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Abstract

In this paper, we propose a variable rate image compres-

sion framework for low bit-rate image compression task.

Unlike most of the variational auto-encoder (VAE) based

methods, our proposal is able to achieve continuously vari-

able rate in a single model by introducing a pair of gain

units into VAE. Besides, a content adaptive optimization

is applied to adapt the latent representation to the specific

content while keeping the parameters of the network and

the predictive model fixed. After that, due to the variable

rate characteristics of our method, each image can be com-

pressed into any quality level through a unified codec. Fi-

nally, an efficient rate control algorithm is designed to find

the optimal bit allocation scheme under the constraint of the

low rate challenge.

1. Introduction

Lossy image compression is one of the most fundamen-

tal and valuable problems in image processing to maintain

image quality with less storage or transmission. Recently,

learned image compression methods have derived signifi-

cant interests and achieve much better performance than

the classical image codecs, such as JPEG [1], JPEG2000

[2] and BPG [3]. Thanks to variational autoencoder (VAE)

and scalar quantization assumption [4], learned image com-

pression methods are able to trained end-to-end and achieve

satisfactory results. In order to further improve the rate-

distortion performance, hyperprior network [5] and autore-

gressive model [6] were introduced into the VAE framework

to enhance the entropy estimation. Besides, Nonlocal resid-

ual block [7], attention mechanism [8] and multi-scale fu-

sion [9] were inserted into the encoder/decoder network to

improve feature extraction and reconstruction performance.

On the other hand, some researchers tried to solve the ob-

stacles of the deep image compression methods in practice.

Balle et al. [10] proposed an integer network to avoid float-

ing point inconsistence and enable reliable cross-platform

encoding and decoding of images using variational mod-

els. Johnston et al. [11] applied automatic network opti-

mization techniques and GDN without square/square root

components to reduce the run time of the entire VAE archi-

tecture. Choi et al. [12] incorporated fully connection net-

works into the convolution unit and adjusted quantization

bin sizes to realize rate adaption of the deep image compres-

sion methods. Cui et al. [13] proposed a continuously vari-

able rate image compression framework G-VAE (Gained

Variational Autoencoder), which adds a pair of gain units at

the output of encoder and the input of decoder and endows

the fixed-rate deep image compression frameworks contin-

uously variable rate with negligible additional parameters

and computation.

Motivated by the above latest breakthroughs, we incor-

porate the attention module [14], universal quantization

[12] and multi-scale parallel context module [18] into the

G-VAE [13] to obtain an optimal solution with high R-D

performance and continuous rate adaption. Through adding

a pair of gain units to VAE, the G-VAE framework could

achieve continuously variable rate in a single model. By

moving the attention module [14] to the higher scale feature

layer, the network’s performance could be effectively im-

proved. Besides, different quantization strategies are used

in the training process to improve the accuracy of entropy

estimation and reconstruction quality. Rounding quantiza-

tion is used as the input of decoder and hyperencoder, and

universal quantization [12] is used as the input of entropy

estimation module. Moreover, a rate controlling scheme is

designed to select the best parameter setting for each image

considering the 0.15 BPP constraint in the low bit-rate chal-

lenge. With these methods, our methods achieve 32.594 in

PSNR (optimized in MSE) and 0.9781 in MS-SSIM (opti-

mized in MS-SSIM) in the validation sets.

2. Proposed Method

Figure 1 depicts the proposed image compression frame-

work. The encoder and decoder consist of convolution

layers, GDN/IGDN units and attention modules. Con-

volution parameters are denoted as number of filters ×
kernel height×kernel width/stride, where ↑ and ↓ rep-

resent upsampling and downsampling respectively. GDN

and IGDN represent generalized divisive and the inverse
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counterpart respectively [4, 5]. Gain unit and inverse gain

unit are introduced into our method to achieve continuously

variable rate with negligible additional parameters and com-

putation. UnivQuant represents universal quantization [12].

AE and AD represent arithmetic encoder and decoder.

2.1. Variable rate framework

Cui et al. [13] proposed a continuously variable rate im-

age compression framework G-VAE, which adds a pair of

gain units at the output of encoder and the input of decoder

and endows the fixed-rate deep image compression frame-

works continuously variable rate with negligible additional

parameters and computation. The main element of the gain

unit is a gain matrix, which consist of several gain vectors.

Meanwhile, another gain unit is introduced at the input of

the decoder to rescale the quantized gained latent represen-

tation and ensure that the decoder could reconstruct the im-

age correctly. The inverse gain vector and the correspond-

ing gain vector always appear in pairs, which determine the

rate-distortion performance of the model. In order to enable

the proposed method achieving rate adaption, pairs of gain

vectors are added to the specified positions depicted as Fig-

ure 1. The loss function of the proposed method is defined

as below:

L =

N∑

s=1

βs ·D +Ry +Rz (1)

where Ry and Rz represents the expected bit rate of

the quantized gained latent representation and the quantized

gained hyper latent representation respectively, and s repre-

sents the index of the gain vectors in the gain matrix. Dis-

tortion loss D represent mean squared error loss in our MI-

ATLPSNR method and MS-SSIM loss in our MIATLSSIM

method. By applying the interpolation between the adjacent

trained gain vector pairs in the inference process, the pro-

posed model can achieve arbitrary point in the whole con-

tinuous range of the R-D curve.

