
Real-time Tracking with Stabilized Frame

Zixuan Wang1 Zhicheng Zhao1,2 Fei Su1,2

1School of Artificial Intelligence
2Beijing Key Laboratory of Network System and Network Culture

Beijing University of Posts and Telecommunications, Beijing, China

princexuan@bupt.edu.cn,zhaozc@bupt.edu.cn,sufei@bupt.edu.cn
∗

Abstract

Deep learning methods have dramatically increased

tracking accuracy benefitting from exquisite features ex-

tractor. Among these methods, siamese-based tracker per-

forms well. However, in case of camera shaking, the ob-

jects are easily to be lost because of no consideration of

camera judder, and the position of each pixel changes dras-

tically between frames. In particular, the tracking perfor-

mance would degrade dramatically in case that the target

is small and moving fast, such as UAV tracking. In this

paper, the S-Siam framework is proposed to deal with this

problem and improves the performance of real-time track-

ing. Through stabilizing each frame by estimating where

the object is going to move, the camera is adjusted adap-

tively to keep the object in its original position. Experi-

mental results on the VOT2018 dataset show that the pro-

posed method obtained an EAO score 0.449, and achieved

10% robustness improvement compared with existing three

trackers, i.e., SiamFC, SiamMask and SiamRPN++, which

demonstrates the effectiveness of the proposed algorithm.

1. Introduction

Real-time visual object tracking requires learning a ro-

bust end-to-end trainable model online during the inference

stage [2]. A good tracker needs to exceed the real-time

processing level while ensuring accuracy and robustness.

Benefit from the booming deep learning technology and

increasing maturity of efficient object detection algorithm,

real-time object tracking is moving towards to the real ap-

plication level. For those areas where objects information

needs to be inferred, such as automatic driving, unmanned

aerial vehicle and intelligent robot, tracking is a fundamen-

tal computer vision task and has been receiving rapidly ex-

panding attention lately [32]. However, there are complex

∗This work is supported by Chinese National Natural Science Founda-

tion (61532018, U1931202, 61471049).

and unexpected situations in real application scenarios. Fac-

ing with lens dislocation or motion blurring , even the state-

of-the-art tracker may not be able to make the correct infer-

ence, causing tracking failure. How to deal with this kind

of problems is a burning issue for further application.

Many benchmarks have been developed in the field of

tracking [22, 23, 5, 12, 14]. Among the most recognized

are object tracking benchmark (OTB50 [28] and OTB100

[29]), and visual object tracking challenges (VOT2016 [16],

VOT2018 [14], VOT2019 [15]). Both benchmarks contain

short sequences with different challenging situations (e.g.,

motion blur, size change, occlusion), and target-specific in-

formation is only available at the first frame during testing.

VOT datasets have the following criteria: accuracy, robust-

ness, and expected average overlap (EAO) rate. Accuracy is

the average overlap rate between the estimated and ground

truth bounding boxes when the target is successfully being

tracked of. Robustness measures the ratio between the num-

ber of times the tracker loses the target and the number of

resumed trackings. Expected average overlap is regarded as

the primary measurement in the VOT challenge[16].

Among the available tracking algorithms, template-

matching methods are the most popular ones due to their

excellent calculation efficiency and accuracy [1, 9, 18, 17].

They utilize a template of the target object and match it with

regions of the image in question. Siamese networks[13] are

introduced to generate feature space expression for templete

matching. The template usually corresponds to a patch in

the previous frame, and the goal is to find the best matching

area in the current frame.

Though the high accuracy of Siamese-based trackers ob-

tained, most of them ignore the issue of camera pose es-

timation. When tracking the target object in a new video

frame, they usually set a displacement penalty and scaling

factor under the template of the previous frame, which may

restrict the potential pattern of free movement of objects. In

some cases, the position of the object changes rapidly by

camera shaking, so that the tracker loses the object easily.

Furthermore, the performance would degrade dramatically

1

jitter

obscure

Figure 1. Failure cases on the VOT2018 dataset caused by the camara jitter and obscure. The yellow bounding box and the red mask show

the results of state-of-the-art tracker SiamMask. The green bounding box indicates the ground truth. The green imaginary line in the first

row points out the same horizontal position in each frame, yet there is a large fluctuation in the background. When tracking a similar

scenario in actual use, the performance of robustness maybe not to our satisfaction.

for scenes with a complex background and smaller object.

