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Abstract

Most current research in the domain of image compres-

sion focuses solely on achieving state of the art compression

ratio, but that is not always usable in today’s workflow due

to the constraints on computing resources.

Constant market requirements for a low-complexity im-

age codec have led to the recent development and standard-

ization of a lightweight image codec named JPEG XS.

In this work we show that JPEG XS compression can

be adapted to a specific given task and content, such as

preserving visual quality on desktop content or maintain-

ing high accuracy in neural network segmentation tasks, by

optimizing its gain and priority parameters using the co-

variance matrix adaptation evolution strategy.

1. Introduction

JPEG has been the most widely used image codec since

its introduction in 1992 and more powerful standards such

as JPEG2000 have failed to take up consequential market

shares due in large part to their added complexity. The

JPEG XS codec was standardized in 2019 (ISO/IEC 21122)

[1] in response to market demand for lightweight image

compression [2]. Its typical use-cases are to replace un-

compressed data flow, whose bandwidth requirement is no

longer affordable due to the ever increasing content resolu-

tion, and embedded systems, which are bound by the com-

plexity of their integrated circuits and often by their battery

capacity. Use-cases often target specific tasks and contents,

hence it can be beneficial to optimize an image encoder to

account for prior knowledge of its intended application.

Similar optimization work has been produced with other

codecs; mainly JPEG, for which quantization tables have

been optimized for different tasks using various methods

[3][4][5][6], and JPEG2000, which has had its large param-

eter space explored with the use of genetic algorithms [7].

Akin to the JPEG quantization table [8], JPEG XS uses

a table of gains and priorities for each sub-band. The ISO

21122-1 standard provides a table of gains and priorities

(jointly referred to as weights) that maximize peak signal-

to-noise ratio (PSNR) [1, Tab. H.3] and states that other val-

ues may result in higher quality for certain scenarios. These

weights are embedded in the encoded image; the decoder

parses them and the choice of optimized weights cannot

break compatibility with ISO 21122 compliant decoders.

We describe a framework based on the covariance matrix

adaptation evolution strategy (CMA-ES) to optimize JPEG

XS weights for different metrics and contents. Through this

method, decreases of up to 14% of bits-per-pixel (bpp) at

constant quality are achieved on desktop content and up to

59% at constant accuracy on a semantic segmentation task.

2. Background

2.1. JPEG XS

The JPEG XS coding scheme [1] first applies a reversible

color conversion from the RGB color space to YCbCr. The

signal is then decomposed into a set of sub-bands, through

an asymmetric 2D multilevel discrete wavelet transforma-

tion (DWT) [9]. Wavelet coefficients are split into precincts

containing coefficients from all sub-bands that make up a

spatial region of the image (usually a number of horizon-

tal lines), and are encoded as 16-bit integers prior to quan-

tization. The gains (Gb) and priorities (Pb) table makes

up the weights, a pair of values defined for each sub-band

(b), which are stored in the encoded picture header. The

precinct quantization (Qp) and precinct refinement (Rp) are

computed for each precinct (p) based on the bit budget

available for that precinct. The truncation position (Tb,p)

determines how many least significant bits are discarded

from all wavelet coefficients of a given sub-band within a

precinct; Tb,p is calculated from Gb, Pb, Qp, and Rp as fol-

low: Tp,b = Qp − Gb + r where r is 1 for Pb < Rp and

0 otherwise. Eventually Tp,b is then clamped to the valid

range, i.e. [0;15]. Bitplane counts (i.e. number of non-zero

bitplanes in a group of four coefficients) are then entropy-

coded and packed along with the truncated coefficients val-

ues, their signs, and Qp and Rp values.
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2.2. CMA­ES

CMA-ES is an evolutionary algorithm which performs

derivative-free numerical optimization of non-linear and

non-convex functions, using a population of candidate so-

lutions whose mean and covariance matrix are updated for

each generation using the most fit individuals. [10][11]

Rios and Sahinidis [12] have extensively reviewed 22

derivative-free optimization algorithms over a wide range

of problems. They show that CMA-ES outperforms other

algorithms by ∼200% when measuring the fraction of non-

convex non-smooth problems with 10-30 variables solved

from a near-optimal solution [12, Figure 32]. The optimiza-

tion of JPEG XS High profile weights fits this use-case,

given there are 30 variables whose initial values have al-

ready been optimized to maximize PSNR, and the number

of function evaluations is of little importance since this op-

timization is performed only once. The pycma library [13]

provides a well-tested implementation of CMA-ES.

