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Abstract

Deep learning methods have dramatically increased
tracking accuracy benefitting from exquisite features ex-
tractor. Among these methods, siamese-based tracker per-
forms well. However, in case of camera shaking, the ob-
jects are easily to be lost because of no consideration of
camera judder, and the position of each pixel changes dras-
tically between frames. In particular, the tracking perfor-
mance would degrade dramatically in case that the target
is small and moving fast, such as UAV tracking. In this
paper, the S-Siam framework is proposed to deal with this
problem and improves the performance of real-time track-
ing. Through stabilizing each frame by estimating where
the object is going to move, the camera is adjusted adap-
tively to keep the object in its original position. Experi-
mental results on the VOT2018 dataset show that the pro-
posed method obtained an EAO score 0.449, and achieved
10% robustness improvement compared with existing three
trackers, i.e., SiamFC, SiamMask and SiamRPN++, which
demonstrates the effectiveness of the proposed algorithm.

1. Introduction

Real-time visual object tracking requires learning a ro-
bust end-to-end trainable model online during the inference
stage [2]. A good tracker needs to exceed the real-time
processing level while ensuring accuracy and robustness.
Benefit from the booming deep learning technology and
increasing maturity of efficient object detection algorithm,
real-time object tracking is moving towards to the real ap-
plication level. For those areas where objects information
needs to be inferred, such as automatic driving, unmanned
aerial vehicle and intelligent robot, tracking is a fundamen-
tal computer vision task and has been receiving rapidly ex-
panding attention lately [32]. However, there are complex
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and unexpected situations in real application scenarios. Fac-
ing with lens dislocation or motion blurring , even the state-
of-the-art tracker may not be able to make the correct infer-
ence, causing tracking failure. How to deal with this kind
of problems is a burning issue for further application.

Many benchmarks have been developed in the field of
tracking [22, 23, 5, 12, 14]. Among the most recognized
are object tracking benchmark (OTB50 [28] and OTB100
[29]), and visual object tracking challenges (VOT2016 [16],
VOT2018 [14], VOT2019 [15]). Both benchmarks contain
short sequences with different challenging situations (e.g.,
motion blur, size change, occlusion), and target-specific in-
formation is only available at the first frame during testing.
VOT datasets have the following criteria: accuracy, robust-
ness, and expected average overlap (EAO) rate. Accuracy is
the average overlap rate between the estimated and ground
truth bounding boxes when the target is successfully being
tracked of. Robustness measures the ratio between the num-
ber of times the tracker loses the target and the number of
resumed trackings. Expected average overlap is regarded as
the primary measurement in the VOT challenge[16].

Among the available tracking algorithms, template-
matching methods are the most popular ones due to their
excellent calculation efficiency and accuracy [1, 9, 18, 17].
They utilize a template of the target object and match it with
regions of the image in question. Siamese networks[13] are
introduced to generate feature space expression for templete
matching. The template usually corresponds to a patch in
the previous frame, and the goal is to find the best matching
area in the current frame.

Though the high accuracy of Siamese-based trackers ob-
tained, most of them ignore the issue of camera pose es-
timation. When tracking the target object in a new video
frame, they usually set a displacement penalty and scaling
factor under the template of the previous frame, which may
restrict the potential pattern of free movement of objects. In
some cases, the position of the object changes rapidly by
camera shaking, so that the tracker loses the object easily.
Furthermore, the performance would degrade dramatically
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Figure 1. Failure cases on the VOT2018 dataset caused by the camara jitter and obscure. The yellow bounding box and the red mask show
the results of state-of-the-art tracker SiamMask. The green bounding box indicates the ground truth. The green imaginary line in the first
row points out the same horizontal position in each frame, yet there is a large fluctuation in the background. When tracking a similar
scenario in actual use, the performance of robustness maybe not to our satisfaction.

for scenes with a complex background and smaller object.
Because the characteristics of the object itself is difficult
to capture, and the extra displacement deviation caused by
the camera shake will cause serious interference to simi-
lar objects around. Some failure cases are shown in Fig. 1.
Even the state-of-the-art tracker like SiamMask [27] has not
solved this problem very well.

