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Abstract

This paper proposes a deep learning based video cod-

ing framework to greatly increase the compression ratio

and keep the video quality by efficiently leveraging the

information from a reference. In the encoder, the input

frame is compressed by down-sampling to a lower reso-

lution, eliminating color information, and then encoding

residual between the current frame and the reference frame

using Versatile Video Coding (VVC). The decoder consists

of two main parts: Super-Resolution with Color Learn-

ing (SR-CL), and Deep Motion Compensation (DMC). For

the SR-CL part, we adopt Restoration-Reconstruction Deep

Neural Network to firstly restore the missing information

from compression at low resolution and compression with-

out color. And then, the sampling degradation at high-

resolution is compensated. For the DMC part, we adopt

recursive-feedback architectures to propose an optical flow

estimation and refinement using Dilated Inception Blocks.

As a result, the work achieves 64:1 compression ratio with

41.81/41.34 dB PSNR and 0.9959/0.9962 MS-SSIM on

the validation/test set provided by the CLIC P-frame track

challenge.

1. Introduction

Recently, deep learning solved many problems in com-

puter vision such as colorization [16, 12, 8, 18, 14], super-

resolution [3, 4, 10, 15, 19, 20, 2, 13], frame interpolation

[9, 1], and so on. It brings promising approaches for video

compression. Different from compressing an image, the

temporal information helps enhance performance via lever-

aging neighboring frames. In this paper, we solve a problem

in P-frame coding, which exploits the useful information

from the reference frame. In the encoder, we remove the

color information and down-sample the input frame. Fur-

thermore, Versatile Video Coding (VVC) codec with the

Low Delay P configuration is applied to only compress the

residual between the down-sampled gray-scale input frame

and the reference frame. In the decoder, we design sev-

eral networks to 1) learn and restore the color information;

2) increase the resolution; 3) compensate for the compres-

sion degradation ((e.g., ringing artifacts, distortion) and re-

sampling degradation (e.g., bicubic degradation).

2. The Proposed Video Coding Framework

2.1. Overall Concept

As shown in Figure 1, in the encoder, given two high-

resolution frames including a reference frame (frame 1) and

a frame be compressed (frame 2), HR1, HR2 ∈ RH×W×3.

Note that each frame has one luminance (Y) component

and two chrominance (U and V) components. We firstly

eliminate the color information by removing 2 chromi-

nance components to get gray-scale high-resolution frames

HR1, HR2 ∈ RH×W×1. And then, we further apply 2×
down-sampling to get the low-resolution gray-scale frames

LR1, LR2 ∈ RH//2×W//2×1. Finally, we only encode the

residual between the two frames using VVC with Low De-

lay P configuration. In the decoder, we firstly get a de-

coded low-resolution gray-scale current frame DLR2 ∈
RH/2×W/2×1. After that, our deep neural network continu-

ously leverages the colorful LR1 ∈ RH//2×W//2×3, which

is down-sampled reference frame, to restore the missing

information from compression and color elimination, and

compensate the quality via temporal information, and re-

construct the image as the target high-resolution ˆHR2 ∈
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Figure 1. Overall concept.
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Figure 2. The proposed network SR-CL-DMC

RH×W×3. This design is applied for efficient inter cod-

ing. If the scene changes, intra coding or another inter-intra

mixed coding will be applied. Therefore, for the test set, we

add a Multi-Scale Structural Similarity (MS-SSIM) based

selector to decide the proposed inter coding system or not.

The proposed deep neural network has two main compo-

nents: Super-Resolution with Color Learning (SR-CL) and

Deep Motion Compensation (DMC). As shown in Figure

2the workflow is: 1) A restoration network in SR-CL re-

moves compression degradation and colorize DLR2 to have

L̂R2 1 ∈ RH×W×3 by learning the color and residual us-

ing the colorful LR1. 2) DMC leverages the concatenation

of L̂R2 1 and the colorful LR1 to estimate the optical flow,

compensate missing information, and synthesize L̂R2 2 . 3)

The refined L̂R2 2 is up-sampled by a deconvolution to have

ĤR2 1. The ĤR2 1 is compensated by DMC again to syn-

thesize ĤR2 2 using the colorful HR1. 4) Finally, a recon-

struction network in SR-CL reconstructs ĤR2 2 to generate

the target frame ĤR2.

The advantages of this work are summarized as follows:

1) The compression ratio is greatly improved by down-

sampling and color elimination. The quality is kept by

applying learning based super-resolution, colorization, and

degradation removing. 2) The SR-CL can not only compen-

sate for the missing information from compression but also

restore the color information by using the reference frame.

3) In the DMC, the proposed flow network makes the diver-

sity of the receptive field to enhance flow estimation. Also,

the refinement network consolidates the output of the flow

network using a feed-back network with several recursive

blocks. They are designed for saving weights, so it does not

cost a large memory while running.

2.2. Super­Resolution with Color Learning (SR­
CL)

This work applies networks to learn the color and en-

hance the quality of the current frame by leveraging the ref-

erence frame. Based on the restoration-reconstruction ar-
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Figure 3. Our Optical Flow Estimation and Refinement.
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Figure 4. Dilated Inception Blocks for Optical Flow Estimation.
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Figure 5. Feed-back (Iterative) Blocks for Refinement.

chitecture [5, 6], we design a SR-CL component to solve

two problems: Super-Resolution and Colorization. SR-

CL contains two networks: a restoration network learns

the color and residual at low-resolution at the beginning.