3. Experiments

The optimization method described in 3.1 introduces the

CMA-ES optimizer and its pycma implementation, details

the use of a JPEG XS codec, and lists the datasets and met-

rics used. Results are given in 3.2.

3.1. Method

CMA-ES implementation

We use the pycma [13] CMA-ES implementation. The

only required parameters are an initial solution X0 and the

initial standard deviation σ0. The gains defined in [1, Tab.

H.3] are used for X0 and their standard deviation is com-

puted for σ0. Population size is set to 14 by pycma based

on the number of variables. Gains are optimized as floating-

point values; their truncated integer representation is used

as the gains given to the encoder and the fractional parts are

ranked in descending order which is used as priorities. This

matches the relative importance of priorities in Section 2.1,

where a bit of precision is added to bands whose priority Pb

is smaller than the precinct refinement threshold Rp.

JPEG XS implementation

JPEG XS High profile [2, Tab. 2] is optimized using

TICO-XSM, the JPEG XS reference software [14] provided

by intoPIX [15]. Each image is encoded and decoded with

a given set of weights and the average loss (1-MS-SSIM,

-PSNR, or the prediction error) on the image set is used

as the fitness value. A single image is encoded and decoded

using the tco_enc_dec command with a given target bpp

and a configuration file containing the candidate weights.

The gains and priorities are listed in the configuration file

in the following order (deepest level first): LL5,2, HL5,2,

HL4,2, HL3,2, HL2,2, LH2,2, HH2,2, HL1,1, LH1,1, HH1,1

where H denotes high-pass filtering and L is low-pass fil-

tering. The list is repeated for each component (Y, Cb, Cr).

This differs from [1, Tab. H.3], where the three components

are alternating for each value.

Human visual system optimization

The training data used to generate weights optimized for

image quality is a random subset of 240 featured pictures

from Wikimedia Commons [16], randomly scaled between

0.25 and 1.00 of their original size and cropped to match the

Kodak Image Dataset [17] resolution of 768x512. A differ-

ent subset of 240 featured pictures and the 24-pictures Ko-

dak Image Dataset are used for testing. A set of 200 screen-

shots has been collected on Wikimedia Commons for syn-

thetic desktop content optimization, ensuring variability in

the software, operating systems, fonts, and tasks displayed.

The desktop content has a resolution of 1920x1080 and is

split into two 100-picture subsets for training and testing.

These images are optimized for MS-SSIM and PSNR.

Computer vision optimization

Optimized weights are generated for an AI-based com-

puter vision task to minimize prediction error incurred

from compression artifacts. This employs the Cityscapes

dataset, consisting of street scenes captured with an auto-

motive camera in fifty different cities with pixel-level an-

notations covering thirty classes. [18] The data is split

between a “train” set used to train a convolutional neu-

ral network (CNN) that performs pixel-level semantic la-

beling on uncompressed content, and a “val” set used to

test the accuracy of the trained CNN using the intersection-

over-union (IoU =
TP

TP+FP+FN
) metric. The HarDNet archi-

tecture is well suited for this optimization task because it

performs fast inference without forgoing analysis accuracy

[19], enabling faster (and thus more) parameter evaluations

in CMA-ES.

The “train” data cannot be used to evaluate IoU perfor-

mance because the model has already seen it during train-

ing; therefore, we optimize the 500-image ”val” data. This

is split into three folds: two cities used as training data and

one city used as testing data. The weighted average over

three folds is based on the number of images in each test set.

The MS-SSIM metric is also optimized on the Cityscapes

dataset; the “train” and ”train extra” data can be reused,

making two 100-images subsets for training and testing.

Similarly to the human visual system (HVS) targeted op-

timization, AI optimization is performed by encoding and

decoding the whole set of images to be evaluated, comput-

ing the average IoU metric, and providing its result to the

optimizer as the fitness value of the current set of weights.

Hardware and complexity

The weights optimization process is parallelized using

all available CPU threads, each encoding an image. Im-

age analyses such as semantic segmentation and MS-SSIM



evaluation are computed faster on a GPU. Two or more op-

timization jobs are run in parallel, making constant use of

all available computing resources. 27 weight configurations

are extensively optimized and results are obtained in ap-

proximately three weeks from a total of 78 CPU threads.

