
 

 

Abstract 

Object tracking has been studied for decades, but most of 

the existing works are focused on the RGB tracking. For an 

infrared video, the object is often textureless, especially for 

far-range drone planar targets. Furthermore, motion of 

camera and unexpected movement of the drones make 

tracking more difficult, causing existing object tracking 

algorithms lose the targets. In this paper a robust and real-

time tracking algorithm is proposed for infrared drones, in 

which a feature attention module and an expansion strategy 

for searching the target are added to the fully convolutional 

classifier. Experiments on the Anti-UAV infrared dataset 

show its robustness to the different challenges of real 

infrared scenes with a high efficiency. 

1. Introduction 

Recently, the amount of aunmanned aerial vehicles 

(UAVs) is growing rapidly because of their autonomy, 

flexibility, and a broad range of applications. Camera-

equipped drones are rapidly deployed in various 

applications, including smart agriculture, aerial 

photography, person search and rescue, reconnaissance and 

surveillance. Computer vision on UAVs has received more 

and more attention due to their wide applications. At the 

same time, we also need to be aware of the potential threat 

to our lives caused by UAVs intrusion. The development of 

drone technology will inevitably promote the development 

of counter-drone technology, and the detection and tracking 

of the drones are becoming increasingly important. 

As a basic problem of computer vision, object tracking 

has received widespread attention. For single object 

tracking, it mainly focuses on general objects, also known 

as model-free tracking. In this paper, the tracked objects are 

the drone. The input is a video sequence and the initial area 

specified in the first frame, and the tracker determines the 

position and size of the drone in the subsequent video 

frames. The tracker should track the drones robustly in real 

time. 

 

Figure 1. Comparison of infrared and color images. On the left are 

infrared frames. The resolution is 512 x 640. On the right are the 

color images. The resolution is 1080 x 1920 (proportional scaled 

down for display). The images on first row are taken at the same 

moment in the night. The images on  second row are taken at the 

same moment in the day. From top to bottom: Anti-UAV dataset 

20190925_200320_1_2, 20190926_144550_1_2. 

Some computer vision researches about UAVs utilize the 

video captured by drones and the objects are persons, cars 

and so on [1]. The Anti-UAV workshop (https://anti-

uav.github.io/) presents a benchmark dataset and evaluation 

methodology for detecting and tracking UAVs. In this 

paper, our goal is to track the drone in a video. Drones vary 

widely in size. A drone near to the camera has a larger 

imaging area, both the contour profile and the texture are 

distinct. However, a drone far from the camera has a smaller 

imaging area, showing the appearance of blobs, with less 

texture information. The buildings, trees, etc. in the real 

scene can clutter the background. There are also false 

similar targets disturbing tracking. Distractors in the video 

can occlude the target. With the target  movement, the size 

in planar is changing. Sudden movement of the imaging 

device can cause a large displacement of the target position, 

even out of view. 

Despite the significant application potential, tracking 

with infrared has received significantly less attention than 

RGB tracking. The earliest thermal and infrared (TIR) 

tracking comparisons were organized by the Performance 
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Evaluation of Tracking and Surveillance (PETS) [3] in 

2005. The VOT2015 and  VOT2016 introduced the VOT-

TIR  challenge that focused on short-term infrared tracking 

[4]. Color cameras and infrared cameras collect different 

signals, the former imaging is based on the reflected light, 

and the infrared camera imaging uses the infrared radiation 

(0.75-13µm) emitted by objects with a temperature above 

absolute zero [6]. Infrared cameras can penetrate haze, 

clouds, rain, and fog for imaging, even in the dark, which 

significantly affect the imaging quality of visible spectrum. 