And then, a reconstruction network learns the final resid-

ual at high-resolution. Following its architecture, we opti-

mize two losses Lrestore, Lrecon, as shown in Figure 2. The

length of our restoration and reconstruction network is 10.

2.3. Deep Motion Compensation (DMC)

After restoration and before reconstruction, the DMC

aims to enhance the quality of the restored target frame

by leveraging the reference frame. We design specific

networks for Flow Estimation and Refinement, respec-

tively. Firstly, the Flow Estimation network receives

two consecutive frames F1 ∈ {LR1, HR1}, and F2 ∈
{L̂R2 1, ĤR2 1}, as concatenation to synthesize the opti-

cal flow OF ∗

2→1
with * indicating for low-resolution or

high-resolution, then warp F1 with OF2→1 to generate

F̂2 ∈ {L̂R2 2, ĤR2 2}, which is expected to be the original

version of F2 such as LR2, HR2. Afterwards, the Refine-

ment network leverages [F1, F2, F̂2, OF ∗

2→1
to refine and

synthesize the final F̂2. In DMC, we optimize the Lwarp for

warping optical flow, Lrefine for the refinement, as shown



in Figure 3.

Flow Estimation. consists of a ConvLReLU 5×5 (Con-

volution followed by an activation function Leaky ReLU),

five Dilated Inception Blocks (DI Blocks), and two ConvL-

ReLU 3×3 in inference order. DI Block contains a ConvL-

ReLU 3×3, a recursive block running two iterations. In the

recursive block, we design a simple dilated inception which

contains three convolutions with dilation={1, 2, 3} and an

average pooling. Each dilated convolution/pooling in di-

lated inception observes a specific receptive field and will

be selected by a point-wise ConvLReLU 1× 1, as shown in

Figure 4.

Refinement. consists of ConvLReLU 5 × 5, ConvL-

ReLU 3 × 3, five Feed-Back Blocks (FB Blocks) looping

m iterations, and two ConvLReLU 3 × 3. FB Block con-

tains a ConvLReLU 3 × 3 and a recursive block including

two ConvLReLU 3× 3 running two iterations, as shown in

Figure 5.

2.4. Loss Function

We adopt [6] and use the restoration loss Lrestore for

low-resolution and reconstruction loss for high-resolution

Lrecon as shown in Figure 2. In predicting optical flow and

warping to generate the target frame, the warped frames

are observed under Lwarp, and the loss Lrefine is for the

refined frames at both high-resolution and low-resolution

stages, as shown in Figure 2, 3. Also, we add the loss func-

tion Lms-ssim to optimize the Multi-Scale Structural Sim-

ilarity (MS-SSIM) error between HR2 and ĤR2. The de-

tails of our loss function are described in our supplemental

document.

2.5. Data Preparation, Augmentation, and Training
Details

The network is trained on the User Generated Con-

tent (UGC) dataset. To select the suitable pairs for train-

ing from 447,290 frames in the dataset, we firstly use the

LiteFlowNet [7] to predict the optical flow of the possible

pairs and eliminate the pairs have lower 5% pixels moving

3 pixels. Afterward, we use the perceptual metrics from

[17], which efficiently estimate the scene changes and very

large motion between two frames, to finally extract 80,000

pairs having perceptual distance lower than 0.6 for train-

ing. Please check our supplemental documents for fur-

ther information about the perceptual distance on the UGC

dataset. All training images are resized to 1280 × 720 as

high-resolution, 640 × 360 as low-resolution using bicubic

interpolation. To make various training samples, we use a

random crop with a size of 256 × 256, random flip with

both horizontal and vertical way, and random rotation with

degrees ∈ {0, 90, 180, 270}. In details, we train the mod-

els with Adam optimizer [11] with learning rate of 0.0001,

β1 = 0.9, β2 = 0.999, the batch size of 2 on Tesla V100.

Figure 6. Illustrations of our results. The MS-SSIM score of Y,

U, V components respectively are shown bellow each result. See

more in our supplemental document.

3. Experimental Results

We, as the team ”Man”, participate in the CLIC2020

challenge on the P-frame track compressing a set of frames

under the target 0.075 bpp including model size. Our

method leverages the uncompressed previous frame as a ref-

erence to compensate for the missing information through

down-sampling, color elimination, and video compression.

As a result, as shown in Figure 6, our method performs

well on the first sample. Our work can synthesize the target

frame with high quality and correct colors, even the occlu-

sions happen in the row 1, 2, 3; especially the ”solider”

in row 3 who doesn’t show up in the first frame. Further-

more, our method can handle the blurry inputs well as the

sample in row 4. Please check our supplemental documents

for more interesting results with high resolution. Objec-

tively, we achieve PSNR/MS-SSIM as 41.811/0.9959 on

validation set, 41.34/0.9962 on test set with decoder size of

4, 685, 293 bytes. As mentioned about weights saving, our

decoder size is smallest and smaller 22.5× than the size of

the largest decoder in the top 10 with competitive perfor-

mance.
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