Because the characteristics of the object itself is difficult

to capture, and the extra displacement deviation caused by

the camera shake will cause serious interference to simi-

lar objects around. Some failure cases are shown in Fig. 1.

Even the state-of-the-art tracker like SiamMask [27] has not

solved this problem very well.

In this paper, we introduce an alternative S-Siam track-

ing architecture, which does not need to retrain the current

trackers but stabilizes the input frame. We take inspiration

from a video stabilization algorithm that has been success-

fully applied to recent video understanding mission. We

decouple the motion of the target object from the motion

through the transformation of the cross-domain coordinate

system. Before tracking, we analyze the inter-frame corre-

lation, infer adverse factors, such as shot jitter, and repair

the frame to improve the current input stability. The re-

stored frames simplify the tracking process. Experimental

results show that the original tracker could be improved by

adding the proposed module. In addition, our method only

increases the computation amount during the preprocessing

stage. Moreover, the method is relatively timesaving, and it

enables the tracker to maintain its speed beyond real time.

We perform comprehensive experiments on benchmarks to

verify the effectiveness and present state-of-the-art results.

2. Related Work

Several different approaches have been presented to

solve the visual tracking problem. Since our main contribu-

tion is to bulid shaking removal modules, we breifly review

the existing state-of-the-art methods for tracking, in addi-

tion to siamese network based methods. Moreover, we re-

view approaches which aim at video stabilization with com-

petitive performance.

2.1. Siamesebased trackers

Siamese-based trackers are one of the most important

methods in visual tracking owing to its impressive perfor-

mance and speed. The first tracker, named SiamFC [1], was

introduced by Bertinetto et al. in 2016. The Siamese net-

work is trained offline on a dataset for object detection. The

network inputs two images, one is an exemplar image z, and

the other one is the search image x. Then, a dense response

map is generated from the output of the network. SiamFC

learns and predicts the similarity between the regions in

x and the exemplar image z. By modifying the original

SiamFC with a region proposal network (RPN [7]), Li et

al. proposed SiamRPN [18] to estimate the target location

with the variable bounding boxes. Inspired by the concept

of anchor in object detection field, the output of SiamRPN

contains a set of anchor boxes with corresponding scores.

Since then, the ability of object tracking to capture seman-

tic information had greatly improved. SiamRPN++ [17],

which was inroduced by Li et al., used the deep network

ResNet-50 [10] as feature extractor and achieved a state-of-

the-art performance last year. Over roughly the same pe-

riod, SiamMask [27] was proposed which took the advan-

tage of instance object segmentation algorithm. A Siamese

net was trained to predict a set of masks and bounding boxes

on the target. The bounding boxes are estimated on the ba-

sis of the masks using rotated minimum bounding rectangle

at a speed of 55 fps. Chen et al. [4] used elliptic fitting

strategy to modify the rotated rectangle and improved the

performance of SiamMask.

Aiming to obtain a rich multi-template representation,

Axel et al. designed a dynamic target expression method

2

Motion
estimation

Transformed
storage

Raw image

Feature
Extractor

Feature
Extractor

17*17*256 Predict output

17*17
*(63*63)

17*17*1

mask

score
Inverse transform

Threshold
judge

&
Image

transform

Figure 2. End-to-end schematic of S-Siam including three modules. Frame stabalization module during the warming up stage (blue dotted

box), SiamMask module as the main tracker (red dotted box), coordinate restoration module in the end (orange dotted box). In the initial

stage, the offset obtained by motion estimation is firstly used to judge whether the steady-state operation is needed. If so, the image is

further transformed and sent into transformed storage. The images saved in the storage are coordinate transformed, and we feed them into

the network as input. In the output stage, we restore the original coordinate information by the inverse transformation property.

(THOR [24]) to model the change of object template. Wang

et al. [25] considered the interference of camera movement,

and separated camera motion and object motion to improve

the robustness of SiamMask, however, the improvement is

not evident. In [6], the architecture of cascade tracker was

proposed to solve the problem of background interference

and scale variation. [26] added attention module to fur-

ther boost the understanding of the target object. In ad-

dition, a number of recent studies [31, 20, 34] have pro-

posed improvement approaches from different perspectives.