Thermal sensors are more effective in capturing objects 

than visible spectrum cameras under poor lighting 

conditions and bad weathers, but color images are able to 

provide richer color and texture information. In order to join 

the RGB and thermal images for object tracking, the VOT 

committee bases the VOT-RGBT-challenge on the existing 

RGBT-dataset published by [6]. The infrared and RGB 

images in these datasets have been aligned, and the 

resolution and field of view of them are the same. However, 

in reality, the positions and viewing angles of the infrared 

sensors and color sensors are different. Moreover, the 

resolution of the color images may be different from that of 

the infrared images due to different sensors. Therefore, the 

position and size of the target in the RGB and infrared 

images can be different. Figure 1 shows some typical 

scenarios. 

In this paper we propose an infrared tracking approach, 

which can track UAVs in complex real scenes robustly. The 

proposed search strategy can capture the target accurately 

even if the camera or target suddenly moves fast, causing a 

large displacement of the target in the frame.  

The rest of the paper is organized as follows. We first 

review the related works in Section 2, and present our 

approach to infrared UAVs tracking in Section3. Section4 

demonstrates the experimental results. We use the dataset 

from the Anti-UAV workshop in our experiments. Finally, 

we summarize our work in Section 5. 

2. Related works 

The research of single object tracking problem has been 

a long time. Many related works have been thoroughly 

proposed. We introduce the related works of RGB tracking 

and infrared tracking in this section. 

2.1. RGB tracking 

Correlation filter based Methods. The Discriminative 

Correlation Filter (DCF) based trackers are able to 

efficiently utilize limited data by including all shifts of local 

training samples in the learning. DCF-based methods train 

a least-squares regressor to predict the target confidence 

scores by utilizing the properties of circular correlation and 

the Fast Fourier Transform (FFT) at both learning and 

detection steps [7]. The seminal work that put forward the 

correlation filter to tracking is MOSSE, which uses a set of 

samples random affine transformed from the single initial 

frame to construct a minimum output sum of squared error 

filter [8]. By diagonalizing the circulant data matrix with 

the Discrete Fourier Transform, KCF [9] reduces both the  

storage and computation by several orders of magnitude. 

The periodic assumption of KCF [9] also introduces 

unwanted boundary effects, which severely degrades the 

quality of the tracking model. To mitigate the boundary 

effects, SRDCF [10] introduced a spatial regularization 

component in the learning to penalize correlation filter 

coefficients depending on their spatial location. In addition, 

there are several other excellent correlation filter based 

trackers, such as STRCF [11] and ECO [12]. These 

algorithms usually divide tracking into two stages, the 

feature extraction and target classification, and they cannot 

be trained end-to-end. Same as the discriminative 

correlation filter approaches, the objective function of target 

classification module in ATOM [13] is mean square error 

based but it is modeled on a 2-layer fully convolutional 

neural network. ATOM regresses the size of the target with 

IoU-Net [14]. Although ATOM has achieved effective 

performance, it is sometimes wrong for the size estimation 

because the predicted Intersection over Union (IoU) may be 

inaccurate, which leads to tracking failure especially in 

presence of clutter background. 

Siamese network based Methods. Recently, trackers 

based on Siamese network [15] have received much 

attention due to their satisfactory balance between 

performance and efficiency for visual tracking. Siamese 

network learns a similarity metric function from image 

pairs offline and converts the tracking task to a template 

matching task. SiamFC [15] utilizes a large number of 

template and search region paired samples in offline 

training. In online tracking, through the forward 

propagation, the template and search region correlate with 

each other in the feature space and the target location is 

determined according to the peak position of the cross-

correlation response. SiamRPN [16] adds the Region 

Proposal Network [18] to acquire various aspect ratio 

candidate target box. It interprets the template branch in 

Siamese subnetwork as training parameters to predict the 

kernel of the local detection task, which treats the tracking 

task as a one-shot local detection task. On the basis of 

SiamFC and SiamRPN, SiamMask [17] adds a 

segmentation branch. The size and shape of the target are 

obtained according to the mask at the position with the 

largest classification score, and the tracking results are 

refined. One shortcoming of Siamese approaches is that 

they ignore the context information around the template; the 

template information is simply extracted from the initial 

target area. Due to the unconstrained video conditions like 

illumination changes, viewpoint changes, the appearance of 

the subsequent targets may change a lot compared to the 

initial one. Consequently, previous proposed Siamese 



 

