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Abstract

In this paper, a low bit-rate compressed image quality
enhancement framework is presented. A recent image/video
coding method and a deep learning based quality
enhancement method are integrated to improve the
perceptual quality of compressed images. The proposed
architecture is designed to reduce the coding artifact and
restore the blurred texture details. The experimental results
presents that the proposed framework yields a 33%
improvement in the Perceptual Index score which is
consistent with visual evaluation on a sample of resullts.

1. Introduction

Image compression has been a long research topic and
the compression ratio is improved continuously. As we
consume the massive multimedia data everyday, the
traditional image compression techniques do not provide
the sufficient compression ratio.

Joint Video Experts Team (JVET) is ready to release a
new video coding standard named Versatile Video Coding
(VVC). VVC aims to provide two times higher
compression ratio than the recent standard High Efficient
Video Coding (HEVC).

High compression inevitably comes with artifacts such
as blocking artifacts, ringing effects and blurring. Recent
research has started to apply deep learning to artifact
reduction problem. Yu [1] designed AR-CNN to reduce the
coding artifact and showed an improvement in terms of
PSNR and SSIM. Kim [2] proposed GRDN, which is based
on the residual dense network (RDN), and won the image
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denoising challenge, NTIRE 2019. Both methods still
optimize the CNN based network using pixel difference
between the original images and the network output.

In this paper, in order to provide the good perceptual
quality at low bit-rate compressed images, a perceptual
image quality enhancement framework is proposed in
pursuit of reducing coding artifact and restoring the texture
details.

2. Proposed Methods

In the proposed framework, an image is encoded using
VVC intra coding and then the network based quality
enhancement process is followed. The networks used in the
quality enhancement are trained toward the coding artifact
reduction and the texture details restoration.

2.1. Encoding using VVC intra coding

We utilize the VVC intra coding scheme to obtain high
bit saving. VVC intra coding has a 23% BD-rate gain
compared to the previous HEVC intra coding. Various tools
were newly adopted to achieve the high compression in
VVC. The number of directional intra mode was extended
to 65 [3]. Multi-line intra prediction [4] used non-adjacent
lines as a reference for the prediction. Position Dependent
Prediction Combination (PDPC) [5] [6] utilized both left
and above reference samples to reduce the prediction error.
Block size and intra mode dependent filter selection [7], and
Cross component linear model (CCLM) [8] [9] were
adopted to improve the prediction. In the proposed
framework, we utilizes VIM 7.3 (all intra configuration in
the common condition setting) to encode the original
images with the quantization parameter range between 35
and 38 for the targeted low bit-rate.
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Figure 1: HGRDN architecture.

2.2. Network based quality enhancement

Low bit-rate compression results in blocking artifacts,
ringing effects, and blurring. Traditionally, specific filters
to reduce such artifacts have been designed. Various deep
learning based image restoration methods such as super
resolution (SR) recently have been proposed. Since artifacts
reduction problem is a similar problem to SR, the state-of-
the-art SR networks are widely adopted in the artifact
reduction.

First approach is designed to optimize the pixel
difference between the input and output, which results in
improving PSNR value. These PSNR-oriented approaches
are effective in suppressing blocking artifact while
retaining edges. However, the PSNR-oriented approaches
results in over blurred images.

Second approach is designed to improve the perceptual
quality. These perception-oriented approaches are effective
in restoring texture details and naturalness.

In the proposed framework, we adopt the PSNR-oriented
approach for noise reduction and the perception-oriented
approach for texture restoration.

2.2.1 Noise reduction network

In this paper, HGRDN [10] is utilized to reduce the
coding artifact, particularly blocking artifact and ringing
effect. The HGRDN has improved GRDN [2], which
ranked first place for real image denoising in terms of
PSNR and SSIM. HGRDN structure is shown in Figure 1.
HGRDN is consisted of four grouped residual dense
connections (GRDB), a down-sampling layer, a up-
sampling layer, and a CBAM [11] layer. The loss function
of the noise reduction network denoted as Ly is:

Ley = E[lIG, (x;) — willl, (1)
where x; and y; are input image and ground truth image,
respectively, and G, (-) represents the output of the noise
reduction network. E[-] represents the expectation that has

applied to the batch data.

2.2.2  Texture restoration network

We also employed HGRDN as the basic architecture for
texture restoration. We applied the loss functions borrowed
from the well known perception-oriented SR network in
order to obtain the naturalness, particularly restoration of
the texture details. Three losses defined in ESRGAN [12]
are applied.

The fist loss is a feature loss. Johnson et al. [13] proposed
this feature loss using VGG [14] features to measure the
perceptual similarity, and many SR methods such as
SRGAN [15] and ESRGAN [12] have employed the feature
loss. The feature loss in the texture restoration network is
defined as follows:

Ly = E[IIVGG1954 (x;) — VGG1954 (y:)lI] )
where x; and y; are input image and ground truth image,
respectively, and VGG 195, represents the features obtained
by the 4™ convoluation before the 5% layer of 19-layer VGG
network. E[-] represents the expectation that has applied to
the batch data.

