
Ultra Low Bitrate Learned Image Compression by Selective Detail Decoding

Hiroaki Akutsu Akifumi Suzuki

Hitachi, Ltd., Japan

hiroaki.akutsu.cs@hitachi.com

Zhisheng Zhong Kiyoharu Aizawa

The University of Tokyo, Japan

Abstract

Neural network-based learned image compression has a

special feature in that a differentiable image quality index

can be used as a loss function directly, and a decoder and an

encoder can be optimized by the quality index through end-

to-end learning. From a perceptual view, we hypothesized

that there were detailed important parts in pictures. For

those parts, we applied an additional decoder and weighted

loss function to achieve both low bitrate image compression

and perceptual quality. Furthermore, our approach can au-

tomatically determine which region an additional decoder

will take for an input image. Experiments visually showed

that the proposed method can recognize important parts,

such as text and faces, and we show that our method can de-

code images more clearly than the simple MS-SSIM training

model.

1. Introduction

Image compression configured by neural networks in an

end-to-end manner has been studied [9] [10] [11]. In gen-

eral, neural network-based learned image compression is

composed of an encoder, a decoder, a quantizer, an entropy

estimator, and an adaptive arithmetic coder, the same as tra-

ditional image compression. In many cases, the encoder and

the decoder are composed of a convolutional auto-encoder,

and the entropy estimator is also composed of a neural

network. One of the advantages of neural network-based

learned image compression is that a differentiable image

quality index can be directly used as a loss function of the

neural network. In past research, PSNR (MSE), MS-SSIM

[13], etc. are often used as image quality indexes. An-

other advantage is that a network structure researched and

optimized by other tasks (recognition, segmentation, gen-

eration model, super-resolution, etc.) could be commonly

used as a compression component. For example, in adap-

tive arithmetic coding, a high compression rate is achieved

by dynamically predicting the probability distribution of a

quantized value. There are papers [10] [11] that use neural

networks such as auto-regression models, e.g., PixelCNN

[12], and auto-encoders to generate hyperpriors for this pre-

diction. There is one study [1] that uses GANs for image

compression. By using GANs, it is possible to output a

likely image even at a low bitrate, which is difficult with

conventional image compression. However, as stated in this

paper, there is a problem that symbolic information would

collapse.

We aim to realize data compression technology that

maintains perceptual quality while keeping the bitrate as

low as possible. Our contribution is three points: (i) we

show the MS-SSIM for entire image and perceptual quality

do not always match, and we propose to apply two decoders

to achieve both low bitrate and high perceptual quality that

a main decoder is trained by conditional GAN-style and a

selective detail decoder is trained by weighted MS-SSIM

loss [3], it should be notable that we modify the decoder

part without changing the encoder, (ii) the adding of causal

attention modules to the context entropy estimator for fur-

ther reducing bpps with respect to one of the state-of-the-art

auto-regressive models [5], and (iii) super-resolution-style

encoder and decoder blocks [14] with spatial attention mod-

ules.

2. Proposal Method

2.1. Overview

Figure 1 shows the overall network configuration of the

proposed method. The method consists of an encoder E, a

main decoder Gm, a selective detail decoder Gs, quantiz-

ers Q, an entropy estimator H , a discriminator D, adaptive

arithmetic encoders (AE), and decoders (AD). E, Gm, Gs,

H , and D have parameters to train, and Q, AE, and AD have

no parameters. We used a round quantizer [4] and adaptive

range coders as AE and AD. Assume an input image is x,

and a quantized feature map ẑ to be arithmetically encoded

is obtained with ẑ = Q(E(x)). The entropy estimator H
takes as input the unquantized feature maps z and ẑ, and

it outputs the parameters of the probability distribution re-

quired for adaptive arithmetic coding.



QEncoder

Entropy 
estimator

Main 
decoder 

Selective 
detail decoder 

Mask
operation

AE AD

Input 
Image Reconstruction

Image

Bits

�
��

✁✂�

✄

✁✂☎

�✆

�✝

��

✞✂✟

��� ✞✂☎

✞✂�

�

� ✠✡☛ ☞✡

Weighted
MS-SSIM

loss✌✍Labels

�

Discriminator �Labels ✌�

Figure 1. Network architecture overview.

2.2. Main Decoder and Selective Detail Decoder

The proposed method uses two decoder, Gm and Gs.

