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Abstract

We introduce the task of multi-camera trajectory fore-
casting (MCTF), where the future trajectory of an object
is predicted in a network of cameras. Prior works con-
sider forecasting trajectories in a single camera view. Our
work is the first to consider the challenging scenario of
forecasting across multiple non-overlapping camera views.
This has wide applicability in tasks such as re-identification
and multi-target multi-camera tracking. To facilitate re-
search in this new area, we release the Warwick-NTU
Multi-camera Forecasting Database (WNMF), a unique
dataset of multi-camera pedestrian trajectories from a net-
work of 15 synchronized cameras. To accurately label
this large dataset (600 hours of video footage), we also
develop a semi-automated annotation method. An ef-
fective MCTF model should proactively anticipate where
and when a person will re-appear in the camera net-
work. In this paper, we consider the task of predicting
the next camera a pedestrian will re-appear after leav-
ing the view of another camera, and present several base-
line approaches for this. The labeled database is avail-
able online: https://github.com/olly—styles/
Multi-Camera-Trajectory—-Forecasting.

1. Introduction

Predicting the future trajectory of objects in videos is
a challenging problem with multiple application domains
such as intelligent surveillance [ 13], person re-identification
(RE-ID) [12], and traffic monitoring [4]. Existing works
on this topic focus on only the single-camera scenario, that
is, predicting the future trajectory of an object in the same
camera in which the object is observed [1, 2, 10, 5, 11].
A critical drawback of such single-camera settings is that
models cannot anticipate when new objects will enter the
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Figure 1. Multi-camera trajectory forecasting (MCTF). We
introduce a novel formulation of the trajectory forecasting task
which utilizes multiple camera views.

scene. A network of multiple cameras can be used to over-
come this issue. To this end, we introduce the task of multi-
camera trajectory forecasting (MCTF): Given the informa-
tion about an object’s location in a single camera, we want
to predict its future location across the camera network, in
other camera views. In particular, we want to identify the
camera in which the object appears next. Fig. 1 presents an
overview of the MCTF task.

Tracking objects (pedestrians) across a large camera net-
work requires simultaneously running state-of-the-art algo-
rithms for object detection, tracking, and RE-ID. Simulta-
neously running these algorithms can be excessively com-
putationally demanding. Processing videos at a lower im-
age resolution or frame-rate may reduce the computational
demands, but this often results in missed detections. A suc-
cessful MCTF model can address this issue by preempting
the location of an object-of-interest in a distributed camera
network, thereby enabling the system to monitor only se-
lected cameras intelligently. We envision an MCTF model
to be an additional component of a full multi-camera moni-
toring system, complementing the existing methods for de-



Footage from | Detection & _| Flag tracklet enfrances .| Flag cross-camera

camera 1 v tracking »| (Ef)and departures (Df) matches where:
Footage from _| Detection & _ Flag tracklet entrances o| ((R(E,) - R(Dc))2< &)

> ; > s 3 >
camera 2 tracking (E5) and departures (D5) n 'l Y EmUE] v e
: : . (te=tp < ¥)

Footage from Detection & Flag tracklet entrances N A

camera C »1 tracking »| (EL)and departures (DE) v (cg # ¢p)

[ Step (i) ° o— Step (i) —e  e— Step (jiii)) —e

Figure 3. Annotation method. The proposed method generates the labeled data required for MCTF with minimal human labor by using

automated methods for detection, tracking, and person RE-ID before a final manual verification step.
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Figure 2. Example frames and camera network topology. Faces
have been pixelated for privacy reasons.

tection, tracking, and RE-ID.

Trajectory information has been used previously in
multi-camera settings for tasks such as person RE-ID [12]
and vehicle tracking [4]. These methods, however, are reac-
tive to observations as they consider trajectory information
to assist RE-ID or tracking only when an object has been
observed in at least two cameras. In contrast, our proposed
task of MCTF is proactive - involving predicting the fu-
ture location of an object even before it enters the camera
view. The predicted location may then serve as a prior for
the object detection algorithm, reducing the search space
for detection. Owing to the wide body of complementary
literature on pedestrian detection [15] and RE-ID [16], we
focus on pedestrians for our MCTF task. Nevertheless, the
task can be easily generalized to any moving object. To
facilitate research in the newly formulated MCTF task, we
collected a large dataset over 20 days using a network of
15 cameras. We present a semi-automated data annotation
method that allows us to gather labels suitable for MCTF
using minimal human supervision.

