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Abstract

We propose to improve the reconstruction quality of
DLVC intra coding based on an ensemble of deep restora-
tion neural networks. Different ways are proposed to gen-
erate diversity models, and based on these models, the be-
havior of different integration methods for model ensem-
ble is explored. The experimental results show that model
ensemble can bring additional performance gains to post-
processing on the basis that deep neural networks have
shown great performance improvements. Besides, we ob-
serve that both averaging and selection approaches for
model ensemble can bring performance gains, and they can
be used in combination to pursue better results.

1. Introduction

The amount of image/video data has grown rapidly in the
past decade, which brings great challenges to both transmis-
sion and storage. To meet these requirements, most of the
existing image/video coding schemes perform lossy com-
pression. However, the quantization process in the lossy
compression pipeline causes loss of information, leading
to artifacts such as blocking, ringing and blurring. As a
response to these artifacts, post-processing has been pro-
posed in video compression standards, such as Deblocking
Filters (DF) and Sample Adaptive Offset (SAO) in HEVC
[10]. In recent years, witnessing the success of deep learn-
ing in computer vision tasks, such as super-resolution [3, 5]
and denoising [14, 11], researchers have tried to employ
deep learning tools to perform post-processing, and have
achieved remarkable progress [2, 14, 11, 1, 9, 4, 6].

Since the introduction of deep neural networks into post-
processing, it’s performance has gradually increased due to
the art of designing networks, just like other computer vi-
sion tasks. However, what is different in the compression
artifact reduction is that specific information can be trans-
mitted from encoder to decoder. Taking advantage of this
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feature, some in-loop filtering studies propose to determine
whether to use a post-processing neural network by the en-
coder, according to rate-distortion (RD) performance, and
transmit flags to decoder [9, 16]. These methods can be
viewed as choosing between two neural networks, one of
which corresponds to the identity function, i.e. f(z) = x.
Further developing this idea, multiple post-processing net-
works are proposed to use to further improve the RD per-
formance of codec [4, 6].
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Figure 1: The post-processing framework with ensemble of
different neural networks, in which three post-processing
models are depicted.

Generally speaking, [9, 16, 4, 6] are typical ensemble
manners by integrating multiple models to improve the
overall prediction performance. In the area of ensemble
learning, integration is used to describe the method of fus-
ing multiple models, which often includes averaging, vot-
ing, etc. Selection, which is employed by the above works
[9, 16, 4, 6], is usually not the common approach since it is
unable to obtain ground truth in most common cases. With-
out considering the bit rate, the selection is undoubtedly the
ideal approach for integration in post-processing. However,
since compression is always the trade-off between the rate
and distortion, selection may not be always the best under
the condition of limited bandwidth. What can other inte-
gration methods, such as averaging integration, bring to the
ensemble of neural networks in the post-processing task?

To answer this question, we make various attempts to
generate diverse neural networks, and mainly demonstrate
the behavior of averaging integration method in the ensem-
ble of post-processing neural networks for improving the
reconstruction quality of DLVC [7] intra coding. We also



conduct experiments to compare it with the selection in-
tegration, to better show the differences between the two
approaches. At the same time, we explore the possibil-
ity of combining the two integration manners, which will
bring different inspirations for model ensemble in the post-
processing area.

2. Method

Both the basic compression algorithm and the post-
processing affect the compression performance. Choosing a
good codec is always the first step for pursuing a high com-
pression ratio. In this section, we first introduce the used
codec, DLVC, and then introduce the architecture of post-
processing neural networks for ensemble learning.

2.1.DLVC

DLVC is developed as a proposal in response to the joint
call for proposals (JCfP) on video compression with capa-
bility beyond HEVC. It features deep learning-driven cod-
ing tools, i.e. CNN-based in-loop filter (CNNLF) and CNN-
based block adaptive resolution coding (CNN-BARC), both
of which are based on CNN models [7]. In the experiments
of this paper, we disabled two deep tools of DLVC, which
makes it have similar compression performance compared
with VIM-7.0%, the reference software of the upcoming
H.266/VVC'.