Whereas, none of the above works effectively addressed

the effect of external factors, such as camera shake, on the

tracker effect. In Sec. 3, our proposed method based on

video image stabilization technology to improve the robust-

ness of the above algorithms will be described in detail.

2.2. Video stabilization

Video stabilization aims to enhance the quality of an in-

put video by removing undesired camera motion [21]. In

the process of panoramic video stitching of UAV, the video

stabilization algorithm is widely used. Video stabilization

system focuses on motion estimation based on video series,

which includes global and local motion estimation. The

first step is to find the optimal motion vector by motion eti-

mation. The second step aims to compensate the current

frame according to the motion vector and remove the jit-

ter by the motion compensation progress. The most popu-

lar solution is to estimate the camera’s motion by matching

the key point features between adjacent frames. Nghia [11]

used the OpenCV module to capture the information of inter

frame optical flow and adopted rigid Euclidean transform

to achieve efficient real-time online video stabilization. Liu

et al. presented a novel video stabilization method, which

models camera motion with a bundle of camera paths [19].

Their proposed model is based on a mesh-based, spatially

variant motion representation and an adaptive, space-time

path optimization. In [8], a grid-based tracking method is

designed for an improved robustness, which produces fea-

tures that are distributed evenly within and across multiple

views.

Recently, deep learning method-based algorithms have

paved a new path. [33] realized a combining end-to-end

training for feature detection, direction assignment and de-

scriptor generation. Xu et al. [30] introduced an adversarial

network to determine the stability of a video piece, which

was composed of a generative network with spatial trans-

former networks embedded in different layers and gener-

ated stable frame, by computing an appropriate affine trans-

formation. However, the above algorithms require substan-

tial computation and are difficult to migrate to real-time sce-

narios. Furthermore, it is not easy to perform algorithms

fusion in real-time tracking scenarios, because the infer-

ence of the tracker depends on prior knowledge of the input

frame.

3. Methodology

Trackers based on template matching have added penalty

terms of displacement and scaling factors to the inference

stage. Thus, when the camera angle has a brief shake or

rapid shift, the difference between adjacent frames may lead

to inference error. This phenomenon is common in the field

of tracking small targets such as UAVs. The essential rea-

son is that the homography matrix changes greatly between

adjacent frames. Therefore, by making affine transforma-

tion to adjacent frames, we eliminate possible camera jitter

3

Figure 3. Accumulated trajectories of the pixel deviation on x axis

direction and y axis direction (orange curves) and their smoothed

result (blue curves). The original trajectories show that the instan-

taneous deviation of the pixel fluctuates greatly, which correlates

with the video being shaky. The smoothed trajectories are obtained

by averaging the neighborhood original trajectories. In this paper,

the smoothing radiation distance of the previous frames is set to

30.

factors and achieve more robust tracking. In this paper, we

propose to combine video image stabilization with Siamese

network-based tracker. We refer to the work of Nghia Ho 1

and take SiamFC, SiamRPN++ and SiamMask as examples

to introduce the fusion algorithm (shown in Fig. 2).

3.1. SSiamstabilized tracking framework

Befor tracking, we evaluate the quality of adjacent

frames of the input video. The first step is to compute

transformation matrix. After comparing the performance of

five different keypoint generators (HARRIS, GFTT, MSER,

BRISK and ORB), we use ORB here to generate the set of

keypoints. As the frame changes, the new positions of those

keypoints are determined via the optical flow using Lucas-

Kanade method [3].

When the real-time video stream is fed into the system,

we first assign a cache to calculate the changes in the per-

spective within a certain range. Once the number of video

frames is greater than the cache, we simulate a queuing

model and update the cache information frame by frame.

Assume It contains a set of keypoints on frame t, and It+1

is the result corresponding to each keypoint between frame

t and t+ 1 by optical flow.

