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Abstract

We propose to improve the reconstruction quality of

DLVC intra coding based on an ensemble of deep restora-

tion neural networks. Different ways are proposed to gen-

erate diversity models, and based on these models, the be-

havior of different integration methods for model ensem-

ble is explored. The experimental results show that model

ensemble can bring additional performance gains to post-

processing on the basis that deep neural networks have

shown great performance improvements. Besides, we ob-

serve that both averaging and selection approaches for

model ensemble can bring performance gains, and they can

be used in combination to pursue better results.

1. Introduction

The amount of image/video data has grown rapidly in the

past decade, which brings great challenges to both transmis-

sion and storage. To meet these requirements, most of the

existing image/video coding schemes perform lossy com-

pression. However, the quantization process in the lossy

compression pipeline causes loss of information, leading

to artifacts such as blocking, ringing and blurring. As a

response to these artifacts, post-processing has been pro-

posed in video compression standards, such as Deblocking

Filters (DF) and Sample Adaptive Offset (SAO) in HEVC

[10]. In recent years, witnessing the success of deep learn-

ing in computer vision tasks, such as super-resolution [3, 5]

and denoising [14, 11], researchers have tried to employ

deep learning tools to perform post-processing, and have

achieved remarkable progress [2, 14, 11, 1, 9, 4, 6].

Since the introduction of deep neural networks into post-

processing, it’s performance has gradually increased due to

the art of designing networks, just like other computer vi-

sion tasks. However, what is different in the compression

artifact reduction is that specific information can be trans-

mitted from encoder to decoder. Taking advantage of this
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feature, some in-loop filtering studies propose to determine

whether to use a post-processing neural network by the en-

coder, according to rate-distortion (RD) performance, and

transmit flags to decoder [9, 16]. These methods can be

viewed as choosing between two neural networks, one of

which corresponds to the identity function, i.e. f(x) = x.

Further developing this idea, multiple post-processing net-

works are proposed to use to further improve the RD per-

formance of codec [4, 6].
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Figure 1: The post-processing framework with ensemble of

different neural networks, in which three post-processing

models are depicted.

Generally speaking, [9, 16, 4, 6] are typical ensemble

manners by integrating multiple models to improve the

overall prediction performance. In the area of ensemble

learning, integration is used to describe the method of fus-

ing multiple models, which often includes averaging, vot-

ing, etc. Selection, which is employed by the above works

[9, 16, 4, 6], is usually not the common approach since it is

unable to obtain ground truth in most common cases. With-

out considering the bit rate, the selection is undoubtedly the

ideal approach for integration in post-processing. However,

since compression is always the trade-off between the rate

and distortion, selection may not be always the best under

the condition of limited bandwidth. What can other inte-

gration methods, such as averaging integration, bring to the

ensemble of neural networks in the post-processing task?

To answer this question, we make various attempts to

generate diverse neural networks, and mainly demonstrate

the behavior of averaging integration method in the ensem-

ble of post-processing neural networks for improving the

reconstruction quality of DLVC [7] intra coding. We also
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conduct experiments to compare it with the selection in-

tegration, to better show the differences between the two

approaches. At the same time, we explore the possibil-

ity of combining the two integration manners, which will

bring different inspirations for model ensemble in the post-

processing area.

2. Method

Both the basic compression algorithm and the post-

processing affect the compression performance. Choosing a

good codec is always the first step for pursuing a high com-

pression ratio. In this section, we first introduce the used

codec, DLVC, and then introduce the architecture of post-

processing neural networks for ensemble learning.

2.1. DLVC

DLVC is developed as a proposal in response to the joint

call for proposals (JCfP) on video compression with capa-

bility beyond HEVC. It features deep learning-driven cod-

ing tools, i.e. CNN-based in-loop filter (CNNLF) and CNN-

based block adaptive resolution coding (CNN-BARC), both

of which are based on CNN models [7]. In the experiments

of this paper, we disabled two deep tools of DLVC, which

makes it have similar compression performance compared

with VTM-7.0*, the reference software of the upcoming

H.266/VVC†.