The main decoder Gm is a model for decoding entire im-

ages x̂m, and it is trained adversarially with the discrim-

inator network D. The selective detail decoder Gs is a

model specialized for specific important parts and trained

using weighted MS-SSIM [3]. We used two type of labels

ta and ts for training which have same spatial dimensions

(width and height) with images in the training dataset. The

weighted MS-SSIM uses annotation information labels ta

that indicates the important parts to be processed by Gs. We

chose scene texts and human faces as the important parts,

which are labeled by ta. D is used for the training of Gm

and not used for Gs. D uses semantic segmentation labels

ts with images x̂m as inputs like conditional GANs. In con-

ventional conditional GAN-based image compression [1],

the label is also input to the generator side, but we found

it works even if it is removed. Thus, our compression net-

work architecture have two decoders with keeping a single

encoder. This approach is general and does not require ad-

ditional labels when compressing and decompressing data.

The mask vector m is the output of one channel of the

Gs with the sigmoid function applied, and it indicates which

part of the output image x̂s from Gs should be used. It

reconstructs the image x̂ by following the mask operation,

x̂ = x̂s ⊙m+ x̂m ⊙ (1−m). (1)

With end-to-end learning, we aim to improve the total per-

ceptual quality by automatically selecting which part of a

picture is processed by which decoder with m.

2.3. Entropy Estimator with Causal Attention

The entropy estimator of the proposed method uses both

context and hyperprior-based prediction, and it finally out-

puts the parameters of the probability distribution of ẑ val-

ues, as in the same approach of [11]. In particular, to im-

prove the prediction of the probability distribution of the

values, we propose applying causal attention modules to the

context estimator and the mixing body that is the part that

mixes hyperpriors and the context estimation.

Figure 2 shows the structure of our entropy estimator.

The entropy estimator inputs z and ẑ and outputs the pa-

rameters µf , σf of Gaussian distributions that represent

distributions of ẑ values. The hyperprior encoder He en-

codes z and then quantizes them to get ẑh. ẑh is encoded

into a very small bit stream by adaptive arithmetic coding

and stored as compressed data along with ẑ. Using µf , σf ,

the entropy is estimated by the following that uses the cu-

mulative distribution function of the Gaussian distribution,

If (ẑ) = −
∑

log(
1

2
erf(

ẑ− µf + 0.5√
2σf

)−

1

2
erf(

ẑ− µf − 0.5√
2σf

)).

(2)

The hyperprior entropy Ih can be obtained in the same

way as If . The final entropy is calculated by I(ẑ, z) =
If (ẑ) + Ih(Q(He(z))). Figure 2 also shows the structures

of the context estimator and the mixing body. There is one

proposal [10] of using residual blocks for the context esti-

mator. For further improvement, we refer to PixelSNAIL

[5], and we apply causal attention modules to the context

estimator and the mixing body.

2.4. Super-Resolution Style Autoencoder Modules

In general, image compression with the convolutional

auto-encoder uses a large convolution kernel with a stride

of 2 to reduce the spatial dimensions by 1/2 repeatedly [10]

[11]. We proposed [14] using a technique called PixelShuf-

fling [8] with residual channel attention blocks for the image

compression area, which is often used for super-resolution

tasks, without using a large kernel-size convolution.

Figure 3 shows the configuration of the building blocks

used in this paper. In this paper, we use blocks obtained

by adding attention in the spatial direction to the proposed

method like RAMs [7]. The encoder body is a component

that reduces the spatial dimensions by 1/2, and it is used

for E, He, and D. The decoder body is a component that

increases the spatial dimensions by 2 times, and it is used

for Gs, Gm, and Hd.



Q
Hyperprior
encoder

AE AD

Input 
feature

Bits (for hyper prior)

Context
estimator

Context
estimator

Hyperprior
decoder

Input 
quantized

feature Mixing 
body

Output
Distribution

parameters

Context estimator

Masked

Conv

3x3

Masked

Conv

3x3

ReLU

Masked

Conv

3x3

Masked

Conv

3x3

Masked

Conv

3x3

ReLU

Causal attention module

ReLU

Masked

Conv

3x3

ReLU

Mixing body

Masked

Conv

3x3

Masked

Conv

3x3

ReLU ReLU

Masked

Conv

3x3
Masked

Conv

3x3

Masked

Conv

3x3

ReLU

Causal attention module

SigmoidSigmoid

✁�✂ ✄�

�

��

☎✆✝

☎✆✝

✁✞✂ ✄✞concat

✟ ✟ ✟

✟

✟

✟

✠✟

✟ ✟

✟

✟

✟

✟
✠✡

�☛
�☞

�✌
�✍

�✎

✟✏ ✑✒✓✔✕✖ ✗✘ ✙✑✚✒✛ ✜✢✣✑✑✕✤✥

Figure 2. Entropy estimator.