In this paper, we introduce an alternative S-Siam track-
ing architecture, which does not need to retrain the current
trackers but stabilizes the input frame. We take inspiration
from a video stabilization algorithm that has been success-
fully applied to recent video understanding mission. We
decouple the motion of the target object from the motion
through the transformation of the cross-domain coordinate
system. Before tracking, we analyze the inter-frame corre-
lation, infer adverse factors, such as shot jitter, and repair
the frame to improve the current input stability. The re-
stored frames simplify the tracking process. Experimental
results show that the original tracker could be improved by
adding the proposed module. In addition, our method only
increases the computation amount during the preprocessing
stage. Moreover, the method is relatively timesaving, and it
enables the tracker to maintain its speed beyond real time.
We perform comprehensive experiments on benchmarks to
verify the effectiveness and present state-of-the-art results.

2. Related Work

Several different approaches have been presented to
solve the visual tracking problem. Since our main contribu-
tion is to bulid shaking removal modules, we breifly review
the existing state-of-the-art methods for tracking, in addi-
tion to siamese network based methods. Moreover, we re-
view approaches which aim at video stabilization with com-

petitive performance.

2.1. Siamese-based trackers

Siamese-based trackers are one of the most important
methods in visual tracking owing to its impressive perfor-
mance and speed. The first tracker, named SiamFC [1], was
introduced by Bertinetto et al. in 2016. The Siamese net-
work is trained offline on a dataset for object detection. The
network inputs two images, one is an exemplar image z, and
the other one is the search image x. Then, a dense response
map is generated from the output of the network. SiamFC
learns and predicts the similarity between the regions in
z and the exemplar image z. By modifying the original
SiamFC with a region proposal network (RPN [7]), Li et
al. proposed SiamRPN [18] to estimate the target location
with the variable bounding boxes. Inspired by the concept
of anchor in object detection field, the output of SiamRPN
contains a set of anchor boxes with corresponding scores.
Since then, the ability of object tracking to capture seman-
tic information had greatly improved. SiamRPN++ [17],
which was inroduced by Li et al., used the deep network
ResNet-50 [10] as feature extractor and achieved a state-of-
the-art performance last year. Over roughly the same pe-
riod, SiamMask [27] was proposed which took the advan-
tage of instance object segmentation algorithm. A Siamese
net was trained to predict a set of masks and bounding boxes
on the target. The bounding boxes are estimated on the ba-
sis of the masks using rotated minimum bounding rectangle
at a speed of 55 fps. Chen et al. [4] used elliptic fitting
strategy to modify the rotated rectangle and improved the
performance of SiamMask.

Aiming to obtain a rich multi-template representation,
Axel et al. designed a dynamic target expression method



Motion

L &
estimation

Image
transform

Transformed

|
|
|
WA - P __________ B
|
|
|
| storage

Threshold | Vg
judge > ﬂ —_—
>

Feature

1717
*(6363)

mask

Extractor

Predict| output

17*17*256|

Feature

g7
Extractor )

score

Figure 2. End-to-end schematic of S-Siam including three modules. Frame stabalization module during the warming up stage (blue dotted
box), SiamMask module as the main tracker (red dotted box), coordinate restoration module in the end (orange dotted box). In the initial
stage, the offset obtained by motion estimation is firstly used to judge whether the steady-state operation is needed. If so, the image is
further transformed and sent into transformed storage. The images saved in the storage are coordinate transformed, and we feed them into
the network as input. In the output stage, we restore the original coordinate information by the inverse transformation property.

(THOR [24]) to model the change of object template. Wang
et al. [25] considered the interference of camera movement,
and separated camera motion and object motion to improve
the robustness of SiamMask, however, the improvement is
not evident. In [6], the architecture of cascade tracker was
proposed to solve the problem of background interference
and scale variation. [26] added attention module to fur-
ther boost the understanding of the target object. In ad-
dition, a number of recent studies [31, 20, 34] have pro-
posed improvement approaches from different perspectives.
Whereas, none of the above works effectively addressed
the effect of external factors, such as camera shake, on the
tracker effect. In Sec. 3, our proposed method based on
video image stabilization technology to improve the robust-
ness of the above algorithms will be described in detail.

