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Abstract

In this paper, we propose an end-to-end learned im-

age compression framework for low-rate scenarios. Based

on variational autoencoder, our method features a pair of

compact-resolution and super-resolution networks, a set of

hyper and main codec networks, and a conditional context

model. The learning process of this framework is facilitated

with integrated non-local attention modules and phase con-

gruency priors. Multiple models are obtained from training

with different hyper-parameters, and are jointly used in the

image-level model selection process for rate control, which

ensures that the bit rate constraint of the CLIC challenge

is satisfied. Experimental results demonstrate that the pro-

posed method can achieve an averaged multi-scale struc-

tural similarity (MS-SSIM) score of 0.9648 with bit rate

consumption of 0.1499 bits per pixel, which outperforms the

BPG image coding method significantly.

1. Introduction

As the popularization of image and video applications,

the volume of visual data becomes increasingly huge.

Therefore, lossy image compression, especially with low

bit rate, becomes a challenging task. By consuming low

bit rate, image compression algorithm should provide much

smaller perceived distortions.

∗Corresponding author. This work was supported by Natural Science

Foundation of China under Grant 61801303, Guangdong Basic and Ap-

plied Basic Research Foundation under Grant 2019A1515012031, Shen-

zhen Science and Technology Plan Basic Research Project under Grant

JCYJ20190808161805519, the Open Projects Program of National Labo-

ratory of Pattern Recognition (NLPR) under Grant 202000045, the Open

Project Program of the State Key Lab of CAD&CG (Grant No. A2009),

Zhejiang University, the start-up fund of Shenzhen Graduate School of

Peking University under Grant 2390101081, and CCF-Tencent Open Fund

under Grant IAGR20190101.

Figure 1. The overall structure of the proposed image compres-

sion method, which is mainly consist of variational autoencoder,

compact resolution, super resolution, non-local and phase congru-

ency modules. The symbols of Q, AE, AD represent quantizer,

arithmetic encoder and arithmetic decoder, respectively.

Recently, with the development of neural networks, deep

learning based image compression techniques have been

proposed and achieve superior rate-distortion performance

than traditional image codecs like JPEG [12], JPEG2000

[9], and HEVC-intra [10]. Autoencoders [1, 11] are widely

used in end-to-end image compression, which include two

major components, i.e., encoders and decoders. Encoders

extract features from raw image to reduce the data redun-

dancy, thereby expressing the image as a more compact fea-

ture representation. Decoders can utilize the feature expres-

sions for image reconstruction in an inverse process. Ballé

et al. [1] propose variational autoencoder (VAE) frame-

work, where a hyper encoder is studied for better entropy

modeling. Li et al. [7] add compact-resolution (CR) and

super-resolution (SR) modules on traditional coding meth-
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ods as an multi-branch framework, including block-level

adaptive scheme and frame-level scheme, to achieve bits

saving. Jiang et al. [4] develop an end-to-end learning-

based compression algorithm with compact Convolutional

Neural Network (CNN) and reconstruction CNN, which

shows superior results over traditional codecs. Since the

perceptual quality for low-rate scenarios becomes much

more important, the learning-based image compression has

not been fully investigated.

Figure 2. The structure of the compact-resolution and super-

resolution modules.

In this work, we propose to improve the VAE architec-

ture in [1] by introducing a paired CR and SR network. CR

network is capable of acquiring the dense representation of

images, while SR network can be jointly trained to restore

the information loss during the down-scaling process in CR.

Because CR can greatly reduce the amount of pixels, the use

of CR and SR is quite suitable for low-rate image compres-

sion. In addition, by using phase congruency [6] for texture

evaluation, the structures of images can be better exploited

for feature representation and learning in the network. The

adopted non-local [13] module can capture long-range de-

pendencies by attention mechanism to obtain global infor-

mation. Finally, we also use an iterative degradation-based

rate control algorithm to balance rate and distortion trade-

off on a per-image basis.

2. Proposed Method

2.1. Paired Compact­Resolution (CR) and Super­
Resolution (SR) Networks

For further effective bit rate reduction, the compact-

resolution and super-resolution are employed at the begin-

ning and end of the overall process, respectively. We would

like to construct a CNN to get a better representation of an

image which preserves more informative content after the

down-sampling process. The output down-sampled image

is then encoded and decoded through an image compres-

sion network. Then, super-resolution network can generate

the full resolution image.

The structure of CR and SR network is depicted as Fig-

ure 2. We implement the SR network based on deep back-

projection network (DBPN) [3]. For light-weight model pa-

rameters and memory usage, we have reduced the number

of network layers to 3 up and down sampling units rather

than 7 in the original DBPN. Additionally, the number of

feature maps is also greatly cut down. To boost the SR per-

formance to restore the degraded information by CR, in-

spired by VAE [1], we intuitively construct a CR network

which is symmetrical to the SR network.

The CR network includes initial feature extraction, up

and down sampling projection, and final reconstruction.

The first stage contains two convolutional layers to obtain

the primary features. A convolutional layer with 3 × 3 fil-

ter size firstly generates Hh × Wh × C1 feature map from

Hh × Wh × C image, and then 1 × 1 filter is used to re-

duce the feature dimension to Hh ×Wh × C2 (C2 < C1).