2.2. Post Processing Neural Network

As shown in Fig. 1, the neural networks will be used
in the way of model ensemble for post-processing recon-
structed images. Different fuse methods will be discussed
in the following chapters, mainly including averaging and
selection. Now we first briefly introduce the involved neu-
ral networks.

RCAN. The model is a very deep residual channel atten-
tion neural network, which has been proven to be an excel-
lent super-resolution model [15]. We removed its up-scale
layer and used it to post-process the reconstructed images
of DLVC. To show its origin, we still call it RCAN.

PRN+. We also adopt the Progressive Rethinking Network
(PRN) [13] to construct the post-processing model. The
network is originally designed for in-loop filters in video
codecs. The Progressive Rethinking Block (PRB) brings in
improved capacity for the network. Based on the architec-
ture, we further improve the capacity by deepening the net-
work to twice the original depth. We also change the input
and output dimension to adapt to the post-processing task
on images of the RGB color space. The improved network
is called PRN+ in the experimental analysis.

*https://vcgit.hhi.fraunhofer.de/jvet/
VVCSoftware_VTM/-/tags/VIM-7.0

At the time of writing this paper, H.266/VVC is not officially pub-
lished yet.

2.3. Ensemble and Signalling

Two ensemble methods are utilized in the construction
of the codec. For the signal-free ensemble, we conduct a
pixel-wise average over the images produced by different
models. Therefore, no additional bits are used to signal
the flags along with the bit-stream. For the other ensem-
ble method, we partition the images into blocks and we se-
lect one block between those produced by the two models.
A flag is signaled to the bit-stream to indicate the selec-
tion result. The flags for all the blocks are raster-scanned
and we utilize Context Adaptive Binary Arithmetic Cod-
ing (CABAC) [8] to encode the flags with its entropy, and
the bit-stream is concatenated with the main bit-stream pro-
duced by DLVC.

3. Experimental Results
3.1. Experimental Setting

Two image sets, i.e. CLIC training set and DIV2K [12],
are utilized to train the proposed post-processing models.
The models take the reconstructed images as the input and
are trained to produce the original images. To generate the
training data, the images are first transformed from RGB
color space to YUV 4:2:0, the input color format of DLVC,
before they are lossily compressed by DLVC. The recon-
structed images in YUV 4:2:0 are transformed back to RGB
color space, which forms the input data for network train-
ing. All resampling is conducted using bilinear interpola-
tion. Different interpolation methods show little differences
in PSNR for the resulting images in RGB color space.

The evaluations are conducted on the CLIC 2020 vali-
dation set. The images are converted to YUV 4:2:0 in the
same way as the training data. We first encode the images in
the validation set with QP in the range [36, 38] using DLVC,
without the built-in CNNLF as a baseline method. With the
reconstructed images and the corresponding bit-streams, we
select a set of images that can be encoded into bit-streams
with the average bit-per-pixel less than 0.15, while the MSE
on this set is minimized. The following experimental results
are reported on this testing condition.

3.2. Post Processing

In this section, we evaluate the improvement in the qual-
ity of reconstructed images brought by the enhancing post-
processing models. Note that DLVC implements CNNLF
tool to utilize neural networks for in-loop filtering. We post-
process the reconstructed images and we evaluate PSNR
and MS-SSIM on the processed images in RGB color space.
We first calculate a sum of squared error for all the images
in the dataset, and then we calculate an overall mean of the
squared error, with which we get the PSNR. MS-SSIM is
evaluated for all the images and then averaged across the
dataset, weighted by the number of pixels for each image.



Table 1: Comparison of single-model post-processing
methods, evaluated on PSNR and MS-SSIM.

