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Abstract

Neural network-based learned image compression has a
special feature in that a differentiable image quality index
can be used as a loss function directly, and a decoder and an
encoder can be optimized by the quality index through end-
to-end learning. From a perceptual view, we hypothesized
that there were detailed important parts in pictures. For
those parts, we applied an additional decoder and weighted
loss function to achieve both low bitrate image compression
and perceptual quality. Furthermore, our approach can au-
tomatically determine which region an additional decoder
will take for an input image. Experiments visually showed
that the proposed method can recognize important parts,
such as text and faces, and we show that our method can de-
code images more clearly than the simple MS-SSIM training
model.

1. Introduction

Image compression configured by neural networks in an
end-to-end manner has been studied [9] [10] [11]. In gen-
eral, neural network-based learned image compression is
composed of an encoder, a decoder, a quantizer, an entropy
estimator, and an adaptive arithmetic coder, the same as tra-
ditional image compression. In many cases, the encoder and
the decoder are composed of a convolutional auto-encoder,
and the entropy estimator is also composed of a neural
network. One of the advantages of neural network-based
learned image compression is that a differentiable image
quality index can be directly used as a loss function of the
neural network. In past research, PSNR (MSE), MS-SSIM
[13], etc. are often used as image quality indexes. An-
other advantage is that a network structure researched and
optimized by other tasks (recognition, segmentation, gen-
eration model, super-resolution, etc.) could be commonly
used as a compression component. For example, in adap-
tive arithmetic coding, a high compression rate is achieved
by dynamically predicting the probability distribution of a
quantized value. There are papers [10] [11] that use neural
networks such as auto-regression models, e.g., PixeICNN
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[12], and auto-encoders to generate hyperpriors for this pre-
diction. There is one study [1] that uses GANs for image
compression. By using GANS, it is possible to output a
likely image even at a low bitrate, which is difficult with
conventional image compression. However, as stated in this
paper, there is a problem that symbolic information would
collapse.

We aim to realize data compression technology that
maintains perceptual quality while keeping the bitrate as
low as possible. Our contribution is three points: (i) we
show the MS-SSIM for entire image and perceptual quality
do not always match, and we propose to apply two decoders
to achieve both low bitrate and high perceptual quality that
a main decoder is trained by conditional GAN-style and a
selective detail decoder is trained by weighted MS-SSIM
loss [3], it should be notable that we modify the decoder
part without changing the encoder, (ii) the adding of causal
attention modules to the context entropy estimator for fur-
ther reducing bpps with respect to one of the state-of-the-art
auto-regressive models [5], and (iii) super-resolution-style
encoder and decoder blocks [14] with spatial attention mod-
ules.

2. Proposal Method
2.1. Overview

Figure 1 shows the overall network configuration of the
proposed method. The method consists of an encoder E, a
main decoder G, a selective detail decoder G, quantiz-
ers (2, an entropy estimator H, a discriminator D, adaptive
arithmetic encoders (AE), and decoders (AD). E, G,,,, G,
H, and D have parameters to train, and (), AE, and AD have
no parameters. We used a round quantizer [4] and adaptive
range coders as AE and AD. Assume an input image is X,
and a quantized feature map Z to be arithmetically encoded
is obtained with Z = Q(F/(x)). The entropy estimator H
takes as input the unquantized feature maps z and z, and
it outputs the parameters of the probability distribution re-
quired for adaptive arithmetic coding.
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Figure 1. Network architecture overview.

2.2. Main Decoder and Selective Detail Decoder

The proposed method uses two decoder, GG, and Gi.
The main decoder G, is a model for decoding entire im-
ages Xy, and it is trained adversarially with the discrim-
inator network D. The selective detail decoder Gy is a
model specialized for specific important parts and trained
using weighted MS-SSIM [3]. We used two type of labels
ta, and tg for training which have same spatial dimensions
(width and height) with images in the training dataset. The
weighted MS-SSIM uses annotation information labels t,
that indicates the important parts to be processed by G5. We
chose scene texts and human faces as the important parts,
which are labeled by t,. D is used for the training of G,,
and not used for G5. D uses semantic segmentation labels
ts with images X, as inputs like conditional GANs. In con-
ventional conditional GAN-based image compression [1],
the label is also input to the generator side, but we found
it works even if it is removed. Thus, our compression net-
work architecture have two decoders with keeping a single
encoder. This approach is general and does not require ad-
ditional labels when compressing and decompressing data.