2.2. Post Processing Neural Network

As shown in Fig. 1, the neural networks will be used

in the way of model ensemble for post-processing recon-

structed images. Different fuse methods will be discussed

in the following chapters, mainly including averaging and

selection. Now we first briefly introduce the involved neu-

ral networks.

RCAN. The model is a very deep residual channel atten-

tion neural network, which has been proven to be an excel-

lent super-resolution model [15]. We removed its up-scale

layer and used it to post-process the reconstructed images

of DLVC. To show its origin, we still call it RCAN.

PRN+. We also adopt the Progressive Rethinking Network

(PRN) [13] to construct the post-processing model. The

network is originally designed for in-loop filters in video

codecs. The Progressive Rethinking Block (PRB) brings in

improved capacity for the network. Based on the architec-

ture, we further improve the capacity by deepening the net-

work to twice the original depth. We also change the input

and output dimension to adapt to the post-processing task

on images of the RGB color space. The improved network

is called PRN+ in the experimental analysis.

*https://vcgit.hhi.fraunhofer.de/jvet/

VVCSoftware_VTM/-/tags/VTM-7.0
†At the time of writing this paper, H.266/VVC is not officially pub-

lished yet.

2.3. Ensemble and Signalling

Two ensemble methods are utilized in the construction

of the codec. For the signal-free ensemble, we conduct a

pixel-wise average over the images produced by different

models. Therefore, no additional bits are used to signal

the flags along with the bit-stream. For the other ensem-

ble method, we partition the images into blocks and we se-

lect one block between those produced by the two models.

A flag is signaled to the bit-stream to indicate the selec-

tion result. The flags for all the blocks are raster-scanned

and we utilize Context Adaptive Binary Arithmetic Cod-

ing (CABAC) [8] to encode the flags with its entropy, and

the bit-stream is concatenated with the main bit-stream pro-

duced by DLVC.

3. Experimental Results

3.1. Experimental Setting

Two image sets, i.e. CLIC training set and DIV2K [12],

are utilized to train the proposed post-processing models.

The models take the reconstructed images as the input and

are trained to produce the original images. To generate the

training data, the images are first transformed from RGB

color space to YUV 4:2:0, the input color format of DLVC,

before they are lossily compressed by DLVC. The recon-

structed images in YUV 4:2:0 are transformed back to RGB

color space, which forms the input data for network train-

ing. All resampling is conducted using bilinear interpola-

tion. Different interpolation methods show little differences

in PSNR for the resulting images in RGB color space.

The evaluations are conducted on the CLIC 2020 vali-

dation set. The images are converted to YUV 4:2:0 in the

same way as the training data. We first encode the images in

the validation set with QP in the range [36, 38] using DLVC,

without the built-in CNNLF as a baseline method. With the

reconstructed images and the corresponding bit-streams, we

select a set of images that can be encoded into bit-streams

with the average bit-per-pixel less than 0.15, while the MSE

on this set is minimized. The following experimental results

are reported on this testing condition.

3.2. Post Processing

In this section, we evaluate the improvement in the qual-

ity of reconstructed images brought by the enhancing post-

processing models. Note that DLVC implements CNNLF

tool to utilize neural networks for in-loop filtering. We post-

process the reconstructed images and we evaluate PSNR

and MS-SSIM on the processed images in RGB color space.

We first calculate a sum of squared error for all the images

in the dataset, and then we calculate an overall mean of the

squared error, with which we get the PSNR. MS-SSIM is

evaluated for all the images and then averaged across the

dataset, weighted by the number of pixels for each image.
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Table 1: Comparison of single-model post-processing

methods, evaluated on PSNR and MS-SSIM.