based trackers degrade in presence of similar distractors and 

object appearance variation. In order to overcome the 

shortcomings of the Siamese approaches, DiMP [19] trains 

a discriminative classifier in an online manner to separate 

the object from the background; the model is derived from 

a discriminative learning loss by designing a dedicated 

optimization process, that is capable of predicting a 

powerful model in only a few iterations. It keeps collecting 

positive and negative samples along the tracking process 

whenever the target is predicted with sufficient confidence, 

and the tracker is updating online every 20 frames or a 

distractor peak is detected, thereby enabling the tracker to 

deal with appearance changes effectively.  

2.2. Infrared tracking 

Frankly, detection and tracking in thermal infrared 

imagery can be regarded as detection and tracking in 

grayscale visual imagery. However, the characteristics of 

thermal infrared radiation and imagery pose certain 

challenges to image analysis algorithms. Work [20] 

introduces a template-based tracking method designed 

specifically for thermal infrared imagery. It uses Generative 

Adversarial Network (GAN) to convert the labeled RGB 

images into pseudo-infrared images for data augmentation. 

They compute motion features as an extra feature channel 

by thresholding the absolute pixel-wise difference between 

the current and the previous frame. A local and global 

attention mechanism is proposed to integrate RGB and 

infrared images for tracking in [22]. Paper [23] proposes an 

RGBT (RGB and Thermal) tracking framework based on a 

deep adaptive fusion network. The proposed recursive 

fusion chains can adaptively combine features of all the 

layers in an end-to-end manner. Work [6] proposes a graph-

based approach to learn an object representation for RGBT 

tracking. The tracked object is represented as a graph with 

the image patches as nodes. Paper [24] proposes an end-to-

end tracking framework for fusing the RGB and IR 

modalities in RGBT tracking. They consider several fusion 

mechanisms acting at different levels of the framework, 

including pixel-level, feature-level and response-level. We 

mainly focus on infrared tracking in this paper. 

3. Proposed Infrared Tracking Approach 

For a robust and real-time tracker on infrared drones, we 

propose a fully convolutional classifier for distinguishing 

the target from the background. A feature attention module 

and an expansion strategy for searching the drones are 

added to improve the robustness. A formal description of 

the whole algorithm is presented as follows. 

 

 
Figure 2. Classifier network architecture  

Formal description of the algorithm 

i. Input the first frame of a sequence and train the classifier 

online by the object initial state.  

ii. Start tracking in subsequent frames. The backbone 

network with the feature attention mechanism is used to 

extract features of the search area. The response map is 

obtained by the classifier.  

iii. Judge tracking success or failure by response peak score.  

iv. If tracking fails, start expansion search.  

v. Output estimated target state and update the classifier. 

The details are given in the subsequent subsections. 

Subsection 3.1 is the classifier of the proposed tracking 

approach which discriminates the drones from the 

background in infrared images. The feature attention 

mechanism is described in Subsection 3.2. And the 

expansion searching strategy for target is explained in 

Subsection 3.3. 

3.1. Classifier 

The classifier is exclusively trained to discriminate the 

target from the scene by predicting a target confidence score, 

based on the backbone features extracted from the current 

tracking frame. The classifier is composed of a pre-trained 

feature extraction backbone network and two convolutional 

layers trained online, shown as in Figure 2. In order to run 

at real time, the backbone network employs ResNet18 [25] 

pretrained on ImageNet [26] and the block 4 feature is used 

for classification. The first convolutional layer in our 

classifier consists of a 1 × 1 convolutional layer 1w , which 

reduces the feature dimensionality to 64. The second 

convolutional layer employs a 4 × 4 kernel 2w  with a single 

output channel. We use a continuously differentiable 

parametric exponential linear unit (PELU) [27] as output 

activation: 
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. Setting 0.05� �  allows us 

to ignore easy negative examples in the loss (1). 

