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Abstract

In this paper, we provide a detailed description on our

submitted method Kattolab to Workshop and Challenge on

Learned Image Compression (CLIC) 2020. Our method

mainly incorporates discretized Gaussian Mixture Likeli-

hoods to previous state-of-the-art learned compression al-

gorithms. Besides, we also describes the acceleration s-

trategies and bit optimization with the low-rate constraint.

Experimental results have demonstrated that our approach

Kattolab achieves 0.9761 in terms of MS-SSIM at the rate

constraint of 0.15 bpp during the validation phase.

1. Introduction

Image compression is a fundamental research topic in

the field of image signal processing for many decades to

achieve efficient image transmission and storage. Tra-

ditional image compression standards have been devel-

oped for a long time, such as JPEG [1], JPEG2000 [2],

HEVC/H.265 [3] and ongoing Versatile Video Coding

(VVC) [4]. Typically they rely on hand-crafted creativity

to present a fixed encoder/decoder (codec) block diagram-

s. They use predefined transform matrix, intra prediction,

quantization, arithmetic coders and various post filters to re-

duce spatial redundancy and improve the coding efficiency.

The standardization of a traditional codec has historically

spanned many years. Along with the fast development of

new image formats and the proliferation of high-resolution

mobile devices, existing image compression standards are

not expected to be an optimal and general solution for all

kinds of image contents.

Recently, various approaches has been investigated for

end-to-end learned image compression such as early-stage

differentiable quantization for end-to-end training [5, 6, 7],

recurrent neural networks-based methods [8, 9, 10], some

generative models [11, 12, 13], content-weighted strate-

gy [14], conditional probability models [15], de-correlating
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different channels using principle component analysis [16,

17], or energy compaction based approach [18, 19]. The

most representative approaches are adaptive entropy mod-

els for rate estimation, including a hyperprior [20] and its

variants [21, 22, 23] to achieve state-of-the-art performance.

Specifically, the work [20] proposed a scale hyperprior, by

encoding additional bits to build the entropy model for la-

tent codes. The work [21] jointly combined an autoregres-

sive mask convolution and a mean-scale hyperprior to make

entropy model more accurate. The work [22] proposed a

quite similar idea by considering two types of contexts, bit-

consuming contexts (i.e., hyperprior) and bit-free contexts

(i.e., mask convolution model) to realize a context-adaptive

entropy model. The work [23] further extended the single

Gaussian model to Gaussian mixture likelihoods to further

improve the accuracy of entropy models. Our method is

based on these recent techniques and apply them to low bi-

trate image compression.

In this paper, we present a detailed description on our

submitted method to Workshop and Challenge on Learned

Image Compression (CLIC) 2020. The network architec-

ture combines recent techniques, including deep residual

blocks, subpixel convolution and attention modules. The

entropy model utilizes discretized Gaussian mixture likeli-

hoods to achieve more accurate entropy model than single

Gaussian model. Besides, we also apply some acceleration

strategies and bit optimization to meet the limit of 10 hours

decoding time and 0.15 bpp rate constraint in the CLIC low-

rate track. Experimental results have demonstrated that our

approach Kattolab achieves 0.9761 in terms of MS-SSIM at

the rate constraint of 0.15 bpp during the validation phase.

2. Learned Low Bitrate Image Compression

2.1. Network Architecture

The network architecture we used is shown in Fig. 1, re-

ferring to [23]. Compared to the work [20], the backbone

network architecture has been improved by using resid-

ual blocks, subpixel convolution and attention modules.

Based on the observations of [24], deep residual blocks can
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Figure 1: The overall network architecture we used in Kattolab, where the green blocks denote attention modules, the orange

block denotes Gaussian mixture model (K denotes the number of mixtures, N denotes the number of filters) and the blue

blocks represent the downsampling and upsampling units, implemented by stride-2 convolutions and sub-pixel convolutions.

achieve more larger and effective receptive field than 5× 5
filters, therefore, we used the residual block implemented

by stacked 3 × 3 filters to replace 5 × 5 filters as down-

sampling units at the encoder side and mirrored them at the

decoder. GDN and IGDN [25] are only followed by the

convolution with the stride of 2, and ReLU is used after

other convolution filters. Besides, [24] also found subpixel

convolution could maintain more details compared to trans-

posed convolution to improve the quality of reconstructed

images, so we used subpixel convolution to upsample the

feature sizes at the decoder side.

Attention module can increase the values of responses

which are originally large and decrease the values of re-

sponse which are originally small, thus it forces models

to pay more attention to complex regions instead of sim-

ple regions to improve the coding performance, indicated

by [26, 27], although the structures of attention modules

are slightly different as shown in Fig. 2. By experiments,

we find non-local block (NLB), proposed by [28] and used

in [26] is time-consuming for training and also memory-

consuming when the resolution of input image is very large

during inference. The work [27] used a variant of attention

module as Fig. 2(b) by removing NLBs, but introduced a

pair of downscale and upscale convolution in the attention

branch motivated from [29]. The key point is to grasp infor-

mation with larger receptive field size and large-stride con-

volution can increase receptive field to obtain more sophis-

ticated attention map and capture long-range dependencies

for image restoration task. Because our network for image

compression already used deep residual blocks to capture

large enough receptive field, so we used a more simplified

version as Fig. 2(c). Different from [26, 27], we also mod-

ified the residual block in attention modules with 1x1xN
2 -

3x3xN
2 -1x1xN to replace 3x3xN -3x3xN which they used,

to avoid too much overhead of increasing number of param-

(a) The attention module, used in [26]

(b) The attention module, similar to [27]

(c) A Simplified attention module we used

Figure 2: Different attention modules.

eters. Then we insert our simplified attention module into

encoder-decoder network as Fig. 1.

