual field of the patient deteriorates [14, 20].

To the best of our knowledge, there has been no pub-

lished study that has attempted to visualize preclinical signs

of visual functional loss in patients with glaucoma. For our

study, we first developed a DAA framework to generate a

convex representation of visual fields and then identified

hidden patterns of visual field loss. We visualized DAA-

identified patterns of visual field loss. Our results suggest

that the identified patterns of visual field loss we identi-

fied, represent preclinical signs of glaucoma that may be

unknown to glaucoma specialists.We then developed a glau-

coma precognition construct using DAA framework.

Several studies have attempted to identify patterns of vi-

sual field loss in patients with existing glaucoma. For in-

stance, in 2003, three visual field readers and glaucoma ex-

perts of a very well-known glaucoma clinical trial, called

the ocular hypertension treatment study (OHTS), manually

identified 18 prevalent patterns of visual field loss in pa-

tients who had developed glaucoma [17] (Fig. 1). Others

have used Gaussian Mixture Model Expectation Maximiza-

tion (GMM-EM) to automatically identify patterns of vi-

sual field loss in patients with existing glaucoma and have

used these patterns for further glaucoma monitoring [30]

(Fig. 2). Other studies have used classical AA to identify

patterns of visual field loss of patients with glaucoma [11]

and then used those patterns to detect glaucoma progres-

sion[28]. However, the OHTS study was manual and sub-

jective thus prone to human observer selection bias. There

is no report of pattern assessment methods that rely on

GMM-EM or classical AA to be applied on visual fields of

suspected glaucoma (elevated IOP but normal visual field

based on current clinical guidelines). To date, pattern as-

sessment has only been applied to visual fields of normal or

confirmed glaucoma patients. While some previous studies

have used patterns of visual field loss for detecting progres-

sion in glaucoma [17, 23, 30], to our knowledge, our stud-

ies are the first to propose a glaucoma precognition con-

struct based on unsupervised DAA and supervised neural

network.

The main contributions of this paper are: (1) We recog-

nize preclinical signs of glaucoma using DAA and visual-

ize those patterns. (2) We develop a class-balanced neural

network to address imbalanced samples in positive and neg-

ative groups. (3) We propose incorporating DAA in class-

balanced neural network to develop a construct for glau-

coma precognition.

2. Medical Background

Several deep learning approaches have been successfully

applied in ophthalmology including glaucoma [1, 4, 8, 18].

However, most of deep learning models in glaucoma have

been centered on diagnosis. Since glaucoma diagnosis re-

quires only cross-sectional data, it is easier to access. More-

over, models typically perform better for diagnosis because

disease signs are already present and identifiable by human

experts; thus, making the signs easier to identify by ma-

chine. However, precognition of the disease from baseline

parameters is more challenging. Access to prospective and

longitudinal data prior and after disease onset is not triv-

ial and identifying preclinical signs of the disease, which

are hidden to human expert, is significantly more involved.

Hence, there are no reports of deep learning models that can

forecast glaucoma.

However, a few studies have attempted to predict glau-

coma prior to disease onset using conventional statistical

or classical machine learning approaches [5, 22, 24]. Such

studies generally rely on conventional statistical analysis,

and typically make strong assumptions on conditions, in or-



Figure 3. Visual fields and their labels. Out of 6,544 visual fields

that were collected from the baseline visit of the ocular hyperten-

sion treatment study (OHTS) participants, 5,820 corresponded to

eyes that eventually developed glaucoma after approximately six

years and 724 visual fields corresponded to eyes that remained nor-

mal. The hypothesis was that the proposed precognition construct

can identify hidden patterns of visual functional loss in eyes that

eventually developed glaucoma.