It = {(xt,1, yt,1), (xt,2, yt,2), ..., (xt,n, yt,n)} (1)

It+1 = {(xt+1,1, yt+1,1), (xt+1,2, yt+1,2), ..., (xt+1,n, yt+1,n)}
(2)

where It and It+1 are used to generate frame-to-frame

transformation using rigid Euclidean transform. We need

1https://adamspannbauer.github.io/python video stab/html

Figure 4. Computed dx (blue curve), dy (orange curve) and da

(green curve) for each frame in new trans. The results are used

to form a new transformation matrix and add to the original video

frame. For some abrupt points with drastic changes, the optical

flow calculation method may be caused by too much interference

from the scene background. If the calculated transformation ma-

trix is directly applied to the original video frame, there maybe

some mistake. We then smooth the affine matrix through maxi-

mum threshold policies.

Original Transformed

Figure 5. Comparison of the original input frame with the trans-

formed one after affine transformation. The black edges around

the right image are the shiftable spaces that we’ve set aside.

to compute the 2D transform matrix trans as T .

T =

[

a b c
d e f

]

(3)

where T is computed using the least variance method. Each

point (x, y) in It and the corrosponding (x′, y′) in It+1 must

satisfy the following equation:

[

a b c
d e f

]

x
y
1

 =

[

x′

y′

]

(4)

We define dx, dy, and da as the deviation of the x-axis di-

rection, y-axis direction, and clockwise offset angle respec-

tively. They can be expressed as dx = c, dy = f , and

da = arctan(d/a). We accumulate the information of each

frame and obtain the original trajectory (orange curve of

Fig. 3). Then, we smooth out the video jitter using mov-

ing average window and obtain the smoothed trajectory

4

Init Output

Figure 6. Tracking results of sequences soccer2, wiper, helicopter and blanket on the VOT2018. The original version SiamMask (yellow

box) loses the target, whereas the prediction of our proposed approach (blue box) exhibits an accurate IoU between the ground truth (green

box). The first column represents the initialization frame of the current video sequence. The four sequences shown in the figure all have the

situation of camera jitter and image obscure. The first row soccer2 is even more typical, in which the target object takes only a small part

of the image and there are a lot of similar jamming targets around. Debuffeting is especially important when dealing with such situation.

(blue curve of Fig. 3). We calculate the difference between

smoothed trajectory and trajectory, and set a threshold

that needs to be debuffeted by comparing the sum of square

distance with the x axis and y axis. Finally, we add this

difference with orignal trans to obtain the new trans cor-

responding to the current frame (shown in Fig. 4).

new trans = trans+(smoothed trajectory–trajectory)
(5)

For the elements dx, dy, da in new trans, we place

some constraints so that they would not deviate too much.

Borders are added to the original image when the image

changes. This addition is performed to avoid information

loss caused by excessive displacement (shown in Fig. 2).

Thus, we assume that the size of the added borders is N .

dxt, dyt, dat are the calculated results of the current frame;

dx′

t−1, dy′t−1, da′t−1 are the actual transform from the pre-

vious frame; and dx′

t, dy
′

t, da
′

t are the actual transform in

the current frame, which can be obtained by:

dx′

t =

(N + THx1) if |dxt| −N > THx1

THx2 if |dxt − dx′

t−1| > THx2

dxt otherwise
(6)

where THx1 and THx2 are two predefined thresholds.

THx1 limits the movement of the camera to keep the tar-

get in the image, and THx2 limits the range of the transfor-

mation. Similarly, we have THy1 and THy2. At the same

time, THa is used to keep the difference between angles in

control. We build the transformation matrix Mt of frame

t to obtain the stabilized frame s imgt. Fig. 5 shows the

changes for one frame of input.

Mt =

[

cos(d′at) sin(d′at) d′xt

− cos(d′at) cos(d′at) d′yt

]

(7)

s imgt = Mt ∗

x
y
1

 ∀(x, y) ∈ imgt (8)

where s imgt is the input of SiamMask, and its output is

Rec out. Since we have changed imgt into s imgt, the

output Rec out is in a transformed state. Therefore, it needs

to be changed back to the original state, Rec real, through

inverse property (operating by −Mt).

Rec real = −Mt ∗

x
y
1

 ∀(x, y) ∈ Rec out (9)

3.2. Implementation details

During tracking, we set the length of cache queue to

30 frames. As we said before, ORB is selected to be the

keypoint generator. For hyperparameters, we set N = 20,

THx1 = 60, THy1 = 30, THx2 = 20, THy2 = 10 and

THa = 0.3.

