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Abstract

In recent years, the layered image compression is

demonstrated to be a promising direction, which encodes

a compact representation of the input image and apply an

up-sampling network to reconstruct the image. To fur-

ther improve the quality of the reconstructed image, some

works transmit the semantic segment together with the com-

pressed image data. Consequently, the compression ratio is

also decreased because extra bits are required for trans-

mitting the semantic segment. To solve this problem, we

propose a new layered image compression framework with

encoder-decoder matched semantic segmentation (EDMS).

And then, followed by the semantic segmentation, a special

convolution neural network is used to enhance the inaccu-

rate semantic segment. As a result, the accurate semantic

segment can be obtained in the decoder without requiring

extra bits. The experimental results show that the proposed

EDMS framework can get up to 35.31% BD-rate reduc-

tion over the HEVC-based (BPG) codec, 5% bitrate and

24% encoding time saving compare to the state-of-the-art

semantic-based image codec.

1. Introduction

The typical lossy image encoding standards such as

JPEG, JPEG2000 or HEVC-based BPG codec[2] are mostly

processed based on block-wise transformation and quanti-

zation. In the case of limited transmission bandwidth, the

large quantization parameter is usually assigned to achieve

low bit-rate coding. However, it also leads to extreme blur-

ring and block-type artifacts.

Many works of the deep learning-based image compres-

sion, which could outperform the traditional approach, were

replied on the use of additional information. This additional

information is varied from semantic information [4][9], at-

tention map[8] to a low-dimension version[5] of the image.

Recently, thanks to the rapid evolution of the semantic seg-

mentation technique, several techniques have achieved high

performance whose results can be used in other tasks[16].

The state-of-the-art semantic-based image compression

framework – DSSLIC[4] sent the down-sampled image and

the semantic segment to the decoder. DSSILC then up-

sampled the compact image and used the GAN-based[7]

image synthesis technique[14] to reconstruct the image us-

ing the sending semantic segment and the up-sampled ver-

sion. With the help of the semantic segment, DSSLIC could

reconstruct better image quality than all the existed tradi-

tional image compression methods. However, DSSLIC re-

quires the encoder to send extra bits of the semantic seg-

ment extracted from the original image to the decoder under

a lossless compression.

To address this issue, we propose a new layered im-

age compression framework with encoder-decoder matched

semantic segmentation (EDMS). A semantic segmentation

network is applied to the up-sampled image in both encoder

and decoder. But the semantic segment extracted from the

up-sampled image is not as accurate as of that from the orig-

inal image. To obtain this quality gap, a convolution neural

network (CNN) with a special structure is further applied to

non-linear map the extracted segment to its original distri-

bution. Experimental results show that our approach can get

better performance than the state-of-the-art segmentation-

based image compression.

2. Proposed image compression framework:

EDMS

We propose a new layered image compression frame-

work with encoder-decoder matched semantic segmentation

(EDMS). Based on EDMS, the decoder can use the seman-

tic segment to enhance the quality of the reconstructed im-

age without any extra bits.
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Figure 1. Our proposed framework - EDMS with extra branch for segmentation enhancement.

Figure 2. The specific training procedure.

2.1. Encoderdecoder matched approach

The layered image compression systems usually encode

and send the compact version of the original images to the

decoder. In the decoder side, a super-resolution neural net-

work is applied to reconstruct the compacted image. To im-

prove the quality of the reconstructed image, the semantic

segment is also sent as a piece of evidence for the recon-

struction task. Because of that, a noticeable number of bits

are used to store this evidence.

There will be several problems if we discard the seman-

tic segmentation information and then perform it only at the

decoder-end. Firstly, the quality of the reconstructed im-

age will not be good since the received residual was con-

ducted based on the original semantic segment. Recently,

Akbari et al[4] introduced a CompNet which used the se-

mantic segment as side information to perform the down-

sampling. Since this compact version is conducted based

on the semantic segment and usually lossless sent to the de-

coder, it is suitable to perform the semantic segmentation on

this version of image. Besides, a GAN-based FineNet[14]

was also demonstrated that it can generate a synthesis im-

age from the up-sampled version and the semantic segment.

Therefore, we chose the up-sampled version in the encoder

to perform the semantic segmentation (see Figure 1), then

replace it as the input for the image synthesis network in-

stead of the original semantic segment. The new synthesis

image is utilized to calculate the residual. Because this pro-

cess can be repeated at the decoder, there is a correlation

between the residual and the synthesis image without send-

ing the semantic segment.

Secondly, the decoded image usually contains noise ar-

tifacts from the lossy compression, performing the segmen-

tation directly on the decoded image will lead to inaccu-

rate boundary decisions. Therefore, we need to map the

deformation semantic to its true distribution. By wondering

about the special type of mapping information, the semantic

segment is much simpler than a general image. It means that

it will be easy to fall into the overfitting situation or gradient

exploding when training. Hence, we applied the Recursive



Figure 3. Our SMapNet performance in the semantic enhancement

task. The inaccurate semantic segment is extracted from the up-

sampled image.

Residual architecture [12] as a mapping operator for this

type of semantic information - SMapNet. This architecture

is demonstrated as a strong design again the overfitting issue

and more stable for training than normal recurrent CNN.

2.2. Overall framework

Figure 1 shows our overall framework, on the encoder

side, we extract the segment from the up-sampled version

and use the SMapNet for semantic segmentation enhance-

ment and input the SMapNet’s output into the position of

the semantic segment in the FineNet. The final residual will

be calculated based on the output of FineNet forward with

SMapNet segment as its input (see Figure 1). This residual

then will be encoded by BPG[2] (state-of-the-art traditional

lossy image codec), lossless FLIF codec[11] is applied for

the compact version of the image and there is no extra bit

used for transferring the semantic segment.