2.2. Video stabilization

Video stabilization aims to enhance the quality of an in-
put video by removing undesired camera motion [21]. In
the process of panoramic video stitching of UAV, the video
stabilization algorithm is widely used. Video stabilization
system focuses on motion estimation based on video series,
which includes global and local motion estimation. The
first step is to find the optimal motion vector by motion eti-
mation. The second step aims to compensate the current
frame according to the motion vector and remove the jit-
ter by the motion compensation progress. The most popu-
lar solution is to estimate the camera’s motion by matching
the key point features between adjacent frames. Nghia [11]
used the OpenCV module to capture the information of inter
frame optical flow and adopted rigid Euclidean transform
to achieve efficient real-time online video stabilization. Liu
et al. presented a novel video stabilization method, which

models camera motion with a bundle of camera paths [19].
Their proposed model is based on a mesh-based, spatially
variant motion representation and an adaptive, space-time
path optimization. In [8], a grid-based tracking method is
designed for an improved robustness, which produces fea-
tures that are distributed evenly within and across multiple
Views.

Recently, deep learning method-based algorithms have
paved a new path. [33] realized a combining end-to-end
training for feature detection, direction assignment and de-
scriptor generation. Xu et al. [30] introduced an adversarial
network to determine the stability of a video piece, which
was composed of a generative network with spatial trans-
former networks embedded in different layers and gener-
ated stable frame, by computing an appropriate affine trans-
formation. However, the above algorithms require substan-
tial computation and are difficult to migrate to real-time sce-
narios. Furthermore, it is not easy to perform algorithms
fusion in real-time tracking scenarios, because the infer-
ence of the tracker depends on prior knowledge of the input
frame.

3. Methodology

Trackers based on template matching have added penalty
terms of displacement and scaling factors to the inference
stage. Thus, when the camera angle has a brief shake or
rapid shift, the difference between adjacent frames may lead
to inference error. This phenomenon is common in the field
of tracking small targets such as UAVs. The essential rea-
son is that the homography matrix changes greatly between
adjacent frames. Therefore, by making affine transforma-
tion to adjacent frames, we eliminate possible camera jitter



—— Trajectory

i raj s
Video T ajectory —— Smoothed Trajectory

dx

-100

dy

-300 -

-400 -

(] 20 40 60 80 100 120
Frame Number

Figure 3. Accumulated trajectories of the pixel deviation on x axis
direction and y axis direction (orange curves) and their smoothed
result (blue curves). The original trajectories show that the instan-
taneous deviation of the pixel fluctuates greatly, which correlates
with the video being shaky. The smoothed trajectories are obtained
by averaging the neighborhood original trajectories. In this paper,
the smoothing radiation distance of the previous frames is set to
30.

factors and achieve more robust tracking. In this paper, we
propose to combine video image stabilization with Siamese
network-based tracker. We refer to the work of Nghia Ho !
and take SiamFC, SiamRPN++ and SiamMask as examples
to introduce the fusion algorithm (shown in Fig. 2).

3.1. S-Siam-stabilized tracking framework

Befor tracking, we evaluate the quality of adjacent
frames of the input video. The first step is to compute
transformation matrix. After comparing the performance of
five different keypoint generators (HARRIS, GFTT, MSER,
BRISK and ORB), we use ORB here to generate the set of
keypoints. As the frame changes, the new positions of those
keypoints are determined via the optical flow using Lucas-
Kanade method [3].

When the real-time video stream is fed into the system,
we first assign a cache to calculate the changes in the per-
spective within a certain range. Once the number of video
frames is greater than the cache, we simulate a queuing
model and update the cache information frame by frame.
Assume [; contains a set of keypoints on frame ¢, and I; 1
is the result corresponding to each keypoint between frame
t and t + 1 by optical flow.