2. Data collection

Existing datasets commonly used for trajectory forecast-
ing, such as ETH [8] and UCY [6], consist of just a single
camera view and are therefore unsuitable for MCTF. Other

datasets, such as Duke-MTMC [9], are no longer publicly
available. Due to the lack of datasets suitable for MCTEF,
we collect a new database of 600 hours of video footage
from 15 overhead mounted cameras set up indoors on the
Nanyang Technological University campus. Each camera is
placed with a view of either a corridor or a junction. The
footage is recorded for 20 days in 20-minute long segments
collected evenly during the daytime. Example frames and
the camera network topology is shown in Fig. 2. We de-
scribe our semi-automated data labeling method below.

Data annotation. Fully-manual annotation of data for
MCTF would be prohibitively time-consuming as trajecto-
ries must first be labeled in single-camera views and then
associated across cameras. To minimize the need for man-
ual annotation, we propose a semi-automated method that
uses a combination of off-the-shelf models for detection,
tracking, and person RE-ID. These results are then man-
ually verified to ensure that proposed tracks are accurate
and correct cross-camera correspondences for pedestrians
are found. An overview of this annotation method is shown
in Fig. 3, which consists of the following three steps:

(i) We run pre-trained object detection [3] and tracking
[14] models to locate and track pedestrians in each of the
C' cameras. The first 20 frames of a track form an entrance

tracklet, B! = {el,---,e!T20}, where ¢! is the frame at
timestep ¢ in camera c. Similarly, the last 20 frames of a
track form a departure tracklet D% = {d%2° ... d’}. For

departure tracklets, we assume that individuals are visible
only in a single camera view. We define the camera num-
bers of entrance and departure tracklets as cg and cp, re-
spectively. We also define the first timestep of the entrance
and departure tracklets as tg and ¢ p, respectively.

(i) We find cross-camera identity matches between all
the departure and entrance tracklets. We use a person RE-
ID model [7] to compute RE-ID features for each image and
store the mean feature vector for the tracklet. We then com-
pute the visual similarity between the entrance and depar-
ture tracklets that appear in different cameras (i.e. cg # ¢p)
by computing the squared difference in their RE-ID fea-



Table 1. WNMF dataset statistics.

Hours of footage 600
Number of cameras 15
Collection period 20 days
Time period 8:30am — 7:30pm
Video Resolution 1920 x 1080
Frames per second 5
Cross-camera matches 13.2K
Cross-camera matches after verification 23K
Mean cross-camera RE-IDs per track 2.08

tures, (R(EY) — R(D!))?, for all entrance and departure
tracklets found in step (i), where R(x) denotes the RE-
ID feature vector of tracklet x. We retain those with a
squared difference below a manually specified threshold,
0 = 0.0015. This threshold is set deliberately high as we
wish to have high recall of cross-camera matches. We are
less concerned about precision, as false-positives are dis-
carded during step (iii). In addition, we constrain candidate
tracklets within a manually specified time-window ~ to cut
down the search space of possible matches, i.e., we com-
pare only those tracklets which satisfy tp —tp < v. As
we set v = 12 seconds, the matches are generally from
neighboring cameras in the network. We confirmed this by
comparing the camera transitions with respect to the net-
work topology in Fig. 3. Our annotation method results in
a set of cross-camera transitions 7" = {(E?, D!)}.

(iii) Finally, we manually verify whether every match
proposed by the algorithm is a true positive. The manual
verification step assures annotation quality, as false matches
and bad detections are discarded (Table 1 shows 11K such
bad matches were discarded).

As the human annotator only has to verify the cross-
camera matches rather than finding them from raw videos,
the manual overhead is considerably lower than fully man-
ual data annotation. Our annotation method produces a
large set (2.3K) of verified departure-entrance pairs.