On the decoded side, we received only the down-

sampled image and lossy residual from the channel. The

semantic segment used to reconstruct the decoded image

is conducted from the up-sampled image and enhanced by

our SMapNet. Next, FineNet uses this enhanced segment

and the up-sampled image as its input to perform the re-

construction. Since we also performed this process on the

encoder side, there always is a correlation between the re-

ceived residual and this reconstructed image. The recon-

structed image is then sum up with the residual to output

the final decoded image.

There are three main networks in our framework: Comp-

Net, FineNet (leverage from [4]) and SMapNet (proposed in

this work). Figure 2 shows the architecture of our SMapNet

with our specific training procedure. Please refer to Section

1 of our supplementary document for more details of the

training procedure and the network architecture.

2.3. Experiment settings

3. Experimental results

Our experiments were conducted on an NVIDIA Tesla

V100 GPU while an Intel Core i7-8700K CPU was used

to perform non-GPU tasks. We trained our models on the

ADE20K dataset[1]. ADE20K test set and Kodak[3] dataset

are used as testing sets in our experiments. The results are

recorded by average value over all test images. We use

PSNR, MS-SSIM[15] and Bjontegaard-delta (BD)-rate[6]

metrics to evaluate our results.

3.1. Evaluating the overall performance

Performance gain and processing speed. As shown in

Table 1, we first compare the performance of our codec with

Figure 4. The comparison of compression techniques using

PSNR(above) and MS-SSIM(below) on the Kodak test set with

different training dataset



Dataset
DSSLIC[4] Ours: w/o Sematic Enhancement Ours: w/ Sematic Enhancement

bpp
PSNR (dB)/

MS-SSIM

Enc./Dec.

Time (s)
bpp

PSNR (dB)/

MS-SSIM

Enc./Dec.

Time (s)
bpp

PSNR (dB)/

MS-SSIM

Enc./Dec.

Time (s)

ADE20K 0.762 33.57 / 0.977 0.838/0.315 0.75 33.33 / 0.974 0.579 / 0.247 0.726 33.57 / 0.977 0.709 / 0.377

Kodak 0.671 31.86 / 0.967 1.08/0.342 0.657 31.77 / 0.959 0.703 / 0.264 0.642 31.87 / 0.964 0.745 / 0.305

Table 1. Comparison of the compression quality and processing time (under the same BPG quantized parameter – QP = 32).

Figure 5. Qualitive comparison between different compression codec by bpp/PSNR/MS-SSIM. Note that our proposed method gets the

best decoded quality with the smallest bitrate.

DSSLIC codec[4], which is state-of-the-art in semantic-

based image compression. For a fair comparison, our resid-

ual is compressed by the BPG codec with the same QPs

as the DSSLIC codec. Note that, in all figures and follow-

ing discussion, Ours woE and Ours wE represent our ap-

proaches with and without applying SMapNet respectively.

As shown in Table 1, our method – Ours wE gets the same

PSNR and MS-SSIM with DSSLIC with a lower 5% bitrate

(bits per pixel) while reducing 24% encoding time and al-

most unchanged the decoding time.

Semantic segment enhancement. To demonstrate the

effect of enhancing the semantic segmentation, we record

the results without using it – Ours: w/o Semantic Enhance-

ment (see Table 1). Since the up-sampled image is lack

of details, the inaccurate semantic segment does not per-

form very well. Figure 3 shows the enhancing effect of our

SMapNet, we can see clearly a wrong split wall in the raw

segment has been connected again by SMapNet.

Generalization capability. We further test our

ADE20K-trained model on the Kodak dataset. We com-

pare our method with some learning-based image codecs

like DSSLIC, Mentzer et al.’s[10] and Toderici et al.’s[13]

and several traditional methods like BPG[2], JPEG2000 and

JPEG. The RD-curve are shown in Figure 4. From Fig-

ure 4, we can observe that our method still achieves the

upper-bound in the consideration of PSNR. In particular,

our method gains 35.31% BD-rate reduction over BPG.

This result demonstrates that our method generalizes well

when the training and testing images are from different dis-

tributions. Note that, for Mentzer et al.’s and Toderici et

al.’s works, since the provided models were designed and

trained by MS-SSIM loss, it is easy to understand their

poor performance on PSNR and the opposite results on MS-

SSIM.

Subjective evaluation. A visual example from the Ko-

dak dataset is shown in Figure 5. Our method could get

the best image quality with the smallest bpp. When look-

ing into the cropped part, we could clearly see that JPEG

and JPEG2000 got a lot of block artifacts and noise. While

BPG, Mentzer’s and Toderici’s models smoothed over some

parts. And DSSILC needed more bits to reconstruct an im-

age with clearly block artifact. Please refer to Section 2 of

our supplementary document for more visual results.

4. Conclusion

This paper presents a novel layered image compres-

sion framework for leveraging the semantic segment with-

out transferring any extra bit. With our idea of encoder-

decoder matched semantic segmentation (EDMS), seman-

tic segment enhancement and specific training procedure,

our model could keep the quality of decoded images while

saving the bits for transferring the semantic segment. Ex-

perimental results showed that the proposed approach could



outperform all traditional codecs and gain up to 5% bitrate

and 24% encoding time reduction compare to DSSILC[4],

the state-of-the-art semantic-based image codec. Since

there still have a lot of information can be synchronously

extracted from both encoder and decoder, our approach has

the potential to be applied to other future work.
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