5

Benchmarks
VOT2019 VOT2018 VOT2016 Speed ↓

A R ↑ EAO ↑ A R ↑ EAO ↑ A R ↑ EAO ↑ (fps)

SiamFC 0.477 0.687 0.204 0.479 0.492 0.224 0.512 0.331 0.301 121

S SiamFC (Ours) 0.459 0.577 0.207 0.467 0.450 0.231 0.487 0.261 0.328 58

SiamRPN++ 0.595 0.467 0.290 0.600 0.234 0.415 0.643 0.200 0.461 34

S SiamRPN++ (Ours) 0.594 0.446 0.293 0.600 0.229 0.425 0.641 0.186 0.475 23

SiamMask E 0.646 0.497 0.303 0.649 0.267 0.432 0.669 0.233 0.450 55

S SiamMask E (Ours) 0.637 0.477 0.309 0.637 0.243 0.449 0.655 0.210 0.463 33

Table 1. Comparison with the original Siamese trackers on VOT2019, VOT2018, and VOT2016. Pretrained models are the same in each

pair provided by the authors. SiamMask E [4] represents the advanced SiamMask proposed by Chen et al.. In this paper, more accurate

tracking results are obtained by optimizing the fitting process of rotating rectangular frame, and we use it to represent the SiamMask.

Compared with the baseline model, all the performance of our trackers have been improved. As can be seen from the table, the major

improvement occurred in robustness. For image input with different resolutions, the speed index of our method will fluctuate slightly. The

final result is averaged over the entire test sequences.

Generators A R EAO Speed

GFTT 0.642 0.249 0.441 30

ORB 0.637 0.243 0.449 33

BRISK 0.625 0.283 0.390 38

MSER 0.635 0.245 0.444 34

HARRIS 0.636 0.270 0.412 39

Table 2. Comparing five different keypoint generators on

VOT2018 using SiamMask E (Subsection 3.1). According to

the primary measurement (EAO), we choose ORB for final use.

Threshold value A R EAO

THx1 (2THy1)

60 0.637 0.243 0.449

80 0.640 0.260 0.435

100 0.645 0.277 0.418

THx2 (2THy2)

20 0.637 0.243 0.449

40 0.639 0.251 0.436

80 0.630 0.272 0.402

THa

0.1 0.641 0.270 0.413

0.3 0.637 0.243 0.449

0.5 0.634 0.244 0.439

1.0 0.625 0.264 0.410

Table 3. Comparing the performance with different threshold val-

ues in Subsection 3.1 on VOT2018. The aspect ratio of the frame

is close to 2 to 1, thus we assume THx1 = 2THy1, THx2 =

2THy2.

4. Experimental Results

To verify the performance of our proposed method,

VOT2016, VOT2018, and VOT2019 datasets are used in

our experiments. To ensure fairness, we perform all experi-

ments on the same PC with an Intel i7-4790K CPU, 16GB

RAM, NVIDIA GTX 1080Ti GPU.

Sequence Stabilization Original S-Siam

soccer2 Yes 3 0

soccer1 Yes 4 3

wiper Yes 2 1

helicopter Yes 2 1

blanket Yes 2 1

rabbit Yes 2 3

girl No 4 4

book No 4 4

Table 4. The comparison results for robustness performance on

VOT2018. The first column is the name of the different test se-

quences. The second column represents whether or not to per-

form stabilization. The third column and the fourth column rep-

resent the times that target object is lost in the sequence. We use

SiamMask as the base model and the result is show in the third

column. Our S-Siam has a positive response effect to the sequence

with the problem of de-buffeting. It is worth noting that the second

half of the table shows some sequences that do not work. These se-

quences have some problems such as background confusion with

objects and occlusion with other objects, which need to be further

discussed in the future.

4.1. Hyperparameters selection of SSiam

The comparison results are shown in Table 2 and 3,

which are tested on the VOT2018 dataset solely. Table

2 gives the performance comparision of different keypoint

generators (GFTT, ORB, BRISK, MSER, HARRIS). ORB

is selected to be the keypoint generator in our S-Siam frame-

work. Table 3 shows the performance of different values of

THx1, THy1, THx2, THy2, THa. When selecting a vari-

able, other variables are controlled for fixing. The combi-

nation of 60, 30, 20, 10, and 0.3 obtains the best result, and

we use these parameters as the hyperparameters to test the

overall results.