2.2. Attention mechanism

Attention can be guided to bias the allocation of avail-

able processing resources towards the most informative. In

order to capture the global correlations and useful features,

we utilize the residual non-local attention block [14]. Dif-

ferent from the previous works [9, 14], we place attention

module in front of GDN and only use one attention mod-

ule. This change not only reduces the network structure,

but also makes attention module extract more powerful fea-

tures, which effectively improves network performance.

2.3. Quantization

Quantization operation generally is indispensable to gen-

erate discrete codes. However, its gradient is zero almost

everywhere except it is infinite for several threshold points.

To handle this issue, several continuous proxy methods have

been presented, including smoothed [19], soft-to-hard ap-

proximation [20], continuous approximation [4, 5]. Choi et

al. [12] proposed universal quantization, which proven to

achieve better R-D performance:

ŷs = round(ȳs + u)− u (2)

In our framework, we adopt smoothed rounding quanti-

zation [19] as the inputs of decoder and hyperencoder, and

universal quantization to model the entropy of quantized

codes.

2.4. Parallel context module

As shown in Figure 1, we adopt a multi-scale parallel

context module [18], which contains 3 parallel masked con-

volution layers. The kernel sizes in each masked convolu-

tion are 3 × 3, 5 × 5 and 7 × 7 respectively. In this way,

only previously decoded points can be used to decode the

current point. The effect of points in the parallel convolu-

tion repeating region will be magnified, and there will be

no blind spots caused by the accumulation of mask convo-

lutions.

2.5. Content adaptive optimization

Ideally, a well-trained encoder can generate an optimal

latent representation of any image to be compressed by

forward pass during the test phase. Unfortunately, the in-

evitable gap between datasets and the limited expressive-

ness of the network may make the latent representation gen-

erated by the encoder sub-optimal. Inspired by [18], we

adopted a content adaptive operation to refine the latent

representation of each image. It is worth noting that this

operation only directly changes the value of the latent rep-

resentation of the image during the encoder transformation

stage, making the modified latent representation fit the de-

coder that has been deployed and fixed at the receiver as

much as possible. Different from the original content adap-

tive method [18], we also refine the side information after

the latent representation has been refined, so that it can more

accurately estimate the distribution of the refined latent rep-

resentation. The above process can be formulated by the

following optimization problem:

argmin
ŷ

(− log p(ŷ)− log p(ẑ) + β · d(x, x̂)) (3)

argmin
ẑ

(− log p(ŷ)− log p(ẑ)) (4)

Following [18], we refine the latent representation

through an iterative procedure. More specifically, we treat

the latent representation as a set of learnable parameters
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Figure 1. The image compression framework.

during the encoding phase and use gradient descent algo-

rithm to update it iteratively. When adaptive optimization is

completed, we could get a set of refined latent representa-

tions. After that, quantization and arithmetic coding will be

performed to generate a transportable bit stream.

2.6. Rate controlling scheme

Rate control mechanism is one of the characteristics of

traditional image compression methods. Rate control is de-

fined to allocate models as soon as the allocated bit budget

is fully utilized:

min
y

N∑

i=1

M∑

j=1

D(Xj , X̂ij)

s.t.

N∑

i=1

M∑

j=1

yijR(Xi, X̂ij) < Rmax

M∑

j=1

yi,j = 1, i = 1, 2, ..., N

yi,j ∈ {0, 1} , i = 1, 2, ..., N, j = 1, 2, ...M

(5)

Where D and R are distortions and rates between orig-

inal image Xi and the reconstructed image X̂ij . M is the

number of results, N is the number of image, and Rmax is

the bit budget of the image set. Optimizing Equation 5 is

a NP hard problem. So we propose a two-step method to

get an approximate optimal solution. Firstly, an allocation

vector satisfying rate constrained conditions can be found

based on Lagrange Relaxation [21]. Then, a better alloca-

tion vector will be found based on greedy algorithm.

3. Experiments

3.1. Implementation details

For training, we use more than 6000 images collected

from CLIC training set and a self-building dataset. 8

patches with the size of 256 × 256 are randomly cropped

from 8 full resolution images for training in each iteration.

It takes about 3M iterations for our model to reach a stable

state. We trained the model with Adam optimizer and the

learning rate was initially set to 1 × 10−4 and reduced by

0.5 times when the total iterations reach 2M and 2.5M. In

our experiments, n denoted the number of gain vector pairs,

which was the same as the number of Lagrange multipliers.