L ={(@e1,y61), (@2, Y1,2)s ooos (Tems Yen)} (1)

Lipr = {(xeg1,0, Ue10), (Te1,2, Yer1,2), oo (Teg1,m Yo 1,m) }

2)
where I; and I, are used to generate frame-to-frame
transformation using rigid Euclidean transform. We need

Ihttps://adamspannbauer.github.io/python_video_stab/html
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Figure 4. Computed dx (blue curve), dy (orange curve) and da
(green curve) for each frame in new_trans. The results are used
to form a new transformation matrix and add to the original video
frame. For some abrupt points with drastic changes, the optical
flow calculation method may be caused by too much interference
from the scene background. If the calculated transformation ma-
trix is directly applied to the original video frame, there maybe
some mistake. We then smooth the affine matrix through maxi-
mum threshold policies.
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Figure 5. Comparison of the original input frame with the trans-
formed one after affine transformation. The black edges around
the right image are the shiftable spaces that we’ve set aside.

to compute the 2D transform matrix trans as 7.

a b ¢
= { d e f ] ®)
where 7' is computed using the least variance method. Each
point (z,y) in I; and the corrosponding (=, ') in ;11 must
satisfy the following equation:
:C/
= [ y } “)

[ a b c ] ;
d e f 1
We define dx, dy, and da as the deviation of the x-axis di-
rection, y-axis direction, and clockwise offset angle respec-
tively. They can be expressed as dr = ¢, dy = f, and
da = arctan(d/a). We accumulate the information of each
frame and obtain the original trajectory (orange curve of

Fig. 3). Then, we smooth out the video jitter using mov-
ing average window and obtain the smoothed_trajectory
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Figure 6. Tracking results of sequences soccer2, wiper, helicopter and blanket on the VOT2018. The original version SiamMask (yellow
box) loses the target, whereas the prediction of our proposed approach (blue box) exhibits an accurate IoU between the ground truth (green
box). The first column represents the initialization frame of the current video sequence. The four sequences shown in the figure all have the
situation of camera jitter and image obscure. The first row soccer2 is even more typical, in which the target object takes only a small part
of the image and there are a lot of similar jamming targets around. Debuffeting is especially important when dealing with such situation.

(blue curve of Fig. 3). We calculate the difference between
smoothed_trajectory and trajectory, and set a threshold
that needs to be debuffeted by comparing the sum of square
distance with the x axis and y axis. Finally, we add this
difference with orignal {rans to obtain the new_trans cor-
responding to the current frame (shown in Fig. 4 ).

new_trans = trans+(smoothed_trajectory—trajectory)

&)
For the elements dx, dy, da in new_trans, we place
some constraints so that they would not deviate too much.
Borders are added to the original image when the image
changes. This addition is performed to avoid information
loss caused by excessive displacement (shown in Fig. 2).
Thus, we assume that the size of the added borders is V.
dxy, dyy, day are the calculated results of the current frame;
dx_q, dy,_,, da;_, are the actual transform from the pre-
vious frame; and dx;}, dy;, da; are the actual transform in
the current frame, which can be obtained by:

(N + Tle) ’Lf |d.Tt| — N >TH,;
dx), = THys if |dzy—dzi_i| > THy
dzy otherwise

(6)
where T'H,1 and T H,5 are two predefined thresholds.
T H,; limits the movement of the camera to keep the tar-
get in the image, and T'H ;5 limits the range of the transfor-
mation. Similarly, we have T'H,; and T'H,>. At the same

time, T'H,, is used to keep the difference between angles in
control. We build the transformation matrix M; of frame
t to obtain the stabilized frame s_img;. Fig. 5 shows the
changes for one frame of input.

| cos(day) sin(d'ay) d'wmy
My=1 _ cos(d'a;) cos(d'ar) d'y: )
x
simgy = My | y | Y(z,y) € img, ®)

1

where s_img; is the input of SiamMask, and its output is
Rec_out. Since we have changed img; into s_img,, the
output Rec_out is in a transformed state. Therefore, it needs
to be changed back to the original state, Rec_real, through
inverse property (operating by —My).

x
Recreal = —Myx | y
1

V(x,y) € Recout  (9)

3.2. Implementation details

During tracking, we set the length of cache queue to
30 frames. As we said before, ORB is selected to be the
keypoint generator. For hyperparameters, we set N = 20,
THy = 60, THy; = 30, THyy = 20, THy> = 10 and
TH, =0.3.