The second stage includes 3 down-sampling units and 2 up-

sampling units. Similar to [3], each unit is constructed as

back-projection form based on residual learning. All previ-

ous outputs are concatenated as input to the next unit. The

down-sampling unit outputs Hl × Wl × C2 feature from

Hh×Wh× (C2×n) feature, and the up-sampling unit out-

puts Hh×Wh×C2 feature from Hl×Wl×(C2×n) feature,

where n represents the number of concatenated features. A

convolutional layer with 3 × 3 filter size is used for recon-

struction from Hl ×Wl × C2 to Hl ×Wl × C image. The

SR network finally super-resolves the decoded image from

Hl ×Wl × C to Hh ×Wh × C.

The CR and SR networks are pre-trained before the train-

ing of the overall compression network. SR network is

trained by minimizing loss function Lsr,

Lsr = ‖fsr(g(x))− x‖2
2

(1)

where x is the input image, fsr represents the SR network,

g is the bicubic interpolation.

Since the ground truth for CR is difficult to achieve, we

use the SR network to assist the training for CR network.

The training method in [7] is adopted, where CR network is

followed by the trained SR network, and the weights of SR

network are fixed. The loss function Lcr is defined as

Lcr = ‖fsr(fcr(x))− x‖2
2
+ λ‖fcr(x)− g(x)‖2

2
(2)

where fcr represents the CR network, and λ is the parame-

ter balancing between visual quality and the amount of con-

tained information.



Figure 3. The structure of the adopted non-local mechanism.

2.2. Non­Local Module

Moreover, we would like to take advantage of the non-

local mechanism as an enhanced attention method to bet-

ter perceive image features adaptively. In Figure 3, the

structure of the proposed non-local module is illustrated,

the input feature map x is processed into three flow θ(x),
φ(x), g(x), where θ, φ, g are implemented by 1 × 1 con-

volution. Additionally, we apply multi-head mechanism

to learn different representation from different subspaces

jointly, which are created by channel splitting. The matrix

multiplication outputs of different subspaces are concate-

nated to aggregate information, then activated by softmax

to obtain an attention mask. Furthermore, we add the global

attention output with input x to get more abundant feature.

2.3. Phase Congruency

In this paper, phase congruency (PC) [6] is employed to

represent sharp transitions of image, which can evaluate the

textures effectively. The PC of 2D image p with scale s and

orientation r can be calculated as

PC =

∑
r

∑
s
Mr(p) ⌊Lsr(p)∆Θsr(p)−Nr⌋∑

r

∑
s
Lsr(p) + ξ

(3)

where Mr(p) is a metric for frequency spread, and Lsr(p)
and ∆Θsr(p) are amplitude and phase deviation of p, re-

spectively. Nr is a quantity used to reduce noise effect,

while the symbol of ⌊⌋ means that the enclosed quantity

equals itself if the value is positive, otherwise equals zero.

ξ is used for avoiding zero-division.

The PC image is down-sampled to the same size of main

encoder layers via convolutions. Then multi-scale PC fea-

tures are concatenated to the corresponding main encoder

layers, which provides edge texture information.

2.4. Models and Learning Details

For context and entropy modeling, the quantized outputs

of main encoder and hyper encoder are denoted as û and v̂,

respectively. The context model with 3D masked convolu-

tion network [8] can predict the mean and standard devia-

tion of û with lower computational cost. Similar to [1] and

[8], Rû and Rv̂ are obtained as rate estimations of û and

v̂, respectively. Then, similar to [15], the loss function is

designed as Eq. (4) so that the joint training of our learned

model can be considered as a process of rate-distortion op-

timization. Dw is a weighted mixed distortion criterion,

which is devised as Eq. (5) by combining mean squared er-

ror (MSE) and multi-scale structural similarity (MS-SSIM)

[14] score,

L = Dw +Rû +Rv̂ (4)

Dw = λ1 × ‖x− x̂‖2
2
+ λ2 × (1− MS-SSIM) (5)

where λ1 and λ2 denote weighting coefficients, x and x̂

denote original and compressed images, respectively. By

varying λ1, λ2, models with different average bit rates can

be obtained through multiple training.

In this work, three models will be trained to have differ-

ent compression ratios. Therefore, we need to implement

a rate control algorithm, which is responsible for choosing

the most proper model for each individual image to be com-

pressed. The algorithm should also ensure that the average

bit rate of all compressed images is below but enough close

to the target bit rate [2, 8, 15].

Initially, we assume all the images are compressed with

the highest available quality. Then, similar to [8], we em-

ploy greedy algorithm to select images to be degraded based

on the slope of MS-SSIM [14] and generated bitstream size.

The degradation process is iteratively executed, one image

at a time, until global bit constraint is satisfied.

3. Experimental Results

We use all images in CLIC 2020 dataset for training, in-

cluding both professional and mobile sub-sets. After ran-

domly resizing, the input image is cropped into multiple

192× 192 patches to train the networks. Hh = 192,Wh =
192 is used for the input image of CR and the output image

of SR, while Hl = 96,Wl = 96 is used for the output image

of CR and the input image of SR. We choose the scale of 2

for CR and SR, and set the parameter C1 = 32, C2 = 16.