6

4.2. Overall results

Table 1 presents the comparison results between

the state-of-the-art Siamese-based tracking algorithms

SiamFC, SiamPRN++ and SiamMask on the VOT2016,

VOT2018, and VOT2019 datasets. For each group, the re-

sult of original version based on the dataset using the pre-

trained model exposed by the authors. The prefix “S ” rep-

resents trackers that use our S-Siam framework. We verify

on three benchmarks that all the original trackers improved

their robustness by an average of 10% and achieved a new

peak EAO score with the introduction of the S-Siam strat-

egy. Especially, our tracker S SiamMask E has obtained

a robustness of 0.243 and a competitive EAO score of 0.449

on the VOT2018 dataset. Due to the additional stabilization

processing of the overall process, the time performance is

reduced slightly. Table 4 shows the specific amount of lost

frame in different sequences on VOT 2018 dataset. The per-

formance of accuracy indicates that the possible misjudge-

ment of camera pose estimation results in a fluctuation. In

general, our algorithm can significantly improve the robust-

ness of the tracker with almost no loss of precision.

5. Conclusion

In this paper, we propose the S-Siam framework and in-

troduce it into the existing Siamese-based trackers. Consid-

ering the real-time requirement, we adopt an optical flow

matching de-buffeting strategy which directly acted on the

input video frame by calculating the affine matrix. After

estimating and smoothing the camera pose changing, our

method can eliminate the negative effects caused by cam-

era shaking or rapid displacement. We improve the perfor-

mance of rubustness by 10% on the VOT dataset and oper-

ate at over 30 FPS. It is obvious that using a more efficient

stabilization method can improve the tracking accuracy for

real-time trackers, which can be viewed as a focus of appli-

cation level considerations.

References

[1] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea

Vedaldi, and Philip HS Torr. Fully-convolutional siamese

networks for object tracking. In European conference on

computer vision, pages 850–865. Springer, 2016.

[2] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu

Timofte. Learning discriminative model prediction for track-

ing. In Proceedings of the IEEE International Conference on

Computer Vision, pages 6182–6191, 2019.

[3] Andrés Bruhn, Joachim Weickert, and Christoph Schnörr.

Lucas/kanade meets horn/schunck: Combining local and

global optic flow methods. International journal of computer

vision, 61(3):211–231, 2005.

[4] Bao Xin Chen and John K Tsotsos. Fast visual ob-

ject tracking with rotated bounding boxes. arXiv preprint

arXiv:1907.03892, 2019.

[5] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Si-

jia Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and Haibin

Ling. Lasot: A high-quality benchmark for large-scale sin-

gle object tracking. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5374–

5383, 2019.

[6] Heng Fan and Haibin Ling. Siamese cascaded region pro-

posal networks for real-time visual tracking. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 7952–7961, 2019.

[7] R Faster. Towards real-time object detection with region pro-

posal networks shaoqing ren [j]. Kaiming He, Ross Girshick,

and Jian Sun.

[8] Heng Guo, Shuaicheng Liu, Tong He, Shuyuan Zhu, Bing

Zeng, and Moncef Gabbouj. Joint video stitching and stabi-

lization from moving cameras. IEEE Transactions on Image

Processing, 25(11):5491–5503, 2016.

[9] Anfeng He, Chong Luo, Xinmei Tian, and Wenjun Zeng. A

twofold siamese network for real-time object tracking. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 4834–4843, 2018.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[11] Nghia Ho. Simple video stabilization using OpenCV, 2014.

[12] Lianghua Huang, Xin Zhao, and Kaiqi Huang. Got-10k: A

large high-diversity benchmark for generic object tracking in

the wild. arXiv preprint arXiv:1810.11981, 2018.

[13] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov.

Siamese neural networks for one-shot image recognition. In

ICML deep learning workshop, volume 2, 2015.

[14] Matej Kristan, Ales Leonardis, Jiri Matas, Michael Fels-

berg, Roman Pflugfelder, Luka Cehovin Zajc, Tomas Vojir,

Goutam Bhat, Alan Lukezic, Abdelrahman Eldesokey, et al.

The sixth visual object tracking vot2018 challenge results.

In Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 0–0, 2018.

[15] Matej Kristan, Ales Leonardis, Jiri Matas, Michael Fels-

berg, Roman Pflugfelder, Luka Cehovin Zajc, Tomas Vojir,

7

Goutam Bhat, Alan Lukezic, Abdelrahman Eldesokey, et al.

The seventh visual object tracking vot2019 challenge results.

In Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 0–0, 2019.

[16] Matej Kristan, Ales Leonardis, Jiri Matas, Michael Felsberg,

Roman Pflugfelder, Luka Cehovin Zajc, Tomas Vojir, Gus-

tav Hager, Alan Lukezic, Abdelrahman Eldesokey, et al. The

visual object tracking vot2017 challenge results. In Proceed-

ings of the IEEE International Conference on Computer Vi-

sion, pages 1949–1972, 2017.

[17] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing,

and Junjie Yan. Siamrpn++: Evolution of siamese visual

tracking with very deep networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 4282–4291, 2019.

[18] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu.

High performance visual tracking with siamese region pro-

posal network. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 8971–

8980, 2018.

[19] Shuaicheng Liu, Lu Yuan, Ping Tan, and Jian Sun. Bundled

camera paths for video stabilization. Acm Transactions on

Graphics, 32(4):1–10, 2013.

[20] Alan Lukežič, Jiřı́ Matas, and Matej Kristan. D3s–a dis-

criminative single shot segmentation tracker. arXiv preprint

arXiv:1911.08862, 2019.

[21] Sunil Sankol S M, Praveenkumar B S, and Vanishree K Rao.

Real time video stabilization using plk tracking algorithm.

International Journal of Science and Research (IJSR), 2017.

[22] Matthias Mueller, Neil Smith, and Bernard Ghanem. A

benchmark and simulator for uav tracking. In European con-

ference on computer vision, pages 445–461. Springer, 2016.

[23] Matthias Muller, Adel Bibi, Silvio Giancola, Salman Al-

subaihi, and Bernard Ghanem. Trackingnet: A large-scale

dataset and benchmark for object tracking in the wild. In

Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 300–317, 2018.

[24] Axel Sauer, Elie Aljalbout, and Sami Haddadin. Tracking

holistic object representations, 2019.

[25] Jianren Wang, Yihui He, Xiaobo Wang, Xinjia Yu, and Xia

Chen. Prediction-tracking-segmentation. arXiv preprint

arXiv:1904.03280, 2019.

[26] Qiang Wang, Zhu Teng, Junliang Xing, Jin Gao, Weiming

Hu, and Stephen Maybank. Learning attentions: residual at-

tentional siamese network for high performance online vi-

sual tracking. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 4854–4863,

2018.

[27] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and

Philip HS Torr. Fast online object tracking and segmentation:

A unifying approach. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1328–

1338, 2019.

[28] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Online object

tracking: A benchmark. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

2411–2418, 2013.

[29] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Object track-

ing benchmark. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 37(9):1834–1848, 2015.

[30] Sen-Zhe Xu, Jun Hu, Miao Wang, Tai-Jiang Mu, and Shi-

Min Hu. Deep video stabilization using adversarial net-

works. In Computer Graphics Forum, volume 37, pages

267–276. Wiley Online Library, 2018.

[31] Yinda Xu, Zeyu Wang, Zuoxin Li, Yuan Ye, and Gang

Yu. Siamfc++: Towards robust and accurate visual track-

ing with target estimation guidelines. arXiv preprint

arXiv:1911.06188, 2019.

[32] Hanxuan Yang, Ling Shao, Feng Zheng, Liang Wang, and

Zhan Song. Recent advances and trends in visual tracking:

A review. Neurocomputing, 74(18):3823–3831, 2011.

[33] Kwang Moo Yi, Eduard Trulls, Vincent Lepetit, and Pascal

Fua. Lift: Learned invariant feature transform. In European

Conference on Computer Vision, pages 467–483. Springer,

2016.

[34] Lichao Zhang, Abel Gonzalez-Garcia, Joost van de Weijer,

Martin Danelljan, and Fahad Shahbaz Khan. Learning the

model update for siamese trackers. In Proceedings of the

IEEE International Conference on Computer Vision, pages

4010–4019, 2019.

8