Same as ATOM [13], the learning objective of the 

classifier is 2l  classification error based,  
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Each training sample feature map jx  is annotated by the 

classification confidences W H

jy �� W H , set to a sampled 

Gaussian function centered at the target location. Here N is 

the number of samples. The impact of each training sample 

is controlled by the weight j� , while the amount of 

regularization on 
kw  is set by 

k� ,where 

1 20.1,  0.0001� �� � . The initial weight sum is 1 and the 

minimum weight sum is 0.25. The regression problem is 

solved by optimizing a one-channel-output convolution 

layer [28]. The training samples are sampled from the initial 

frame with groundtruth and the history frames with the 

tracked object. Features are always extracted from patches 

of size 288 × 288 scaled from image regions corresponding 

to 5 times the estimated target size. To further make our 

classifier robust in the presence of distractors, we adopt a 

hard negative mining strategy, common in many visual 

trackers [29]. If a distractor peak is detected in the 

classification scores, we double the weights of this training 

sample and instantly run a round of optimization with 

standard settings. The object location is then determined 

according to the peak position of response map. 

3.2. Feature attention 

With the development of deep learning, hand-crafted 

feature extraction descriptors are replaced by deep 

convolutional neural networks. The powerful 

representation ability of backbone network is essential for 

all computer vision tasks including object tracking. The 

backbone network extracts the target structural and the 

semantic information from the original image space. In this 

paper, we propose a feature attention mechanism to 

improve the  power of feature representation for tracking 

robustly. The attention weights for re-calibrating a feature 

map are directly deployed to the basic block such as the 

residual module of ResNet18 [25], as shown in Figure 3. 

Consider a basic block of ResNet18, and denote by X a 

feature map with axis in the convention order of (C, H, W) 

(i.e., channel, height and width). The basic block includes a 

residual module and a skip connection. The residual module 

consists of 3 × 3 convolutions, BN [31], ReLU [32], 3 × 3 

convolutions, and BN [31], which are connected in 

sequence. Inspired by SENet [33] and CBAM [34], we use 

the global average pooling (GAP) and the global max 

pooling (GMP) to generate channel-wise statistics 

respectively. Both descriptors are then forwarded to a 

shared network to produce channel attention maps 

separately. The shared network consists of two fully 

connected layers (FC) and an ReLU [32] layer. The first FC 

layer reduces the number of channels and the second FC 

layer recovers the number of channels to learn a non-

mutually-exclusive relationship among the channels.  

 

Figure 3. We design a feature attention mechanism for learning 

instance-specific channel-wise attention weights to re-calibrate the 

input feature map obtained by residual module.  

The ReLU [32] layer learns a nonlinear interaction 

between channels. Next, the two feature maps are 

concatenated together along the channel axis, represented 

by a C × 2 tensor. Since average pooling can use all the 

information of the feature map adaptively, we use the 

descriptor of GAP to generate fusion coefficients. In order 

to fuse the two descriptors adaptively, the descriptor of 

GAP is forwarded to a FC layer to output the coefficients 

of linear combination after softmax function. After matrix 

multiplication, the final weights of the channels are 

obtained with a sigmoid activation. The output of the 

feature attention module is obtained by rescaling the 

residual feature maps with the final weights. And the output 

Y of the basic block is the sum of X and the output of the 

feature attention module. Through the attention mechanism, 

the feature space can be modified adaptively to adopt new 

appearance features obtained in the course of infrared 

tracking without overfitting. 

3.3. Strategy for searching target 

Normally, according to inter-frame smoothness and 

correlation, the search area of  the current frame is centered 

at the estimated target position in the previous frame, with 

5 times the estimated target size. However, in the real scene, 

the cameras may move suddenly and the drones in the field 

of view may also move quickly, causing a large scale 

displacement in any direction between two adjacent frames 

which break the smoothness of the trajectory of drones. 