Methods PSNR (dB) MS-SSIM
DLVC 31.9957 0.9596
Built-in 32.1361 0.9612
PRN+ 32.3955 0.9620
RCAN 32.4508 0.9624

34.92 dB
RCAN

32.02dB
DLVC

33.94 dB
PRN+

Figure 2: Patches of post-processed images.

The results of single-model methods for enhancing post-
processing are illustrated in Table 1, where we compare
the performance of the built-in in-loop filter in DLVC and
two network architectures, i.e. PRN+ and RCAN, which are
trained on the same dataset.

As shown, upon DLVC with Deblocking Filters (DF) and
Sample Adaptive Offset (SAO), both the built-in version
and the out-loop versions, achieve improvements in qual-
ity on the decoded images. More sophisticated networks
and training techniques can bring in extra improvements. A
comparison of visual quality is provided in Fig. 2. As illus-
trated, ringing artifacts exist in DLVC reconstructed images.
Some parts of the sharp edges are even missing due to the
loss of high-frequency components. Post-processing meth-
ods reduce such artifacts, while models achieving higher
quantitative quality provide sharper edges and tend to re-
cover the missing parts.

3.3. Empirical Study on Model Ensemble

Model ensemble has been widely utilized in machine
learning-driven tasks to improve performance. In this sec-
tion, we explore the possibility of combining models of dif-
ferent architectures, training image sets, QPs to generate
the training set, and those trained with differently screened
data.

Table 2: Evaluation of quantitative quality, with combina-
tions of PRN+ models trained using images encoded with
different QPs on datasets with mixed CLIC and DIV2K im-
ages.

Setting ~ PSNR (dB) MS-SSIM
QP32 32.2853 0.9614
QP37 32.3855 0.9620
QP42 32.2626 0.9615
32437 32.3654 0.9618
42+37 32.3653 0.9619
32442 32.3691 0.9618
32437+42  32.3939 0.9621

3.3.1 QP-Driven Ensemble

We first evaluate the performance by combining mod-
els trained on images compressed using different values
of QPs. We encode the training images with QPs in
{32,37,42}, respectively. These images are used to train
the same network architecture. The evaluation results of
quantitative quality on the selected images corresponding to
Table 1 are shown in Table 2. It shows that models trained
with QPs of ranges different from the validation set achieve
lower quantitative quality, and averaging pixel values on the
images for any two of the three models does not produce
a better performance than a single model of the appropri-
ate QP. However, the average ensemble of all three models
can result in improved performance over any single-model
or two-model averaging settings. The results indicate that
models trained with inappropriate QPs have biases. The
bias can result in degraded quality if the model is averaged
with another model trained with a more appropriate train-
ing setting. Despite that, the bias can be largely reduced by
averaging two models with potentially different biases.

3.3.2 MSE-Driven Ensemble

Another way to generate different models for the ensemble
is to train the models with different subsets of the original
training data. In this experiment, we split the training set by
calculating patch-wise MSE between the images encoded
using QP 37 and the original ones. The patches are divided
into three subsets, corresponding to three levels of MSE, i.e
high, median and low. The experiment is conducted with
RCAN models. The results are shown in Table 3. Split-
ting the dataset according to MSE also introduces biases
in model training, while we observe that patches of higher
MSE, corresponding to tougher cases, result in higher per-
formance. The results also indicate that a particularly biased
model can make bad effects on the averaged performance.

3.3.3 Image-Set-Driven Ensemble

Training images is another factor to influence model perfor-
mance. We conduct the experiments on the PRN+ archi-



Table 3: Evaluation of quantitative quality, with combi-
nations of RCAN models trained with different subests of
the training set, divided by MSE. Full refers to the original
dataset without splitting. A+B refers to averaging the out-
puts of models from Low, Median and High and All refers
to averaging all four models.

Setting PSNR (dB) MS-SSIM
Low 32.2863 0.9617
Median ~ 32.4018 0.9623
High 32.4237 0.9622
Full 32.4508 0.9624
L+F 32.4252 0.9623
M+F 32.4585 0.9625
H+F 32.4604 0.9624
L+M+H  32.4564 0.9625
H+M+F 324757 0.9625
All 32.4701 0.9625

Table 4: Evaluation of quantitative quality, with combina-
tions of PRN+ models trained with different image sets.