Methods PSNR (dB) MS-SSIM

DLVC 31.9957 0.9596

Built-in 32.1361 0.9612

PRN+ 32.3955 0.9620

RCAN 32.4508 0.9624

30.63 dB 31.62 dB 32.55 dB

32.02 dB 33.94 dB 34.92 dB

DLVC PRN+ RCAN

Figure 2: Patches of post-processed images.

The results of single-model methods for enhancing post-

processing are illustrated in Table 1, where we compare

the performance of the built-in in-loop filter in DLVC and

two network architectures, i.e. PRN+ and RCAN, which are

trained on the same dataset.

As shown, upon DLVC with Deblocking Filters (DF) and

Sample Adaptive Offset (SAO), both the built-in version

and the out-loop versions, achieve improvements in qual-

ity on the decoded images. More sophisticated networks

and training techniques can bring in extra improvements. A

comparison of visual quality is provided in Fig. 2. As illus-

trated, ringing artifacts exist in DLVC reconstructed images.

Some parts of the sharp edges are even missing due to the

loss of high-frequency components. Post-processing meth-

ods reduce such artifacts, while models achieving higher

quantitative quality provide sharper edges and tend to re-

cover the missing parts.

3.3. Empirical Study on Model Ensemble

Model ensemble has been widely utilized in machine

learning-driven tasks to improve performance. In this sec-

tion, we explore the possibility of combining models of dif-

ferent architectures, training image sets, QPs to generate

the training set, and those trained with differently screened

data.

Table 2: Evaluation of quantitative quality, with combina-

tions of PRN+ models trained using images encoded with

different QPs on datasets with mixed CLIC and DIV2K im-

ages.

Setting PSNR (dB) MS-SSIM

QP32 32.2853 0.9614

QP37 32.3855 0.9620

QP42 32.2626 0.9615

32+37 32.3654 0.9618

42+37 32.3653 0.9619

32+42 32.3691 0.9618

32+37+42 32.3939 0.9621

3.3.1 QP-Driven Ensemble

We first evaluate the performance by combining mod-

els trained on images compressed using different values

of QPs. We encode the training images with QPs in

{32, 37, 42}, respectively. These images are used to train

the same network architecture. The evaluation results of

quantitative quality on the selected images corresponding to

Table 1 are shown in Table 2. It shows that models trained

with QPs of ranges different from the validation set achieve

lower quantitative quality, and averaging pixel values on the

images for any two of the three models does not produce

a better performance than a single model of the appropri-

ate QP. However, the average ensemble of all three models

can result in improved performance over any single-model

or two-model averaging settings. The results indicate that

models trained with inappropriate QPs have biases. The

bias can result in degraded quality if the model is averaged

with another model trained with a more appropriate train-

ing setting. Despite that, the bias can be largely reduced by

averaging two models with potentially different biases.

3.3.2 MSE-Driven Ensemble

Another way to generate different models for the ensemble

is to train the models with different subsets of the original

training data. In this experiment, we split the training set by

calculating patch-wise MSE between the images encoded

using QP 37 and the original ones. The patches are divided

into three subsets, corresponding to three levels of MSE, i.e

high, median and low. The experiment is conducted with

RCAN models. The results are shown in Table 3. Split-

ting the dataset according to MSE also introduces biases

in model training, while we observe that patches of higher

MSE, corresponding to tougher cases, result in higher per-

formance. The results also indicate that a particularly biased

model can make bad effects on the averaged performance.

3.3.3 Image-Set-Driven Ensemble

Training images is another factor to influence model perfor-

mance. We conduct the experiments on the PRN+ archi-
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Table 3: Evaluation of quantitative quality, with combi-

nations of RCAN models trained with different subests of

the training set, divided by MSE. Full refers to the original

dataset without splitting. A+B refers to averaging the out-

puts of models from Low, Median and High and All refers

to averaging all four models.

Setting PSNR (dB) MS-SSIM

Low 32.2863 0.9617

Median 32.4018 0.9623

High 32.4237 0.9622

Full 32.4508 0.9624

L+F 32.4252 0.9623

M+F 32.4585 0.9625

H+F 32.4604 0.9624

L+M+H 32.4564 0.9625

H+M+F 32.4757 0.9625

All 32.4701 0.9625

Table 4: Evaluation of quantitative quality, with combina-

tions of PRN+ models trained with different image sets.