Once it happens, the above search area may not contain the 

object and the tracking confidence will be low. If the 

tracking confidence falls below 0.1, we will change the 

center of the search region. Shown as Figure 4, the search 

center is shifted left, right, up, and down relative to the 

initial search center tentatively, and the step size of the 

shifts is 2.5 times the maximum displacement of the target 

between two adjacent historical frames. To avoid 

introducing distractors, the search area is still 5 times the 

estimated target size.  



 

 

Figure 4. The yellow solid line box indicates the initial search area 

in the current frame. But the UAV indicated by the red box is not 

in the initial search area. The initial search center is shifted left, 

right, up, and down relative to the initial search center tentatively, 

represented by the four yellow dotted boxes, to find the UAV. 

The response peaks of the four additional search areas 

are compared to get the maximum value. We use the peak 

value obtained in the second frame as a reference value. If 

the maximum value is greater than 0.8 times the reference 

value, the offset distance corresponding to the peak is 

regarded as the object offset from the search center. 

Otherwise, we change the center of the search area again,  

and the step size of the shifts is 5 times the maximum 

displacement of the target between two adjacent historical 

frames. If the maximum value is greater than 0.8, the offset 

corresponding to the peak is regarded as the target offset 

from the new search center, otherwise, the target location is 

still the initial search result conservatively. With the 

expansion search strategy, our algorithm not only performs 

tracking stably, but also can solve the problem of large-

scale displacement of the target due to sudden motion of 

camera or target. 

4. Experiments 

We perform a lot of experiments on Anti-UAV infrared 

dataset and evaluate the performance of the proposed 

tracking approach. 

4.1. Implementation details 

The backbone network ResNet18 [25] with proposed 

attention mechanism is pre-trained on ImageNet  

classification dataset [32]. In the first frame, we perform 

data augmentation by applying varying degrees of 

translation, rotation, blur, gridMask [35], and dropout, 

resulting in 31 initial training samples [36]. We then apply 

Gauss-Newton and conjugate gradient method [28] to 

optimize the parameters w . Subsequently, we only 

optimize the final convolutional layer 2w  every 20th frame. 

In every frame, we add the extracted feature map jx  as a 

training sample, annotated by a Gaussian jy  centered at the 

estimated target location.  

Tracker acc 

SiamFC [15] 0.420 

ECO [12] 0.518 

ATOM [13] 0.572 

DiMP18 [19] 0.585 

SiamRPN++ [37] 0.651 

ours 0.682 

Table 1. Performance evaluation for algorithms on the Anti-UAV 

IR dataset. The best result is marked in bold. 

Tracker acc speed (fps) 

ours 0.682 55.6 

ours w/o attention 0.669 66.7 

ours w/o expand 0.611 62.5 

Table 2. Ablation study for algorithms on the Anti-UAV IR 

dataset. 

The weights j�  in (1) are updated with a learning rate of 

0.01. Our proposed tracking algorithm is implemented in 

PyTorch with 3.50 GHz Intel Xeon(R) CPU E5-1620 and 

an NVIDIA GTX1080Ti GPU. 

4.2. Anti-UAV infrared dataset 

The test-dev infrared dataset consists of 100 thermal in-

frared video sequences, spanning multiple occurrences of 

multi-scale UAVs. We use the data to evaluate our 

algorithm. The tracking average accuracy score ( acc ) is 

utilized for evaluation. The acc  is defined as 

1
( ( 0) 1 ( 0) )( )t t t

t

tpacc IoU v v
T

� �� � � �
 �� .      (2) 

At frame t , the tIoU  is the IoU between the corresponding 

ground truth and tracking boxes. The tv  is the visibility flag 

of the ground truth. If the target exists in the current frame, 

( 0) 1tv� � � . When the target does not exist in the frame 

and 1 ( 0) 1tv�� � � , if the tracker’s prediction is empty, 

( ) 11 ( 0)t tvp � � �� , otherwise, ( ) 01 ( 0)t tvp � � �� . The 

accuracy is averaged over all the T frames. Our acc score is 

calculated according to the average results on the 100 IR 

videos. From Table 1 it is seen that our approach gets the 

highest average accuracy. The code of  SiamFC [15] is the  

Pytorch version and the model is provided by the Anti-

UAV organizer. For ECO [12], ATOM [13] and DiMP18 

[19] we use the codes and models  released at https: 

//github.com/visionml/pytracking. Their backbone 

networks are ResNet18 [25]. For SiamRPN++ [37] we uses 

the codes and models released at 

https://github.com/STVIR/pysot. And its backbone 

network is ResNet50 [25].  