RAM block

Encoder body

Decoder body

Inverse
PixelShuffle

(x1/2)

RAM 
Block

(#1)

RAM 
Block

(#6)

Conv
3x3…

RAM 
Block

(#1)

RAM 
Block

(#6)…
Conv
3x3

Pixel
Shuffle

(x2)

Conv
3x3

Conv
3x3

ReLU

Conv
1x1

Conv
1x1

ReLU
Average
pooling

Conv
3x3Spatial attention

Channel 

Attention

Sigmoid

✁

✁

✂✁

�✁✄☎✆

✂✁ ✁✄☎✆

✁✄☎✆

✁ ✁ ✁

✁

✁✁

✁

�✁✄☎✆

✁✄☎✆✝ ✞✟✠✡☛☞ ✌✍ ✌✟✎✏✟✎ ✑✒✓✞✞☛✔✕

Figure 3. Network building blocks.

2.5. Loss Functions

In [1], a method was proposed of learning by combin-

ing an image distortion function, discriminator loss, and en-

tropy loss with Lagrange multipliers. The differences with

our proposed method are the following two. First, to au-

tomatically process each region of an image with different

decoders, the weighted MS-SSIM loss function [3] is used

for training. Second, semantic segmentation labels ts are

used only for the input of the discriminator and not for the

encoder or decoder input. Our approach requires the labels

ts, ta during model training but not during compression and

decompression after model training. This is because the

model jointly learns these features by using the loss func-

tion and the discriminator.

Our entropy loss is represented by the Le = E [I(ẑ, z)],
and the distortion loss is given by

Ld =E [1−MSSSIM(x, x̂m)] +

λpE [1− wMSSSIM(x, x̂, ta)] .
(3)

For the main decoder output images x̂m, not only the dis-

criminator but also the normal MS-SSIM is backpropagated

to remove some visual discomfort. However, the hyper-

parameter λp is set to give priority to backpropagate the

weighted MS-SSIM to the specific important region given

by the annotation information ta.

In our configurations, stable training was possible by us-

ing a softplus-based discriminator loss function. We define

r with r = −1 at discriminator phase and r = 1 at generator

phase, the discriminator loss we used is given by

Lg = E

[

log(1 + eD(x,ts))
]

+ E

[

log(1 + erD(x̂m,ts))
]

.

(4)

Finally, the total loss function is given by

min
θGt,s,E,H

min
θD

V (θGt,s,E,H , θD) = Ld + λeLe + λgLg.

(5)

3. Experimental Results

3.1. Experimental Conditions

The encoder E was composed of four encoder bodies,

and a 3x3 conv layer was added at the end. The number

of channels between these components were respectively 3,

32, 64, 128, 192, and 64. Gm was composed of 4 encoder

bodies, and a 3x3 conv layer was inserted first. The numbers

of channels among these components were respectively 32,

192, 128, 64, 32, and 3. Gs was similarly configured, but

the numbers of channels among components were respec-

tively 32, 192, 96, 64, 32, and 4. He was composed of two

encoder bodies, and a 3x3 conv layer was inserted first. The

numbers of channels among these components were respec-

tively 64, 32, 32, and 32. Hd was composed of two decoder

bodies, and a 3x3 conv layer was inserted last. The numbers

of channels among these components were respectively 32,

32, 32, and 128. The configuration of the other components

of the entropy estimator is as described in Figure 2.

The discriminator D was composed of four encoder bod-

ies, and a 3x3 conv layer was added at the end. The num-

bers of channels among these components were respectively

8, 32, 64, 128, 192, and 1. The input of the images was 3

channels, and the remaining 5 channels were used for the

input of label ts in D. The input labels were one-hot ex-

pressions, and additional 1x1 convolution networks with a

final output of 5 channels were added to reduce the label

dimension.

We used images from the Open Images Challenge 2018

dataset [2] for training. For those images, semantic seg-

mentation for ts was machine generated, and annotations

of faces and text parts for ta were also machine generated,

and those were used for training. The hyperparameters used

were λp = 5, λe = 0.18, and λg = 0.01. We used the

ADAM optimizer and set the learning rate as 8e-5. The

batch size was 8 and the number of training iterations was

about 800,000.



bpp: 0.219

MS-SSIM: 0.951 (0.959)

bpp: 0.216

MS-SSIM: 0.937 (0.950)

(a) ground truth bpp: 0.125

MS-SSIM: 0.977 (0.957)

(b) MS-SSIM training

bpp: 0.117

MS-SSIM: 0.970 (0.942)

(c) proposal (x̂)

(d) The main decoder
output (x̂m)

(e) The selective detail
decoder output

(x̂s ⊙m)

Figure 4. Experimental results using kodim18 and 20 (the pictures were clipped, and values in parentheses are clipping parts MS-SSIM).

bpp MS-SSIM PSNR

0.148 0.9648 28.028

Table 1. Evaluation results using the CLIC2020 validation dataset.