2.2. Discretized Gaussian Mixture Model

Following the work [23], we utilize discretized Gaussian

mixture likelihoods to replace single Gaussian model. The

motivation is to consider more flexible parameterized distri-

butions to achieve arbitrary likelihoods, to fully utilize the

contexts and information from neighboring elements and

additional bits ẑ. The Gaussian mixture model is formu-

lated by

pŷ|ẑ(ŷ|ẑ) ∼
K∑

k=1

w(k)N (µ(k),σ2(k)) (1)

where ŷ is discrete-valued after quantization. The reason

why we did not use Logistic mixture likelihoods is that



Gaussian achieves slightly better performance than logis-

tic [21]. Then the entropy model in end-to-end learned im-

age compression is calculated as

pŷ|ẑ(ŷ|ẑ) =
∏

i

pŷ|ẑ(ŷi|ẑ)
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where i specifies the location in feature maps, and k de-

notes the index of mixtures. Each mixture is characterized

by a Gaussian distribution with 3 parameters, i.e. weights

w
(k)
i , means µ

(k)
i and variances σ

2(k)
i for each element ŷi

and weights are normalized by passing through a softmax

layer. c(k) is the cumulative distribution function for each

mixture. The range of ŷ is automatically learned and un-

known ahead of time. To achieve stable training, we clip

the range of ŷ to [-255, 256] because empirically ŷ would

not exceed this range. For the edge case of −255, replace

c(ŷi −
1
2 ) by zero, i.e. c(−∞) = 0. For the edge case of

256, replace c(ŷi +
1
2 ) by one, i.e. c(+∞) = 1. It provides

a numerically stable implementation for training.

3. Implementation Details and Results

For training, we used a subset of OpenImage

database [31] and CLIC train dataset [32]. To train our im-

age compression models, the model was optimized using

Adam [33] with a batch size of 8. N is set as 128 for low

bitrate models. The learning rate was maintained at a fixed

value of 1 × 10−4 during the training process, and was re-

duced to 1 × 10−5 for the last 80k iterations. Each model

was trained to a total of 1.8 × 106 iterations for each λ to

achieve stable performance.

We optimized our models using MS-SSIM quality met-

rics [34] to achieve better visual quality and distortion term

is defined by D(x, x̂) = 1 − MS-SSIM(x, x̂), where the

weights in mult-scale SSIM is defined as the default values

[0.0448, 0.2856, 0.3001, 0.2363, 0.1333]. Finally, the loss

function is defined as

L =R(ŷ) +R(ẑ) + λ · D(x, x̂)

=E[− log2(pŷ|ẑ(ŷ|ẑ))] + E[− log2(pẑ|ψ(ẑ|ψ))]

+ λ · D(x, x̂)

(3)

3.1. Acceleration strategy

To make the autoregressive model faster during the

decoding, we apply two acceleration strategies referring

to [30]. The first strategy is to use 5 × 5 window to feed
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Figure 3: Performance Comparison on CLIC Validation.

in the context model when decoding. The mask convolu-

tion needs sequence decoding, while each time only 5 × 5
centered at a specific point is needed to update the value of

ŷ at this point, instead of feeding the whole size of ŷ to the

network. The second strategy is to add some flags to denote

all-zero channels. For 0.15bpp, we have found many chan-

nels are quantized to all zeros. Therefore, we can skip the

arithmetic coding for these all-zero channels to save time.

The overhead bit is only N bits, and in our case N is equal

to 128, so only a total of 16 bytes per image is required.

3.2. Bit optimization with the rate constraint

To reach the rate constraint of 0.15bpp, we have trained

four models with λ in the set I of {4.5, 6, 10, 14} to increase

the flexibility. The results with single model are shown in

Table 1.

Table 1: Results on CLIC validation dataset [32].

λ MS-SSIM Rate (bpp)

4.5 0.9716 0.1254

6 0.9755 0.1487

10 0.9813 0.1999

14 0.9845 0.2424

We formulate this problem as a multiple-choice knap-

sack problem, and solved it by dynamic programming.

maxλ∈I

N∑

i

MS-SSIM s.t.

N∑

i

Ri,λ ≤ RThre. (4)

After bit allocation, MS-SSIM reaches 0.9761 at the rate

of 0.15bpp. Because our submitted method is mainly based

on [23], so we also list the RD curve comparisons as Fig. 3.

Result of Kattolab is equal to the original results of [23].

4. Conclusion

In this paper, we have described our method Kattolab

for challenge on learned image compression (CLIC) 2020,



which includes the network architecture, Gaussian mixture

model, acceleration strategy and implementation details.

Results have shown our approaches achieve 0.9761 of MS-

SSIM at the rate of 0.15 bpp during the validation phase.
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[20] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, N. Johnston, “Variation-

al Image Compression with a Hyperprior”, Intl. Conf. on Learning

Representations (ICLR), 2018. 1
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