The mask vector m is the output of one channel of the
G5 with the sigmoid function applied, and it indicates which
part of the output image Xs from G should be used. It
reconstructs the image X by following the mask operation,

b33

=X Om+ Xy © (1 —m). (1

With end-to-end learning, we aim to improve the total per-
ceptual quality by automatically selecting which part of a
picture is processed by which decoder with m.

2.3. Entropy Estimator with Causal Attention

The entropy estimator of the proposed method uses both
context and hyperprior-based prediction, and it finally out-
puts the parameters of the probability distribution of z val-
ues, as in the same approach of [11]. In particular, to im-
prove the prediction of the probability distribution of the
values, we propose applying causal attention modules to the
context estimator and the mixing body that is the part that
mixes hyperpriors and the context estimation.

Figure 2 shows the structure of our entropy estimator.
The entropy estimator inputs z and Z and outputs the pa-
rameters p g, oy of Gaussian distributions that represent
distributions of Z values. The hyperprior encoder H. en-
codes z and then quantizes them to get Zy,. Zjp is encoded
into a very small bit stream by adaptive arithmetic coding
and stored as compressed data along with Z. Using p ¢, o,
the entropy is estimated by the following that uses the cu-
mulative distribution function of the Gaussian distribution,
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The hyperprior entropy I can be obtained in the same
way as Iy. The final entropy is calculated by I(Z,z) =
I+(z) + In(Q(Hc(z))). Figure 2 also shows the structures
of the context estimator and the mixing body. There is one
proposal [10] of using residual blocks for the context esti-
mator. For further improvement, we refer to PixelSNAIL
[5], and we apply causal attention modules to the context
estimator and the mixing body.

2.4. Super-Resolution Style Autoencoder Modules

In general, image compression with the convolutional
auto-encoder uses a large convolution kernel with a stride
of 2 to reduce the spatial dimensions by 1/2 repeatedly [10]
[11]. We proposed [14] using a technique called PixelShuf-
fling [8] with residual channel attention blocks for the image
compression area, which is often used for super-resolution
tasks, without using a large kernel-size convolution.

Figure 3 shows the configuration of the building blocks
used in this paper. In this paper, we use blocks obtained
by adding attention in the spatial direction to the proposed
method like RAMs [7]. The encoder body is a component
that reduces the spatial dimensions by 1/2, and it is used
for E, H,, and D. The decoder body is a component that
increases the spatial dimensions by 2 times, and it is used
for G4, G, and Hy.
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Figure 2. Entropy estimator.

2.5. Loss Functions

In [1], a method was proposed of learning by combin-
ing an image distortion function, discriminator loss, and en-
tropy loss with Lagrange multipliers. The differences with
our proposed method are the following two. First, to au-
tomatically process each region of an image with different
decoders, the weighted MS-SSIM loss function [3] is used
for training. Second, semantic segmentation labels tg are
used only for the input of the discriminator and not for the
encoder or decoder input. Our approach requires the labels
ts, t, during model training but not during compression and
decompression after model training. This is because the
model jointly learns these features by using the loss func-
tion and the discriminator.

Our entropy loss is represented by the £, = E [I(2, z)],
and the distortion loss is given by

Lq=E[1 — MSSSIM (x,%m)] +

3
ME[L — wMSSSIM(x, %, t4)] . <)

For the main decoder output images X, not only the dis-
criminator but also the normal MS-SSIM is backpropagated
to remove some visual discomfort. However, the hyper-
parameter )\, is set to give priority to backpropagate the
weighted MS-SSIM to the specific important region given
by the annotation information t,.