Setting PSNR (dB) MS-SSIM

Mixed 32.3855 0.9620

CLIC 32.3955 0.9620

DIV2K 32.3806 0.9620

M+C 32.3931 0.9620

M+D 32.3893 0.9620

C+D 32.3949 0.9620

All 32.3987 0.9621

tecture, on two different datasets, i.e. CLIC and DIV2K.

We first train a model with the mixed dataset and we fine-

tune the model to produce two different models, each tuned

on either CLIC or DIV2K dataset. The results are shown

in Table 4. The choice of datasets affects the performance,

where the CLIC dataset is shown to better fit the validation

set. Averaging outputs show little improvements in perfor-

mance.

3.3.4 Ensemble of Different Architectures

We conduct a cross-architecture ensemble for PRN+ and

RCAN models. The results are shown in Table 5. As shown,

the cross-model ensemble improves the overall quantitative

quality, and averaging can also be applied to two sets of

already ensemble models that have different architectures.

We then compare the result of averaging pixels to block-

wise selection. Block size 96 × 96 is chosen to not exceed

the limit of 0.15 bpp among the images. It is observed that

for outputs that have not been ensemble, averaging the pix-

els achieves higher quality without consuming any bit-rate.

However, for ensemble outputs, block-level selection may

have the potential to bring in more improvements.

We conduct a further investigation into the block-wise

Table 5: Evaluation with combinations of PRN+ and RCAN

models. For two model A and B, A+B refers to averaging

pixels while A/B (N) means conducting block-level selec-

tion with the block size N. P and R stand for PRN+ and

RCAN, respectively, while P-All and R-HMF correspond to

the best ensemble results in Table 4 and Table 3.

Setting PSNR (dB) MS-SSIM

PRN+ 32.3955 0.962

RCAN 32.4508 0.9624

P+R 32.4651 0.9624

P/R (96) 32.4646 0.9625

P-All + R-HMF 32.4783 0.9625

P-All / R-HMF (96) 32.4842 0.9626

Table 6: Evaluation of block-level ensemble of different

models. P and R stand for PRN+ and RCAN, respectively,

while P-All and R-HMF correspond to the best results in Ta-

ble 4 and Table 3. Ratio show the ratio of selected patches

that originally comes from the first model. bpp+ indicate

the increase in bpp to signal the flags.

Setting Patch Ratio PSNR (dB) bpp+

P/R 96 30.55% 32.4646 9.6e-5

R-M/R-HMF 96 28.04% 32.4794 9.4e-5

P-All/R-HMF 96 23.29% 32.4841 8.4e-5

P-All/R-HMF 128 19.67% 32.4822 4.3e-5

P-All/R-HMF 64 28.08% 32.4884 2.1e-4

P-All/R-HMF 48 31.18% 32.4928 3.8e-4

selection method. As shown in Table 6, block-wise en-

semble with streamed flags can further improve quantitative

quality, with only a slight amount of increase in bit-rate.

Surely the finer partitioning of the images produces higher

results while consuming more bits for the flags. It is also ob-

served that models showing some distinctions may achieve

a better result with the ensemble. As illustrated in Table 5,

two similar models (R-M and R-HMF), though with higher

averaged PSNR, do not outperform two distinct models (P-

All and R-HMF) when conducting the block-wise ensemble.

To design a collaborative training technique that considers

rate-distortion optimization might be a promising direction

for future research in learned image compression.

4. Conclusion

In this paper, we explored the possibility of combining

multiple models in the post-processing task. These models

are generated in different ways, including designing differ-

ent network architectures and training with different image

sets. We also compared two different integration methods,

averaging and selection, and found that both the two meth-

ods can bring performance gains, and they can be superim-

posed for better results.
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