Benchmarks VOT2019 VOT2018 VOT2016 Speed |

A | Rf [BAOT| A | RTf [EAOT| A [ RfT [EAOT| (fps)

SiamFC 0.477 | 0.687 | 0.204 | 0.479 | 0.492 | 0.224 | 0.512 | 0.331 | 0301 | 121
S_SiamFC (Ours) | 0.459 | 0.577 | 0.207 | 0.467 | 0.450 | 0.231 | 0487 | 0.261 | 0.328 | 58
SiamRPN++ 0.595 | 0.467 | 0290 | 0.600 | 0.234 | 0.415 | 0.643 | 0.200 | 0.461 | 34
S_SiamRPN++ (Ours) | 0.594 | 0.446 | 0.293 | 0.600 | 0.229 | 0425 | 0.641 | 0.186 | 0475 | 23
SiamMask E 0.646 | 0.497 | 0.303 | 0.649 | 0.267 | 0432 | 0.669 | 0.233 | 0450 | 55
S_SiamMask E (Ours) | 0.637 | 0.477 | 0.309 | 0.637 | 0.243 | 0.449 | 0.655 | 0210 | 0463 | 33

Table 1. Comparison with the original Siamese trackers on VOT2019, VOT2018, and VOT2016. Pretrained models are the same in each
pair provided by the authors. SiamMask_E [4] represents the advanced SiamMask proposed by Chen et al.. In this paper, more accurate
tracking results are obtained by optimizing the fitting process of rotating rectangular frame, and we use it to represent the SiamMask.
Compared with the baseline model, all the performance of our trackers have been improved. As can be seen from the table, the major
improvement occurred in robustness. For image input with different resolutions, the speed index of our method will fluctuate slightly. The

final result is averaged over the entire test sequences.

Generators A R EAO | Speed
GFTT 0.642 | 0.249 | 0.441 30
ORB 0.637 | 0.243 | 0.449 33
BRISK 0.625 | 0.283 | 0.390 38
MSER 0.635 | 0.245 | 0.444 34
HARRIS | 0.636 | 0.270 | 0.412 39

Table 2. Comparing five different keypoint generators on
VOT2018 using SiamMask_E (Subsection 3.1). According to
the primary measurement (EAO), we choose ORB for final use.

Threshold value A R EAO

60 | 0.637 | 0.243 | 0.449

THy 2THy) | 80 | 0.640 | 0.260 | 0.435
100 | 0.645 | 0.277 | 0.418

20 | 0.637 | 0.243 | 0.449

THgo 2THyp) | 40 | 0.639 | 0.251 | 0.436
80 | 0.630 | 0.272 | 0.402

0.1 | 0.641 | 0.270 | 0.413

TH 0.3 | 0.637 | 0.243 | 0.449

e 0.5 | 0.634 | 0.244 | 0.439

1.0 | 0.625 | 0.264 | 0.410

Table 3. Comparing the performance with different threshold val-
ues in Subsection 3.1 on VOT2018. The aspect ratio of the frame
is close to 2 to 1, thus we assume T'H,1 = 2T Hy1, THy2 =
2T Hys.

4. Experimental Results

To verify the performance of our proposed method,
VOT2016, VOT2018, and VOT2019 datasets are used in
our experiments. To ensure fairness, we perform all experi-
ments on the same PC with an Intel i7-4790K CPU, 16GB
RAM, NVIDIA GTX 1080Ti GPU.

Sequence | Stabilization | Original | S-Siam

soccer2 Yes 3 0
soccerl Yes 4 3
wiper Yes 2 1
helicopter Yes 2 1
blanket Yes 2 1
rabbit Yes 2 3
girl No 4 4
book No 4 4

Table 4. The comparison results for robustness performance on
VOT2018. The first column is the name of the different test se-
quences. The second column represents whether or not to per-
form stabilization. The third column and the fourth column rep-
resent the times that target object is lost in the sequence. We use
SiamMask as the base model and the result is show in the third
column. Our S-Siam has a positive response effect to the sequence
with the problem of de-buffeting. It is worth noting that the second
half of the table shows some sequences that do not work. These se-
quences have some problems such as background confusion with
objects and occlusion with other objects, which need to be further
discussed in the future.

4.1. Hyperparameters selection of S-Siam

The comparison results are shown in Table 2 and 3,
which are tested on the VOT2018 dataset solely. Table
2 gives the performance comparision of different keypoint
generators (GFTT, ORB, BRISK, MSER, HARRIS). ORB
is selected to be the keypoint generator in our S-Siam frame-
work. Table 3 shows the performance of different values of
THy., THy, THyo, THyp, TH,. When selecting a vari-
able, other variables are controlled for fixing. The combi-
nation of 60, 30, 20, 10, and 0.3 obtains the best result, and
we use these parameters as the hyperparameters to test the
overall results.