Setting  PSNR (dB) MS-SSIM
Mixed 32.3855 0.9620
CLIC 32.3955 0.9620
DIV2K 32.3806 0.9620
M+C 32.3931 0.9620
M+D 32.3893 0.9620
C+D 32.3949 0.9620
All 32.3987 0.9621

tecture, on two different datasets, i.e. CLIC and DIV2K.
We first train a model with the mixed dataset and we fine-
tune the model to produce two different models, each tuned
on either CLIC or DIV2K dataset. The results are shown
in Table 4. The choice of datasets affects the performance,
where the CLIC dataset is shown to better fit the validation
set. Averaging outputs show little improvements in perfor-
mance.

3.3.4 Ensemble of Different Architectures

We conduct a cross-architecture ensemble for PRN+ and
RCAN models. The results are shown in Table 5. As shown,
the cross-model ensemble improves the overall quantitative
quality, and averaging can also be applied to two sets of
already ensemble models that have different architectures.
We then compare the result of averaging pixels to block-
wise selection. Block size 96 x 96 is chosen to not exceed
the limit of 0.15 bpp among the images. It is observed that
for outputs that have not been ensemble, averaging the pix-
els achieves higher quality without consuming any bit-rate.
However, for ensemble outputs, block-level selection may
have the potential to bring in more improvements.

We conduct a further investigation into the block-wise

Table 5: Evaluation with combinations of PRN+ and RCAN
models. For two model A and B, A+B refers to averaging
pixels while A/B (N) means conducting block-level selec-
tion with the block size N. P and R stand for PRN+ and
RCAN, respectively, while P-All and R-HMF correspond to
the best ensemble results in Table 4 and Table 3.

Setting PSNR (dB) MS-SSIM
PRN+ 32.3955 0.962
RCAN 32.4508 0.9624
P+R 32.4651 0.9624
P/R (96) 32.4646 0.9625
P-All + R-HMF 32.4783 0.9625
P-All / R-HMF (96) 32.4842 0.9626

Table 6: Evaluation of block-level ensemble of different
models. P and R stand for PRN+ and RCAN, respectively,
while P-All and R-HMF correspond to the best results in Ta-
ble 4 and Table 3. Ratio show the ratio of selected patches
that originally comes from the first model. bpp+ indicate
the increase in bpp to signal the flags.

Setting Patch Ratio  PSNR (dB) bpp+
P/R 96 30.55% 32.4646 9.6e-5
R-M/R-HMF 96 28.04% 32.4794 9.4e-5
P-All/R-HMF 96 23.29% 32.4841 8.4e-5
P-Al/R-HMF 128  19.67% 32.4822 4.3e-5
P-All/R-HMF 64 28.08% 32.4884 2.1e-4
P-All/R-HMF 48 31.18% 32.4928 3.8e-4

selection method. As shown in Table 6, block-wise en-
semble with streamed flags can further improve quantitative
quality, with only a slight amount of increase in bit-rate.
Surely the finer partitioning of the images produces higher
results while consuming more bits for the flags. Itis also ob-
served that models showing some distinctions may achieve
a better result with the ensemble. As illustrated in Table 5,
two similar models (R-M and R-HMF), though with higher
averaged PSNR, do not outperform two distinct models (P-
All and R-HMF) when conducting the block-wise ensemble.
To design a collaborative training technique that considers
rate-distortion optimization might be a promising direction
for future research in learned image compression.

4. Conclusion

In this paper, we explored the possibility of combining
multiple models in the post-processing task. These models
are generated in different ways, including designing differ-
ent network architectures and training with different image
sets. We also compared two different integration methods,
averaging and selection, and found that both the two meth-
ods can bring performance gains, and they can be superim-
posed for better results.
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