We set the parameter λ = 0.7, which shows relatively bet-

ter performance in [7]. Two NVIDIA Tesla V100 GPUs are

used during training and validation phase. The Adam [5]

optimizer is adopted in the experiments. The initial learn-

ing rate is set to 10−4, and the batch size is 64.

In Figure 4, we compare rate-distortion results of our

model on CLIC 2020 validation dataset with BPG (Better

Table 1. Evaluation results on CLIC 2020 validation dataset.

Method
bit rate

(bpp)

MS-SSIM

Mean Max Min SD

Ours 0.1499 0.9648 0.9852 0.9193 0.0142

BPG 0.1498 0.9519 0.9796 0.8968 0.0164
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Figure 4. Rate-distortion performance of different models on

CLIC 2020 validation dataset.

Portable Graphics) which is a state-of-the-art engineered

image codec. Obviously, the proposed method can outper-

form BPG 4:2:0 within the low-rate range. For BPG codec,

a QP range from 37 to 41 are used to generate bitstream and

decoded images. For fairness, we apply the same image-

level rate control algorithm discussed above to these two

methods, and then we can evaluate their overall perfor-

mance under the same bit rate constraint, which should be

lower than 0.15 bits per pixel. The results on CLIC 2020

validation dataset are listed in Table 1, from which we can

see that our proposed method outperforms BPG by higher

average, maximum and minimum MS-SSIM scores. Mean-

while, our method maintains a less severe MS-SSIM fluctu-

ation (SD: standard deviation) across 102 validation images.

To validate the effectiveness of the proposed super-

resolution based method, we conduct more experiments

by training and testing the proposed method with original

192 × 192 image patches with removal of CR/SR models.

Results of this ablation experiment are also depicted in Fig-

ure 4, from which we can find that the adoption of the paired

compact-resolution and super-resolution networks shall ac-

count for the performance gain. Additionally, the perfor-

mance of proposed method can be further improved if a

larger image dataset could be trained and tested.

4. Conclusion

In this paper, we propose a novel learned image compres-

sion framework based on super-resolution learning. The

use of paired compact-resolution (CR) and super-resolution

(SR) networks in proposed framework shall be highlighted.

Besides, efforts such as designing efficient non-local atten-

tion modules and providing phase congruency are also made

to facilitate training convergence. From the ablation exper-

iment, it can be seen that the adoption of proposed paired

CR and SR networks can be beneficial for learning-based

low-rate image compression tasks.
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[1] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin

Hwang, and Nick Johnston. Variational image compression

with a scale hyperprior. arXiv preprint arXiv:1802.01436,

2018. 1, 2, 3

[2] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro

Katto. Deep residual learning for image compression. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition Workshops, 2019. 3

[3] Muhammad Haris, Gregory Shakhnarovich, and Norimichi

Ukita. Deep back-projection networks for super-resolution.

In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 1664–1673, 2018. 2

[4] Feng Jiang, Wen Tao, Shaohui Liu, Jie Ren, Xun Guo, and

Debin Zhao. An end-to-end compression framework based

on convolutional neural networks. IEEE Transactions on

Circuits and Systems for Video Technology, 28(10):3007–

3018, 2017. 2

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 3

[6] Peter Kovesi. Phase congruency: A low-level image invari-

ant. Psychological research, 64(2):136–148, 2000. 2, 3

[7] Yue Li, Dong Liu, Houqiang Li, Li Li, Zhu Li, and Feng

Wu. Learning a convolutional neural network for image

compact-resolution. IEEE Transactions on Image Process-

ing, 28(3):1092–1107, 2019. 1, 2, 3

[8] Haojie Liu, Tong Chen, Qiu Shen, and Zhan Ma. Practical

stacked non-local attention modules for image compression.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition Workshops, June 2019. 3

[9] Majid Rabbani and Rajan Joshi. An overview of the jpeg

2000 still image compression standard. Signal processing:

Image communication, 17(1):3–48, 2002. 1

[10] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and

Thomas Wiegand. Overview of the high efficiency video

coding (hevc) standard. IEEE Transactions on circuits and

systems for video technology, 22(12):1649–1668, 2012. 1

[11] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc

Huszár. Lossy image compression with compressive autoen-

coders. arXiv preprint arXiv:1703.00395, 2017. 1

[12] Gregory K. Wallace. The jpeg still picture compression stan-

dard. Communications of the Acm, 38(1):xviii–xxxiv, 1992.

1

[13] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 7794–7803, 2018. 2

[14] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multi-

scale structural similarity for image quality assessment. In

The Thrity-Seventh Asilomar Conference on Signals, Sys-

tems & Computers, 2003, volume 2, pages 1398–1402. Ieee,

2003. 3

[15] Lei Zhou, Zhenhong Sun, Xiangji Wu, and Junmin Wu. End-

to-end optimized image compression with attention mecha-

nism. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition Workshops, 2019. 3