der to determine risk factors that may lead to disease on-

set. For instance, a conventional cox hazard model was

applied to structural features such as optic nerve head to-

pography and retinal nerve fiber layer thickness to predict

glaucoma [24]. Another study used multivariate cox haz-

ard models to identify structural and functional risk fac-

tors for glaucoma [10]. However, the identified risk factors

through statistical analysis were found to be too imprecise

for prediction of glaucoma in advance of disease onset. To

address this challenge, a classical machine learning model

using relevance vector machines (RVM) was developed to

predict glaucoma from a set of structural and functional fea-

tures [5]. However, in this study, only raw visual fields were

used as input features to the RVM classifier, while more

clinically relevant representations could have improved rec-

ognizing subtle (preclinical) signs of the disease. Moreover,

the sample sizes of all the aforementioned studies are rela-

tively small, limiting the ability to generalize findings. In

this study we use a large-scale prospective dataset and ap-

ply DAA to obtain clinically relevant patterns of visual field

loss. We show that these patterns can serve as preclinical

signs of glaucoma, which are specific and sensitive in fore-

casting glaucoma onset.

3. Dataset

The Ocular Hypertension Treatment Study (OHTS) was

conducted across 22 centers in the US. The study investi-

gated the role of lowering IOP in preventing or delaying

the onset of visual field loss in patients at moderate risk of

developing glaucoma in the future [13]. The OHTS was a

retrospective study in which all risk factors and data were

collected at the baseline (when all subjects were normal,

based on clinical guidelines) and afterwards for approxi-

mately eight years routinely. Therefore, the OHTS dataset

allows testing hypotheses on factors, and hidden patterns of

visual field loss, that may lead to glaucoma. Our study was

conducted according to the tenets of Helsinki Declaration

and we received relevant institutional review board (IRB)

and appropriately signed data use agreements.

For each subject, two or three visual field tests (collected

by Humphrey; Carl Zeiss Meditec, Dublin, California) full

threshold (SITA Standard; 30-2 procedure). A total of 7,248

visual fields collected from the baseline visit of 3,272 eyes

(1,636 subjects) with elevated IOP but normal appearing op-

tic disc and normal visual field at the baseline (when partic-

ipants entered the study). Visual field and optic disc eval-

uations are typically performed by clinicians for glaucoma

assessment. Visual field and clinical parameters were col-

lected twice annually for over six years. Eventually, 359

eyes from 279 participants developed glaucoma based on

either visual field or optic disc assessments (Fig. 3). More

specifically, two OHTS certified readers carefully had ex-

amined follow up visual fields and when they had identi-

fied obvious visual field abnormality, they had recalled sub-

ject for re-testing to confirm abnormality, which was further

confirmed by an independent endpoint committee [13].

We labeled 5,820 visual fields that corresponded to eyes

that did not develop glaucoma as negative examples and 724

visual fields that corresponded to eyes that eventually devel-

oped glaucoma as positive examples (Fig. 3). We then hy-

pothesized that there may be hidden visual functional defect

patterns in the visual fields of those eyes that eventually de-

veloped glaucoma that either were missed by, or unknown

to clinicians. Our aim was thus 1) to identify and visual-

ize those subtle visual field defect patterns and 2) develop

a construct to forecast glaucoma from visual fields several

years prior to disease onset.

4. Deep Archetypal Analysis (DAA)

Archetypal analysis and DAA were introduced for dis-

covering latent factors from high-dimensional data by per-

forming matrix factorization. Archetypal analysis [10] is

a matrix factorization where a matrix, X(IRd×n), whose

columns represent d-dimensional data points, is decom-

posed as X = DA. Matrix D (IRd×k) contains k archetypes

lying on convex hull (external points) of the data, and A

(IRk×n) is a convex representation matrix, which implies

that data points can be represented as a convex combina-

tion of archetypes, and archetypes can also be represented

as a convex combination of the individual data points, that

is D = XB, where B (IRn×k) is a convex representation

matrix. Archetypes present a convenient way for captur-

ing extremal properties of the input data points. Incorporat-

ing appropriate optimization frameworks, one could iden-

tify archetypes D from the input data points X [9]:

argmin
B,A

||X − DA||2F = argmin
B,A

||X − XBA||2F

bj ∈ ∆n, ai ∈ ∆k bj ∈ ∆n, ai ∈ ∆k

∆n , [bj ≥ 0, ||bj ||1 = 1], ∆k , [ai ≥ 0, ||ai||1 = 1](1)



where ai and bj represent columns of A (IRk×n) and

B (IRn×k), respectively. The block-coordinate descent

method [9] can be employed to solve this non-convex op-

timization problem. Although AA may effectively model

the convex hull of data, AA is prone to outlier samples

(as an external point). It also limited in modeling either

the average or local characteristics of data. The motiva-

tion of deep archetypal analysis was to address these limi-

tations [16, 26, 27].

Deep AA basically performs multiple AA-based factor-

izations on the input matrix and its subsequent factors. At

the first layer of DAA, the input matrix X is decomposed

into an archetypal dictionary D1 and convex-sparse repre-

sentation matrix A1 similar to AA process using equation

1. A1 is then serve as input to the second layer and is again

factorized using AA leading to dictionary D2 and convex-

sparse representations A2. Thus, X ≈ D1A1 ≈ D1D2A2 =
DL2A2, where DL2 represents DAA dictionary obtained at

the second layer of DAA framework. A user-defined depth

of factorization can stop this process. Therefore, DAA de-

composes X into L + 1 factors with L representing the num-

ber of layers: X ≈ D1D2D3 . . .DLAL. The factorization at

different layers of DAA framework can be represented as:

X ≈ D1A1 = XB1A1

A1 ≈= A1B2A2

A2 ≈= A2B3A3

...

AL−1 ≈= AL−1BLAL

AL ≈= ALBL+1AL+1

Deep archetypes model both local (by archetypes that lie

on extremal points) and global (by archetypes lie on data

average) characteristics of the data. Dictionaries obtained

at deeper layers (L > 1) are convex combinations of the

archetypes obtained at the first layer [16]. Therefore, deeper

dictionaries atoms can lie on the boundary as well as inside

the convex hull. Therefore, DAA systematically captures

both local and global characteristics of data.

DAA is appropriate for visual field data analysis because

of two major reasons: 1) most of the clinically known glau-

comatous patterns of visual field loss are local and thus lie

on or near the boundary of the visual field data in the initial

76-d space. The convex hull modelling properties of DAA

can identify these local patterns, and hence, provides a con-

vex representation that is consistent with glaucoma clinical

knowledge, and 2) unlike many other dictionary learning

models, such as principal or independent component analy-

sis or singular value decomposition, DAA does not project

the data to any latent space and most archetypes are, in fact,

data points. Therefore, convex representations obtained by

DAA are interpretable and clinically explainable. We use

this property to visualize patterns of visual field loss.

5. Proposed Framework

In this section, we will discuss the proposed glaucoma

precognition framework. The framework has two compo-

nents: feature extraction using DAA and classification us-

ing class-balanced neural network as follows:

5.1. Feature Extraction Using DAA

We will compute the DAA dictionary (DLi), where Li

represents the dictionary obtained at ith layer of the DAA

framework. Each visual field example is represented as x.

Essentially, each atom of this dictionary represents a vertex

of a high-dimensional simplex. We will then project visual

fields on this simplex to obtain convex representations as:

argmin
y∈∆k

||x − DLiy||
2
F (2)

such that ∆k , [ai ≥ 0, ||ai||1 = 1]. Here y represents

corresponding convex representation of each visual field x

and k indicates the number of atoms in DLi. These con-

vex representations are sparse, and we will show that how

convex representations highlight the preclinical sigs of vi-

sual functional loss that may not be captured by clinicals

or clinical instruments. This is an unsupervised procedure

since no class-specific information was used to obtain DAA

dictionary through simplex projection.