We prepared two sets of Lagrange multipliers as below:

βmsssim = {0.003, 0.0015, 0.0005} (6)

βmse = {0.007, 0.002, 0.001} (7)

where βmsssim and βmse correspond to the models

trained with MS-SSIM and MSE loss respectively. In the

training process, we randomly select the index s from 1 to 3

in each iteration to obtain the corresponding gain vector ms,

inverse-gain vector m′

s and Lagrange multiplier βs from

gain matrix M , inverse-gain matrix M ′and βmsssim/mse

respectively. The selected gain/inverse-gain vector will

be optimized with the corresponding Lagrange multiplier

to adapt to different bit rates. Notably, we only need to

train one model for each submission, since our variable

rate model can compress the image into any desired qual-

ity level.

In the low-rate challenge, the entire test set should be

compressed into 0.15 BPP or smaller. Under this constraint,

we choose 32 different gain vector pairs and get 32 different
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Dataset Method PSNR MS-SSIM BPP

validation
MIATLPSNR 32.594 0.9645 0.15

MIATLSSIM 30.170 0.9781 0.15

test
MIATLPSNR 33.095 0.9693 0.15

MIATLSSIM 30.472 0.9822 0.15

Table 1. Evaluation results on CLIC2020 datasets.

compression quality level around 0.15 bpp for rate control.

In other words, any image in the test set can be compressed

into any level of the 32 different quality level to reach the

highest MS-SSIM/PSNR with 0.15 BPP.

3.2. Results and analysis

The evaluation results on CLIC2020 validation and test

datasets are shown in Table 1. Our methods MIATLPSNR

and MIATLSSIM achieve outstanding results on PSNR and

MS-SSIM in the low rate compression competition. Specif-

ically, Our MIATLPSNR can yield 32.594dB/33.095dB of

PSNR on validation/test set and MIATLSSIM can reach

0.9781/0.9822 of MS-SSIM on validation/test set.

In order to prove the effectiveness of our proposal more

convincingly, ablation experiments are conducted on the

validation set and the results are summarized in Table 2 and

Table 3. It is worth noting that the performance of our basic

variable rate model outperforms most methods in competi-

tion, which proves the superiority of our network structure

in attention mechanism and parallel convolution. In the val-

idation dataset, after content adaptive operation, MS-SSIM

increased from the original 0.9776 to 0.9777, while the BPP

dropped from 0.149489 to 0.147262. PSNR increased from

the original 32.401 to 32.482, while BPP decreased from

the original 0.149995 to 0.148495. In the test dataset, it

achieves similar effects, as shown in Table 2 and Table 3.

This illustrates that the content adaptive operation can find

a better latent representation which can represent the corre-

sponding image more accurately with less bits. In addition,

rate control strategy is adopted to control the final BPP to

0.15 with about 0.11 dB gain in PSNR and 0.0004 gain in

MS-SSIM.

4. Conclusion

In this paper, we solved the problem of image compres-

sion under low bit-rate constraint by a single variable rate

model. Attention mechanism and multi-scale parallel con-

text module are adopted to improve the performance of our

model. Content adaptive compression strategy is applied to

generate better latent representation without architecture re-

finements. Besides, we designed an efficient rate control al-

gorithm to maximize PSNR/MS-SSIM under 0.15 BPP con-

straint. As shown in the results of the challenges on the val-

idation set, our approaches MIATLPSNR and MIATLSSIM

Dataset Method BPP PSNR

validation

variable rate 0.1500 32.4014

variable rate +

adaptive
0.1485 32.4820

variable rate +

adaptive + rate control
0.1500 32.5939

test

variable rate 0.1500 32.9179

variable rate +

adaptive
0.1485 33.0178

variable rate +

adaptive + rate control
0.1500 33.0954

Table 2. Ablation results of PSNR.

Dataset Method BPP PSNR

validation

variable rate 0.1495 0.9776

variable rate +

adaptive
0.1473 0.9777

variable rate +

adaptive + rate control
0.1500 0.9781

test

variable rate 0.1499 0.9817

variable rate +

adaptive
0.1479 0.9818

variable rate +

adaptive + rate control
0.1500 0.9822

Table 3. Ablation results of MS-SSIM.

yield outstanding performance on PSNR and MS-SSIM re-

spectively.
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[10] Ballé J, Johnston N, Minnen D, et al. Integer Net-

works for Data Compression with Latent-Variable

Models, International Conference on Learning Repre-

sentations, 2019.

[11] Johnston N, Eban E, Gordon A, et al. Computationally

efficient neural image compression. arXiv: Image and

Video Processing, 2019.

[12] Choi Y, Elkhamy M, Lee J, et al. Variable Rate Deep

image compression with a conditional autoencoder.

arXiv: Image and Video Processing, 2019.

[13] Cui Z, Wang J, Bai B, et al. G-VAE: A continu-

ously variable rate deep image compression frame-

work. arXiv preprint arXiv:2003.02012, 2020.

[14] Zhang Y, Li K, Li K, et al. Residual non-local at-

tention networks for image restoration. arXiv preprint

arXiv:1903.10082, 2019.

[15] Ziv J. On universal quantization. IEEE Transactions

on Information Theory, 1985, 31(3): 344-347.

[16] Van den Oord A, Kalchbrenner N, Espeholt L, et al.

Conditional image generation with pixelcnn decoders.

Advances in neural information processing systems,

4790-4798, 2016.
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