Data release. The WNMEF database is annotated using the
aforementioned method and is available online for the re-
search community. We provide tracking data, pre-computed
RE-ID features, full multi-camera trajectories, as well as the
baseline methods described in the following section. Unfor-
tunately, we are not able to release the videos used to create
this dataset due to privacy limitations.

3. Next camera prediction

We evaluate the problem of predicting the next camera
that a target person will re-appear, which we treat as a clas-
sification problem. The input is the past trajectory in a sin-
gle camera view, and the output is a ranking that represents
the next camera in the network that this person is most likely
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Figure 3. Transition frequency between cameras in the WNMF
database.

to re-appear. In this work, we focus on this next-camera
prediction problem only. However, as full trajectory infor-
mation is available in WNMEF, it may also be used for more
fine-grained MCTF in future works.

Existing trajectory forecasting methods such as Social-
LSTM [1], Social-GAN [2], and SoPhie [10] are designed
for single-camera forecasting. These methods do not fore-
cast across multiple cameras; hence direct comparison be-
tween these methods for MCTF is not possible. For a fair
comparison, we instead create the following baselines:

Shortest real-world distance. We use the physical distance
between cameras in the real world, and predict the camera
closest to the current camera.

Most frequent transition. Using the transition frequency
matrix computed earlier (Fig. 3), we predict the next camera
as the most frequent next camera of observation from its
corresponding position.

Most similar trajectory. We find the most similar trajec-
tory in the training set to the observed trajectory, and predict
the next camera to be the same as for the closest trajectory.

Hand-crafted features. Our hand-crafted feature vector
contains velocity in z and y direction, acceleration in x and
y direction, last observed bounding box height and width,
and its four coordinates. We compute all features with re-
spect to the 2D coordinate system as captured by the cam-
era. The 10-dimensional features are classified using a sin-
gle fully-connected layer.

In addition, we implement 3 purely learned approaches
using the normalized bounding box coordinates as inputs.
Each camera uses a separate classification network.

Fully connected network. A two-layer fully connected
network with 128 hidden units in each layer.

Long short-term memory (LSTM). A standard LSTM
with 128 hidden units.

Gated recurrent unit (GRU). A standard GRU with 128
hidden units.



Table 2. Camera classification. Given observations from one
camera, the next camera of re-appearance is predicted.

Accuracy (%)
Model Top 1 Top 3
Shortest real-world distance 46.8 92.2
Most frequent transition 65.7 91.8
Most similar trajectory 69.7 94.5
Hand-crafted features 70.7 94.1
Fully-connected network 73.4 95.1
LSTM 74.4 94.2
GRU 75.1 94.9

4. Performance evaluation

We compute the top 1 and top 3 classification accuracy
of each method introduced in Section 3.

Experimental setup. We evaluate each model using 5-
fold cross-validation using a challenging inter-day valida-
tion setup. Footage is recorded on different days in the val-
idation and test sets than in the training set. In each fold,
we select 10 days for training, and the remaining 5 days are
split into equally sized validation and testing sets. Our neu-
ral network-based methods are each trained for 10 epochs
using a batch size of 16, a learning rate of 1 x 1072, and a
dropout probability of 20% between fully-connected layers.
Discussion. Table 2 shows next camera prediction results.
Predicting the correct camera in the top 3 is a straightfor-
ward problem in our dataset, given the structured camera
setup and junctions with at most 3 exits. Predicting the
most frequent transition using the transition matrix from the
training data (Fig. 3) attains modest performance, although
learned methods perform better, particularly in terms of top-
1 accuracy. We suspect this is due to the past trajectory in-
formation in one camera view being informative of the per-
son’s future trajectory in a way that is not captured by other
baselines. We observe moderate improvement in using re-
current models over a fully-connected network in terms of
top-1 accuracy but no improvement in top-3 accuracy.

5. Conclusion

We have introduced a new task of human trajectory fore-
casting in a multi-camera scenario, which we call multi-
camera trajectory forecasting (MCTF). To facilitate further
research on MCTF, we presented a large dataset, WNMEF,
which was labeled using a semi-automated data annotation
method we developed. Additionally, we presented several
baseline results for predicting the next camera in which a
target person re-reappears within a network. We believe our
database and the preliminary results will facilitate and en-
courage research on this challenging problem.
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