5.2. Class­balanced Bagging for Classification

Similar to the general scenario of datasets in the real-

world healthcare settings, the dataset used in this study was

also imbalanced, due to the less number of eyes, that even-

tually developed glaucoma than the number of eyes that did

not develop the disease throughout the course of OHTS. It

is reported that class imbalance could generate bias towards

the class with greater number of samples in strong classi-

fiers such as support vector machines (SVM) and neural net-

works. We thus propose to use a bagging-based approach

where as each individual classifier, a feed-forward neural

network, was fed with class-balanced training examples, as

illustrated in Fig. 4.

In the training step, this approach divides the samples

of the negative class (those eyes that did not develop glau-

coma) into smaller non-overlapping subsets such that the

number of samples in each subset was almost equal to the

number of positive examples (eyes that eventually devel-

oped glaucoma). The samples of each subset are then used

as input to a neural network (multi-layer perceptron; all

with similar parameters) to learn the classification rule. This

framework is different from traditional bagging approach

where each sample has the same likelihood of being se-

lected for training in any of the classifiers. During testing,



Figure 4. Class-balanced bagging approach. Examples in negative

group are randomly divided to eight subsets and then each subset

along with positive examples are used to train eight classifiers.

each neural network is considered as an independent clas-

sifier, and final prediction is acquired via a majority voting

rule, applied over individual predictions.

5.3. Training and Testing Classifiers and Compari­
son

We use 10-fold stratified cross-validation and area un-

der the receiver operating characteristics (AUC) for com-

paring neural networks applied to raw visual fields, convex

representation through AA, convex representation through

DAA, relevance vector machine (RVM) applied on raw vi-

sual fields, and major glaucoma risk factors including IOP,

CCT, and age. As discussed in Section 2, the only machine

learning based method for glaucoma prediction, known to

the authors, was RVM [5], which was compared against the

proposed frameworks.

5.4. Parameter Setting and Performance Metric

All the parameters such as number of dictionary atoms

(archetypes), the number of layers in DAA, the number of

nodes and layers in neural network were selected such that

the model provides an optimal performance on the cross-

validation data. More specifically, we selected these param-

eters based on an extensive grid search to provide maximum

AUC and least missed detection rate. Each neural network

classifier included a single hidden layer composed of 200

neurons. We used the Adam optimizer with a fixed learning

rate of 0.0001 for training each neural network. For class-

balanced bagging, the negative class was divided into eight

subsets, and hence, the proposed framework was an ensem-

ble of eight different neural networks. Gaussian kernel with

a width of 0.9 was used in the baseline method for training

the RVM. Similar to DAA framework, we selected the RVM

parameters using a grid-search on the cross-validation data

to maximize AUC. We selected the same configuration for

neural networks in all experiments. The DAA, AA, multi-

layer perceptron, and AUC performance metrics were im-

plemented in Python using scikit-learn library, while RVM

was implemented in Matlab. All statistical analyses were

performed in R. We used the implementation of Chen et al.

for AA [9] and used the implementations in [16, 26, 27] for

DAA analysis.

5.5. Visualizing Preclinical Signs of Glaucoma

To visualize patterns of visual field loss obtained through

convex representation of DAA, we apply the identified

DAA coefficients on visual fields and subjectively evaluated

the identified patterns and excluded archetypes that have a

significant correlation with other archetypes. This process

is performed under the supervision of a glaucoma expert.

The selected patterns are visualized as preclinical signs of

glaucoma.

6. Results and Discussion

A total of 6,544 visual fields at the baseline visit of each

eye were reliable and normal (according to clinical guide-

lines), of which 724 visual fields labeled as positive and

5,820 visual fields labeled as negative (Fig. 3). The mean

age (standard deviation; SD) of subjects in the negative and

positive groups were 55.7 (9.6) and 58.8 (9.0) years, respec-

tively (P value < 0.001; based on generalized estimating

equation; GEE). Approximately 42% of subjects in the neg-

ative group were male while 56% of the subjects in the pos-

itive group were male (P value < 0.001) indicating more

males compare to females developed glaucoma. Mean IOP

of eyes in the negative and positive groups were 24.8 mmHg

(2.9) and 26.1 mmHg (3.3), respectively (P value < 0.001).