4.2. Overall results

Table 1 presents the comparison results between
the state-of-the-art Siamese-based tracking algorithms
SiamFC, SiamPRN++ and SiamMask on the VOT2016,
VOT2018, and VOT2019 datasets. For each group, the re-
sult of original version based on the dataset using the pre-
trained model exposed by the authors. The prefix “S_” rep-
resents trackers that use our S-Siam framework. We verify
on three benchmarks that all the original trackers improved
their robustness by an average of 10% and achieved a new
peak EAO score with the introduction of the S-Siam strat-
egy. Especially, our tracker S_Siam M ask_FE has obtained
arobustness of 0.243 and a competitive EAO score of 0.449
on the VOT2018 dataset. Due to the additional stabilization
processing of the overall process, the time performance is
reduced slightly. Table 4 shows the specific amount of lost
frame in different sequences on VOT 2018 dataset. The per-
formance of accuracy indicates that the possible misjudge-
ment of camera pose estimation results in a fluctuation. In
general, our algorithm can significantly improve the robust-
ness of the tracker with almost no loss of precision.

5. Conclusion

In this paper, we propose the S-Siam framework and in-
troduce it into the existing Siamese-based trackers. Consid-
ering the real-time requirement, we adopt an optical flow
matching de-buffeting strategy which directly acted on the
input video frame by calculating the affine matrix. After
estimating and smoothing the camera pose changing, our
method can eliminate the negative effects caused by cam-
era shaking or rapid displacement. We improve the perfor-
mance of rubustness by 10% on the VOT dataset and oper-
ate at over 30 FPS. It is obvious that using a more efficient
stabilization method can improve the tracking accuracy for
real-time trackers, which can be viewed as a focus of appli-
cation level considerations.

References

[1] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea
Vedaldi, and Philip HS Torr. Fully-convolutional siamese
networks for object tracking. In European conference on
computer vision, pages 850-865. Springer, 2016.

Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu
Timofte. Learning discriminative model prediction for track-
ing. In Proceedings of the IEEE International Conference on
Computer Vision, pages 6182-6191, 2019.

[3] Andrés Bruhn, Joachim Weickert, and Christoph Schnorr.
Lucas/kanade meets horn/schunck: Combining local and
global optic flow methods. International journal of computer
vision, 61(3):211-231, 2005.

Bao Xin Chen and John K Tsotsos. Fast visual ob-
ject tracking with rotated bounding boxes. arXiv preprint
arXiv:1907.03892, 2019.

[5] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Si-
jia Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and Haibin
Ling. Lasot: A high-quality benchmark for large-scale sin-
gle object tracking. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5374—
5383, 2019.

Heng Fan and Haibin Ling. Siamese cascaded region pro-
posal networks for real-time visual tracking. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7952-7961, 2019.

R Faster. Towards real-time object detection with region pro-
posal networks shaoqing ren [j]. Kaiming He, Ross Girshick,
and Jian Sun.

2

—

[4

—

[6

—_

[7

—

[8] Heng Guo, Shuaicheng Liu, Tong He, Shuyuan Zhu, Bing

Zeng, and Moncef Gabbouj. Joint video stitching and stabi-

lization from moving cameras. /IEEE Transactions on Image

Processing, 25(11):5491-5503, 2016.

Anfeng He, Chong Luo, Xinmei Tian, and Wenjun Zeng. A

twofold siamese network for real-time object tracking. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 48344843, 2018.

[10] Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770778, 2016.

[11] Nghia Ho. Simple video stabilization using OpenCV, 2014.

[12] Lianghua Huang, Xin Zhao, and Kaiqi Huang. Got-10k: A
large high-diversity benchmark for generic object tracking in
the wild. arXiv preprint arXiv:1810.11981, 2018.

[13] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov.
Siamese neural networks for one-shot image recognition. In
ICML deep learning workshop, volume 2, 2015.

[14] Matej Kristan, Ales Leonardis, Jiri Matas, Michael Fels-
berg, Roman Pflugfelder, Luka Cehovin Zajc, Tomas Vojir,
Goutam Bhat, Alan Lukezic, Abdelrahman Eldesokey, et al.
The sixth visual object tracking vot2018 challenge results.
In Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 0-0, 2018.