Each training process is repeated at 1.00, 3.00, and 5.00

bpp. 4000 function evaluations are performed for each vi-

sual optimization and 1500 for each AI task. In addition, the

AI task optimization is repeated over three folds and differ-

ent bitrates are interpolated to produce Figure 2. The inter-

polation is carried out by computing the fitness value of the

top-10 weights of the closest optimized bitrate at each inter-

polated bitrate, as well as performing a smaller 150 function

evaluation optimization at the interpolated bitrates.

3.2. Results

Human visual system results

Results of the HVS weights optimization are summa-

rized in Table 1. Weights have been optimized for differ-

ent metrics and contents and tested with the MS-SSIM and

PSNR metrics. Table 1 shows that MS-SSIM is consistently

improved through the use of optimized weights, even when

using different content classes. Improvement is especially

considerable at low bitrate, as the standard weights consume

12% to 18% more bitrate to achieve the MS-SSIM index

obtained with 1.00 bpp using optimized weights. These re-

sults are close to those obtained using the “visual” weights

provided in the reference software. Improvements obtained

with PSNR weights are negligible; the standard weights are

already optimized for this metric and content-specific opti-

mizations bring no significant improvement. Weights opti-

mized for an AI task (IoU on Cityscapes) perform poorly

when measured against PSNR or MS-SSIM, even on the

same dataset. Figure 1 shows a visual comparison with

weights optimized for the MS-SSIM metric on “Featured

Pictures” and “Desktop” content at 1.00 bpp. MS-SSIM

weights tend to yield a consistent level of detail for a glob-

ally acceptable visual quality at low bitrate, whereas PSNR-

optimized weights tend to show a mix of sharper areas and

bleeding artifacts.

AI results

Table 2 shows the performance improvements from

weights optimized on a semantic segmentation task on the

Cityscapes dataset, as well as content-specific MS-SSIM

weights. The fully optimized weights achieve a 33.3% to

59% reduction in required bpp, meanwhile the MS-SSIM

weights do not translate to performance gains on the IoU

metric. Figure 2 shows the gains over many more bitrates,

by testing the standard weights every 0.50 bpp and inter-

polating the optimized weights. The IoU score obtained on

uncompressed content is 0.7506. This number is sometimes

exceeded when performing inference on compressed con-

tent; the highest scores obtained are 0.7514 with optimized

weights and 0.7508 with standard weights at 7.00 bpp.

Our results indicate that JPEG XS compression at a high

enough bitrate does not appear to be detrimental to the per-

formance of a semantic segmentation model trained on un-

compressed content (starting at 4.25 bpp with optimized

weights, or 6.90 bpp with standard weights), and it may

even be beneficial in some instances, as the model per-

formed better at 7.00 bpp than with uncompressed content.

The metric used for fitness evaluation appears to be much

more effective than the type of data provided. This is seen

with synthetic “Desktop” content optimized weights pro-

viding an MS-SSIM index on natural content close to that

obtained with the weights optimized on featured pictures,

PSNR weights bringing little to no benefit regardless of the

content, and the MS-SSIM and IoU optimized weights not

benefiting each other on the same content. Moreover, op-

timizing for different bitrates appears to be beneficial as

different sets of weights are generated for each optimized

bitrate.

4. Conclusion

CMA-ES is a black-box optimization method that can

be used to optimize JPEG XS quantization parameters for

a given task and content type. Such evolutionary algo-

rithms work well with the small number of quantization

parameters present in JPEG XS and CMA-ES provides a

nearly parameter-free method for task-specific optimization

of JPEG XS image compression.

A relatively small training set is used. This is necessary

because each image needs to be encoded and decoded to test

the given weights and scoring must remain consistent for

each evaluation. Overfitting does not appear to be an issue

even when the training and test sets are small and distinct,

likely because the small number of weights do not provide

the capacity to overfit.

PSNR weights optimized with CMA-ES do not vary sig-

nificantly from those defined in the ISO standard, which

were calculated to achieve maximum PSNR, regardless of

the content type and bitrate used. MS-SSIM optimized

weights are more beneficial; a bitrate reduction of 0.12 to

0.32 bpp (3.8% to 18%) is observed between 1.00 and 5.00

bpp (depending on the type of content) and the gain in MS-

SSIM index translates to a higher perceptual quality.

The weights optimized for an AI-analysis task show the

versatility of this method, as they adapt to a very specific

task and content and provide a more notable reduction in

required bitrate at constant accuracy (33.3% to 59% at the

optimized bitrates). The fitness function can be tuned to fit

any objective function. For example, one could combine the

MS-SSIM index and an AI metric to create hybrid human-

machine weights.