Mean CCT of eyes in the negative and positive groups were

574.7 mmHg (38.3) and 558.7 mmHg (39.0), respectively

(P value < 0.001). Older age, elevated IOP, and thinner

CCT are glaucoma risk factors. We identified that subjects

corresponding to positive samples (those that eventually de-

veloped glaucoma) had older age, higher IOP, and thinner

CCT, all statistically significantly different from negative

group. However, none of these risk factors performed better

than 0.53 (in terms of AUC) in predicting glaucoma, which

is analyzed by evaluating the performance of few significant

clinical parameters of positive and negative groups.

Visual field testing through standard automated perime-

try (SAP) remains a gold standard for glaucoma assessment.

Patterns of visual field loss play a major role in glaucoma

diagnosis, severity identification, and therapy adjustments

based on the type of visual functional defect [7]. However,

manual classification of glaucoma through visual fields is



Figure 5. Preclinical visual functional signs of glaucoma identified

by archetypal analysis (AA) of visual fields that were collected

from the Ocular Hypertension Treatment Study (OHTS) partici-

pants at the baseline visit.

labor intensive and requires significant clinical training yet

is highly subjective with limited agreement even among

glaucoma specialists [12,19]. Thus, automatically identify-

ing (early) patterns of visual field loss can impact glaucoma

management. Several researchers, us included, have used

unsupervised learning to discover (glaucomatous) patterns

of visual field loss [6, 11, 28, 30–32]. We have extensively

used Gaussian mixture modeling (GMM) to discover pat-

terns of visual field loss and to identify glaucoma progres-

sion along those GMM-identified patterns [6,30–32]. Other

teams have used classical AA for such goals [11, 28].

Fig. 5 shows 18 patterns of visual field loss identified by

Figure 6. Preclinical visual functional signs of glaucoma identi-

fied by deep archetypal analysis (DAA) of visual fields that were

collected from the Ocular Hypertension Treatment Study (OHTS)

participants at the baseline visit.

applying classical archetypal analysis (AA) on OHTS vi-

sual fields. These patterns were evaluated objectively (using

correlation) and subjectively by a glaucoma expert to iden-

tify the smallest subset of patterns that are clinically rele-

vant patterns. We identified 18 patterns; the top-left pattern

was identified as normal while other patterns were preclin-

ical signs of glaucoma. Fig. 6 represents 18 patterns of vi-

sual field loss identified by deep archetypal analysis (DAA).

These patterns were also evaluated subjectively by a glau-

coma expert. It is worth mentioning that manual assessment

of visual fields by three glaucoma experts also identified

18 prevalent yet mutually exclusive patterns of visual fields



Figure 7. ROC curves of neural networks (NN) applied on origi-

nal visual fields (VFs), convex representations of visual fields ob-

tained by AA and DAA, and relevance vector machine (RVM).

loss in patients with glaucoma [17]. Since glaucoma experts

had not identified any suspicious glaucomatous patterns of

visual field loss in their subjective evaluation of the baseline

visual fields (recall that all 6,544 visual fields at the base-

line were normal according to clinical guidelines; Fig. 3),

we suggest these DAA patterns of visual field loss are subtle

defect patterns that serve as novel signatures of developing

glaucoma in the future (Fig. 6). However, objective (based

on correlation) and subjective evaluations were performed

to select 18 mutually exclusive patterns shown in Fig. 6.