 

 

 

 

 

 

Figure 5. Visual results of our tracker, along with SiamFC [15] and ATOM [13]. The red box denotes ours, the green box denotes ground 

truth, the yellow box denotes SiamFC and the blue box denotes ATOM. All the data from Anti-UAV infrared dataset. From top to bottom: 

20190925_101846_1_1, 20190925_101846_1_7, 20190925_140917_1_4, 20190925_143900_1_3, 20190925_152412_1_2. 

The closest algorithm to our tracking method is ATOM. 

Different from it, we remove the IoU-Net branch, which 

causing tracking drift once the predicted IoU score is not 

correct and we add a feature attention mechanism and an 

expansion search strategy. Our method gets 0.682 acc score 

which improves 0.11 compared with ATOM. 

4.3. Ablation study 

We perform an ablation study to demonstrate the impact 

of each component in the proposed method. We use the 

same dataset and the evaluation criteria as in Section 4.2. 

From Table 2. The average tracking speed of our tracking 

algorithm is 55.6 fps (frames per second). Without feature 

attention mechanism, the speed is increased to 66.7 fps but 

the average acc score reduced from 0.682 to 0.669.  It 

means that the backbone network coupled with the attention 

mechanism can better express the target. Without the 

expanded search stategy, although the speed is increased to 

62.5 fps, the acc score reduced to 0.611, which illustrates 

the effectiveness of the expansion search strategy to the 

sudden motion of camera and drone.  

4.4. Visual Results 

To visualize the performance of our tracker, we provide 

some representative results of our tracker and the other two 

baseline methods ATOM [13] and SiamFC [15]. The 

frames are from the Anti-UAV dataset. As shown in Figure 

5, each row represents a video sequence. The red box 

denotes ours, the green one denotes the ground truth, the 

yellow box denotes SiamFC and the blue box denotes 

ATOM. From the first row, at frame 338, the target is out 

of view. Our algorithm captures the drone at frame 340 as 



 

soon as the drone appears and continues tracking the drone. 

However, SiamFC and ATOM fail to track once the drone 

goes out of the view. From the second row, the drone is very 

small and it appears as a bright blob. At the 85th frame, 

there is a large-scale displacement on the target, throwing 

away the tracked boxes of ATOM and SiamFC, but our 

algorithm can capture the drone at the 86th frame and  

continue tracking. From the third row, the camera is 

dragged frequently, and there are buildings in the 

background, causing interference to the drone. At frame 72, 

SiamFC and ATOM tracking fail, but our algorithm with 

feature attention mechanism and extended search 

mechanism can track targets robustly. From the fourth row, 

the texture of the drone is not clear. At the 65th frame, the 

camera suddenly moves, making both SiamFC and ATOM 

fail in tracking, but our algorithm can track the target well. 

From the fifth row, all the algorithms can track the drone 

well until the 38th frame. Then the camera suddenly moves, 

causing a large-scale displacement of the target position. 

Only our tracking algorithm can keep tracking the target, 

and all the other algorithms fail. The same happens also in 

the 72nd frame, the 150th frame, and the 585th frame, 

which shows that the strategy of the expansion search 

proposed is effective. 

5. Conclusion 

In this paper, a robust and real-time infrared UAVs 

tracking approach is proposed, which mainly consists in the 

addition of a feature attention mechanism and an expansion 

search strategy to a fully convolutional classifier. 

Experiments on the Anti-UAV dataset show that the 

proposed infrared tracking algorithm is robust to the 

challenges in real infrared scenes in real time. 
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