In our configurations, stable training was possible by us-
ing a softplus-based discriminator loss function. We define
r with » = —1 at discriminator phase and = 1 at generator
phase, the discriminator loss we used is given by

L,=FE [log(l + eD(x’tS))} +E {log(l + e7'D(im’tS)) .
“4)

Finally, the total loss function is given by
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Figure 3. Network building blocks.

3. Experimental Results
3.1. Experimental Conditions

The encoder E was composed of four encoder bodies,
and a 3x3 conv layer was added at the end. The number
of channels between these components were respectively 3,
32, 64, 128, 192, and 64. G,,, was composed of 4 encoder
bodies, and a 3x3 conv layer was inserted first. The numbers
of channels among these components were respectively 32,
192, 128, 64, 32, and 3. G, was similarly configured, but
the numbers of channels among components were respec-
tively 32, 192, 96, 64, 32, and 4. H. was composed of two
encoder bodies, and a 3x3 conv layer was inserted first. The
numbers of channels among these components were respec-
tively 64, 32, 32, and 32. H; was composed of two decoder
bodies, and a 3x3 conv layer was inserted last. The numbers
of channels among these components were respectively 32,
32,32, and 128. The configuration of the other components
of the entropy estimator is as described in Figure 2.

The discriminator D was composed of four encoder bod-
ies, and a 3x3 conv layer was added at the end. The num-
bers of channels among these components were respectively
8, 32, 64, 128, 192, and 1. The input of the images was 3
channels, and the remaining 5 channels were used for the
input of label ts in D. The input labels were one-hot ex-
pressions, and additional 1x1 convolution networks with a
final output of 5 channels were added to reduce the label
dimension.

We used images from the Open Images Challenge 2018
dataset [2] for training. For those images, semantic seg-
mentation for ts was machine generated, and annotations
of faces and text parts for t, were also machine generated,
and those were used for training. The hyperparameters used
were A\, = 5, A\, = 0.18, and \; = 0.01. We used the
ADAM optimizer and set the learning rate as 8e-5. The
batch size was 8 and the number of training iterations was
about 800,000.
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Figure 4. Experimental results using kodim18 and 20 (the pictures were clipped, and values in parentheses are clipping parts MS-SSIM).

[ bpp [ MS-SSIM [ PSNR |
[0.148 ] 0.9648 [ 28.028 |

Table 1. Evaluation results using the CLIC2020 validation dataset.

3.2. Results

The evaluation results using the Kodak PhotoCD dataset
[6] are shown in Figure 4. (b) shows the results of evalua-
tion using a model which was simply trained by the MS-
SSIM loss function. The network configuration was the
same as that of the proposed method, but the only decoder
that was used was (3,,. Under the same level bitrate con-
dition, the proposed method decoded parts such as ground
grass and textures of background objects more clearly com-
pared with the simple MS-SSIM model. In addition, the
face and characters are collapsed in image (d) X, trained by
the discriminator, but according to (e), the proposed method
successfully masked the relevant part as a important part. It
can be seen that it generated an image visually closer to
the ground truth of (a). Furthermore, as an effect of the
weighted MS-SSIM, the important parts were sharper than
with the simple MS-SSIM model. Furthermore, the masked
boundaries are not visually noticeable due to the effect of
multi-scale filtering of the weighted MS-SSIM. As shown
in the results, MS-SSIM for the entire image and the per-
ceptual quality do not always match.

Finally, Table 1 shows the results using the CLIC2020
dataset. Our submission team’s name is ’neuro”.

4. Conclusion

GAN-based image compression can achieve an ultra low
bitrate, but in some cases, it can be visually inferior. To
achieve visually superior, the proposed methods using two
decoders, the main decoder trained on the GAN-base and
the selective detail decoder trained on weighted MS-SSIM
for areas specified by annotation information. Our method
do not need those additional labels during compression and
decompression processing after the model training. Further-
more, we leverage a network capable of outputting high-
definition images used in the super-resolution area, and also
introduce a casual attention module to the entropy estima-
tor. We believe that the proposed technology has brought us
one step closer to achieving high-perceptual-quality com-
pression under ultra low bitrate conditions.
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