3.2. Results

The evaluation results using the Kodak PhotoCD dataset

[6] are shown in Figure 4. (b) shows the results of evalua-

tion using a model which was simply trained by the MS-

SSIM loss function. The network configuration was the

same as that of the proposed method, but the only decoder

that was used was Gm. Under the same level bitrate con-

dition, the proposed method decoded parts such as ground

grass and textures of background objects more clearly com-

pared with the simple MS-SSIM model. In addition, the

face and characters are collapsed in image (d) x̂m trained by

the discriminator, but according to (e), the proposed method

successfully masked the relevant part as a important part. It

can be seen that it generated an image visually closer to

the ground truth of (a). Furthermore, as an effect of the

weighted MS-SSIM, the important parts were sharper than

with the simple MS-SSIM model. Furthermore, the masked

boundaries are not visually noticeable due to the effect of

multi-scale filtering of the weighted MS-SSIM. As shown

in the results, MS-SSIM for the entire image and the per-

ceptual quality do not always match.

Finally, Table 1 shows the results using the CLIC2020

dataset. Our submission team’s name is ”neuro”.

4. Conclusion

GAN-based image compression can achieve an ultra low

bitrate, but in some cases, it can be visually inferior. To

achieve visually superior, the proposed methods using two

decoders, the main decoder trained on the GAN-base and

the selective detail decoder trained on weighted MS-SSIM

for areas specified by annotation information. Our method

do not need those additional labels during compression and

decompression processing after the model training. Further-

more, we leverage a network capable of outputting high-

definition images used in the super-resolution area, and also

introduce a casual attention module to the entropy estima-

tor. We believe that the proposed technology has brought us

one step closer to achieving high-perceptual-quality com-

pression under ultra low bitrate conditions.

Acknowledgement

Computational resource of AI Bridging Cloud Infras-

tructure (ABCI) provided by National Institute of Advanced

Industrial Science and Technology (AIST) was used.

References

[1] Eirikur Agustsson, Michael Tschannen, Fabian Mentzer,

Radu Timofte, and Luc Van Gool. Generative adversarial

networks for extreme learned image compression. In The

IEEE International Conference on Computer Vision (ICCV),

October 2019.



[2] Google AI. Overview of the open images challenge 2018.

https://storage.googleapis.com/openimages/web/challenge.html,

2018.

[3] Hiroaki Akutsu and Takahiro Naruko. End-to-end learned

roi image compression. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR) Workshops,

June 2019.

[4] Johannes Ballé, Valero Laparra, and Eero P. Simon-

celli. End-to-end optimized image compression. CoRR,

abs/1611.01704, 2016.

[5] Xi Chen, Nikhil Mishra, Mostafa Rohaninejad, and Pieter

Abbeel. Pixelsnail: An improved autoregressive generative

model. CoRR, abs/1712.09763, 2017.

[6] Rich Franzen. Kodak lossless true color image suite.

http://r0k.us/graphics/kodak/, 1999.

[7] Jun-Hyuk Kim, Jun-Ho Choi, Manri Cheon, and Jong-Seok

Lee. RAM: residual attention module for single image super-

resolution. CoRR, abs/1811.12043, 2018.

[8] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero,

Andrew Cunningham, Alejandro Acosta, Andrew Aitken,

Alykhan Tejani, Johannes Totz, Zehan Wang, and Wenzhe

Shi. Photo-realistic single image super-resolution using a

generative adversarial network. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), July

2017.

[9] M. Li, W. Zuo, S. Gu, D. Zhao, and D. Zhang. Learning con-

volutional networks for content-weighted image compres-

sion. In 2018 IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 3214–3223, June 2018.

[10] Fabian Mentzer, Eirikur Agustsson, Michael Tschannen,

Radu Timofte, and Luc Van Gool. Conditional probability

models for deep image compression. In 2018 IEEE Confer-

ence on Computer Vision and Pattern Recognition, CVPR

2018, Salt Lake City, UT, USA, June 18-22, 2018, pages

4394–4402, 2018.

[11] David Minnen, Johannes Ballé, and George D Toderici.

Joint autoregressive and hierarchical priors for learned im-

age compression. In Thirty-second Conference on Neural

Information Processing Systems, NeurIPS 2018, 3-8 Decem-

ber 2018, Montréal, Canada., pages 10794–10803, 2018.

[12] Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, ko-

ray kavukcuoglu, Oriol Vinyals, and Alex Graves. Condi-

tional image generation with pixelcnn decoders. In D. D.

Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,

editors, Advances in Neural Information Processing Systems

29, pages 4790–4798. Curran Associates, Inc., 2016.

[13] Z Wang, Eero Simoncelli, and Alan Bovik. Multiscale struc-

tural similarity for image quality assessment. In Conference

Record of the Asilomar Conference on Signals, Systems and

Computers, 2003.

[14] Zhisheng Zhong, Hiroaki Akutsu, and Kiyoharu Aizawa.

Channel-level variable quantization network for deep image

compression. 2020 (under review).