It is challenging to compare DAA- and AA-derived pat-

terns of visual field loss. Therefore, to further assess the

effectiveness of DAA objectively, we developed machine

learning classifiers to identify positive and negative samples

based on deep archetypes, classical archetypes, raw visual

fields, and clinical parameters. We used 128 DAA patterns

as input features to the classifier for predicting glaucoma

after performing an extensive grid search to identify maxi-

mum AUC. To provide a fair comparison, we used 128 clas-

sical AA patterns as was used in DAA assessment. Machine

learning analyses showed that DAA patterns were signifi-

cantly more effective in predicting glaucoma compared to

other approaches (Fig. 7, black curve with AUC of 0.71).

To avoid any bias due to multiple visual field tests from

same eyes of subjects, we accounted for correlation between

tests and eyes of same subjects using a nested structure in

generalized estimating equation (GEE) [33]. To account for

multiple VFs from same eyes in training and testing of ma-

chine learning models, we selected the training and testing

examples based on subjects rather than eyes or visual fields.

We compared the proposed framework compared against

RVM [5], classical AA approach, and raw VFs. The AUC

of model on DAA representation of visual fields was 0.71

while the AUC of model on classical AA representation of

visual fields and raw visual fields were 0.61 and 0.55, re-

spectively. The AUC of RVM [5] was 0.64. In fact, AUC of

DAA was significantly higher on both cross-validation and

held-out datasets (P value < 0.001). This highlights that the

deep convex representation, obtained by simplical projec-

tion, is more discriminative than the input raw visual fields

as well AA and classical RVM. The AUC of age, CCT, and

IOP in predicting glaucoma was 0.56, 0.52, and 0.51, re-

spectively. These findings suggest that none of the well-

known glaucoma risk factors could predict glaucoma well

ahead of time. We also investigated the role of two major

clinical instrument parameters including visual field mean

deviation (MD) and pattern standard deviation (PSD) in pre-

dicting glaucoma. The AUCs of MD and PSD were 0.50,

and 0.51, respectively (Fig. 8). Thus, our proposed glau-

coma precognition outperformed glaucoma risk factors and

visual field instrument parameters in predicting glaucoma

as well (Fig. 8).

The AUC value of 0.71 seems to be low compared to

several approaches for identifying glaucoma with higher ac-

curacy. While from a statistical perspective this may seem

a valid argument, from clinical perspective, the story is dif-

ferent. Glaucoma precognition from baseline visual fields

approximately five years prior to disease onset is a chal-

lenging task. In fact, relatively, glaucoma diagnosis is the

easiest task since clinicians already have observed clinical

signs of the disease, however, in prediction there is no clin-

ical sign and one would need to identify hidden pre-clinical

patterns of the disease.

This study was conducted on visual field tests with

Humphrey 30-2 pattern. Other studies using visual fields

with Humphrey 24-2 or central 10-2 patterns may shed light

on the effectiveness of DAA in predicting glaucoma using

other visual field test patterns. Nevertheless, visual field

testing is subjective, time-consuming and contains a signif-

icant degree of variability. Therefore, future studies could

investigate the role of structural data such as fundus pho-

tographs or optical coherence tomography (OCT) data in

predicting glaucoma prior to disease onset.

7. Conclusion

In this work, a framework was developed and imple-

mented using deep archetypal analysis, to effectively pre-

dict glaucoma, several years prior to disease onset. The ap-

proach obtains unsupervised convex representations of vi-

sual fields, using simplex projections. It is shown that these

convex representations are clinically meaningful and more

discriminative than raw visual fields or other classical ap-

proach for visual field analysis. To overcome the class-

imbalance issue, an effective class-imbalance bagging ap-

proach has been applied. As a proof of concept, the OHTS

glaucoma clinical trial dataset was used to assess the ef-

fectiveness of approach for early glaucoma prediction. Ex-

perimental results indicate that a system of deep archetypal



Figure 8. ROC curves of various clinical parameters (MD, PSD,

Age, CCT, and IOP).

representation, integrated with class-balanced bagging pro-

vides improved predictions of glaucoma development from

baseline measurements several years prior to disease devel-

opment. Future work with independent datasets may be re-

quired to verify the findings of this study.
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