Table 1. Results obtained with weights optimized for different contents and visual metrics (optimization shown in the left two columns).

The test metrics, content, and bpp are shown on top. The best weight for each test is marked as such in bold. The last two columns show

the bpp percentage increase needed by standard (or visual [14]) weights to match the score of the optimized (underlined) weights.
MS-SSIM PSNR

FeaturedPictures kodak screenshots kodak screenshots

weights dataset weight metric 1.00 bpp 3.00 bpp 5.00 bpp 1.00 bpp 3.00 bpp 5.00 bpp 1.00 bpp 3.00 bpp 5.00 bpp 3.00 bpp 1.00 bpp 3.00 bpp 5.00 bpp

Cityscapes
IoU 0.96002 0.98799 0.99240 0.95979 0.99299 0.99713 0.98344 0.99822 0.99946 38.451 30.337 50.302 59.631

MS-SSIM 0.96631 0.99121 0.99440 0.96711 0.99574 0.99888 0.98780 0.99897 0.99974 39.183 31.541 50.976 62.450

Desktop
MS-SSIM 0.96632 0.99128 0.99441 0.96644 0.99571 0.99887 0.99216 0.99898 0.99974 39.573 36.393 52.289 62.612

PSNR 0.95965 0.99026 0.99406 0.95907 0.99516 0.99869 0.98942 0.99869 0.99967 40.959 38.228 53.584 64.124

FeaturedPictures
MS-SSIM 0.96699 0.99133 0.99442 0.96717 0.99580 0.99889 0.99176 0.99906 0.99973 39.772 35.932 52.273 63.091

PSNR 0.96133 0.99037 0.99415 0.96098 0.99516 0.99876 0.98971 0.99886 0.99970 41.014 37.725 53.482 64.087

JPEG-XSM visual Human 0.96547 0.99079 0.99416 0.96569 0.99556 0.99877 0.99137 0.99891 0.99970 39.324 35.937 50.477 60.651

ISO 21122 std. PSNR 0.96060 0.99038 0.99416 0.96009 0.99522 0.99876 0.98957 0.99885 0.99970 40.999 38.147 53.569 64.085

% bpp improvement over visual weights 4.00 6.00 6.80 3.00 2.77 3.40 6.00 7.00 5.00 18.7 23.0 19.7 15.8

% bpp improvement over std. weights 14.0 9.67 6.4 12.0 5.33 3.80 18.0 5.33 4.00 3.01 1.00 0.33 0.2

Figure 1. Visual comparison of “Featured Pictures” and “Desktop” MS-SSIM weights at 1.00 bpp. Left: uncompressed image, middle:

compressed with ISO 21122 PSNR weights, right: compressed with MS-SSIM optimized weights (ours), top: kodak image 24, bottom:

Tails 0.12 office screenshot.

Cityscapes_IoU opt ISO 21122 std. uncompressed poly. trendline

Figure 2. IoU/bitrate performance on Cityscape validation set.

JPEG XS standard weights compared to optimized weights

(weighted average over three folds). Optimization is performed

at 1.00, 3.00, and 5.00 bpp, other bitrates are interpolated as de-

scribed in section 3.1.

This search for optimized weights is by no means ex-

haustive as there are more use-cases to optimize for than

could possibly be listed in this work. Even so, it presents

a simple and effective method to optimize JPEG XS quan-

Table 2. Average IoU obtained over 3 folds using weights opti-

mized for semantic segmentation on Cityscapes. Also shown are

weights optimized for MS-SSIM on Cityscapes, and the MS-SSIM

index obtained at 3.00 bpp (rightmost column).

IoU MS-SSIM

weight dataset weight metric 1.00 bpp 3.00 bpp 5.00 bpp 3.00 bpp

Cityscapes
IoU 0.73583 0.74937 0.75054 0.99791

MS-SSIM 0.72882 0.74707 0.74971 0.99876

JPEG-XSM visual Human 0.73164 0.74742 0.74990 0.99862

ISO 21122 std. PSNR 0.72018 0.74731 0.74920 0.99857

% bpp improvement over std. weights 59.0 33.3 34.8 10.0

tization parameters for any specific task. Furthermore, this

method may be used to optimize JPEG XS image compres-

sion for AI image analysis models which would themselves

be prohibitively expensive (or impossible) to fine-tune for

compressed content.
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