[15] Matej Kristan, Ales Leonardis, Jiri Matas, Michael Fels-
berg, Roman Pflugfelder, Luka Cehovin Zajc, Tomas Vojir,

[9

—



(16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

Goutam Bhat, Alan Lukezic, Abdelrahman Eldesokey, et al.
The seventh visual object tracking vot2019 challenge results.
In Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 0-0, 2019.

Matej Kristan, Ales Leonardis, Jiri Matas, Michael Felsberg,
Roman Pflugfelder, Luka Cehovin Zajc, Tomas Vojir, Gus-
tav Hager, Alan Lukezic, Abdelrahman Eldesokey, et al. The
visual object tracking vot2017 challenge results. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion, pages 1949-1972, 2017.

Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing,
and Junjie Yan. Siamrpn++: Evolution of siamese visual
tracking with very deep networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 4282-4291, 2019.

Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu.
High performance visual tracking with siamese region pro-
posal network. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 8971—
8980, 2018.

Shuaicheng Liu, Lu Yuan, Ping Tan, and Jian Sun. Bundled
camera paths for video stabilization. Acm Transactions on
Graphics, 32(4):1-10, 2013.

Alan Lukezi¢, Jiff Matas, and Matej Kristan. D3s-a dis-
criminative single shot segmentation tracker. arXiv preprint
arXiv:1911.08862, 2019.

Sunil Sankol S M, Praveenkumar B S, and Vanishree K Rao.
Real time video stabilization using plk tracking algorithm.
International Journal of Science and Research (IJSR), 2017.
Matthias Mueller, Neil Smith, and Bernard Ghanem. A
benchmark and simulator for uav tracking. In European con-
ference on computer vision, pages 445—461. Springer, 2016.
Matthias Muller, Adel Bibi, Silvio Giancola, Salman Al-
subaihi, and Bernard Ghanem. Trackingnet: A large-scale
dataset and benchmark for object tracking in the wild. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 300-317, 2018.

Axel Sauer, Elie Aljalbout, and Sami Haddadin. Tracking
holistic object representations, 2019.

Jianren Wang, Yihui He, Xiaobo Wang, Xinjia Yu, and Xia
Chen. Prediction-tracking-segmentation. arXiv preprint
arXiv:1904.03280, 2019.

Qiang Wang, Zhu Teng, Junliang Xing, Jin Gao, Weiming
Hu, and Stephen Maybank. Learning attentions: residual at-
tentional siamese network for high performance online vi-
sual tracking. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4854-4863,
2018.

Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and
Philip HS Torr. Fast online object tracking and segmentation:
A unifying approach. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1328—
1338, 2019.

Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Online object
tracking: A benchmark. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2411-2418, 2013.

[29]

(30]

(31]

(32]

(33]

(34]

Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Object track-
ing benchmark. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 37(9):1834-1848, 2015.

Sen-Zhe Xu, Jun Hu, Miao Wang, Tai-Jiang Mu, and Shi-
Min Hu. Deep video stabilization using adversarial net-
works. In Computer Graphics Forum, volume 37, pages
267-276. Wiley Online Library, 2018.

Yinda Xu, Zeyu Wang, Zuoxin Li, Yuan Ye, and Gang
Yu. Siamfc++: Towards robust and accurate visual track-
ing with target estimation guidelines.  arXiv preprint
arXiv:1911.06188, 2019.

Hanxuan Yang, Ling Shao, Feng Zheng, Liang Wang, and
Zhan Song. Recent advances and trends in visual tracking:
A review. Neurocomputing, 74(18):3823-3831, 2011.
Kwang Moo Yi, Eduard Trulls, Vincent Lepetit, and Pascal
Fua. Lift: Learned invariant feature transform. In European
Conference on Computer Vision, pages 467-483. Springer,
2016.

Lichao Zhang, Abel Gonzalez-Garcia, Joost van de Weijer,
Martin Danelljan, and Fahad Shahbaz Khan. Learning the
model update for siamese trackers. In Proceedings of the
IEEE International Conference on Computer Vision, pages
4010-4019, 2019.