The second loss is an adversarial loss. The GAN [16]
framework has been known to be able to generate the
realistic images. The generator generates an image and the
discriminator distinguishes if the generated image looks
real. We adopted the adversarial loss of relative GAN
(RaGAN) that ESRGAN [12] designed. The discriminator
and generator losses are defined as follows:

Lp=— Exr [IOg(D(xr , xf))]

— Ey, [log(D(x, x,))], (3)
L= — IExT [lOg(l —D(xy, xf))]

— E,, [log(D(xf , xr))], 4)
D(x,, %) = D(x,) - E[D(x7)], ®)
DGxy, %) = D) - ED(x,)], ©)

where x,. and x; denote real data and fake data,
respectively, and E denotes the expectation of all mini-



batch data.

The third loss is a pixel loss. The pixel loss is
incorporated to reduce the unpleasant noise created by the
GAN-based methods [17]. The pixel loss is defined as
follows:

Lp = E[lIG:(x) — yilll, (7
where x; and y; are input image and ground truth image,
respectively, G(x;) represents the output of the texture
restoration network.

2.3. Implementation

To implement the proposed framework, we integrated
the VVC Test Mode (VTM) [18] version 7.3 with the noise
reduction network (NR) and texture restoration network
(TR). For image encoding, the original image is first
converted into YUV420 and encode it using VIM with all
intra configuration setting. The reconstructed image is
converted again into RGB format and fed into the network
based quality enhancement process which includes the NR
and/or TR. We defined the quality enhancement types
according to the applying of NR and TR as Table 1.

We used 1633 CLIC training images and 36,000 images
of Microsoft COCO training dataset [19]. The training
dataset images are encoded using VTM and then randomly
cropped with the size 96 X 96 for training. We trained
using Adam [20] withf; = 0.9,, = 0.999. The initial
learning rate was set tol X 10™*, and then decreased to half
at [50k, 100k, 200k, 300k] iterations. We used 64 filters, 8
3x3 convolutions and 16 RDBs in HGRDN. We trained the
noise reduction network using L; loss as eq. (1). The
texture restoration network loss is defined as follows:

Lgr =al, + yLy + 6Lg, ®)
where the hyper parameter for «,y, 6 were set as 2 X 1072,
1,5 % 1074, respectively.

Table 1.
Type Method
Type 1 NR
Type 2 TR
Type 3 NR + TR
Type 4 CAS

3. Experimental results

We defined four types of the image enhancement
process. In Table 1, NR and TR refer to the noise reduction
network and the texture restoration network, respectively.
CAS refers that cascade training of NR and TR. The type 1
enhancement process means that the VVC reconstructed
image is fed into only the NR network. The type 2
enhancement process means that the VVC reconstructed
image is fed into only the TR network. The type 3
enhancement process means that the reconstructed image is
fed into pre-trained NR first and then fed into pre-trained

TR. The type 4 enhancement process means that the
reconstructed image is fed into the cascade trained NR and
TR.

We employed the perceptual index metric to measure the
perceptual quality of our framework. The PI (Perceptual
Index) was used from the PIRM-SR Challenge [21] to judge
the perceptual quality of the SR algorithms. The PI is

calculated as follows:

Pl = (10—Ma)+NQE' ©)

2
where Ma [22] and NIQE [23] are two different well known
non-reference quality metrics. The PI value is the lower,
when the perceptual quality is better.

Figure 2 and Figure 3 show the PSNR values and PI
values for each type according to the bit rate in BPP. The
rank order of the type in the PSNR measure and PI measure
are different. For example, Type 1 is the best in PSNR but
Type 4 is the best in PI.

As the second row (IMG_20170504_183130) in Figure
4 showed, Type 1 method reduces significantly the ringing
artifact around the elbow. Type 2 method tends to add
noticeable noise. The Type 3 and Type 4 methods show the
trade off between the artifacts and the texture detail
restoration. The Type 3 applied image remains the ringing
artifact but recovers the realistic elbow, not too smoothed.
The Type 4 image has the noticeable grain noise in the
elbow.
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Figure 2: Comparison of the quality enhancement types in PSNR
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Figure 3: Comparison of the quality enhancement types in PI



4. Conclusion

In this paper, a low bit-rate image compression
framework towards high perceptual quality is presented. An
image is encoded using VVC, and then fed into a network-
based quality enhancement process. We employed two
networks for the post processing and defined four types of
the enhancement process according to the combination of
the post processing networks. The proposed method (Type
3 and Type 4) has shown that the coding artifact is reduced
and the texture detail is recovered in the visual quality. The
enhancement of the quality is also measured using the PI

VVC (36.01/6.84) Type 1 (37.66/6.87)

VVC (34.13/6.38) Type 1 (35.11/6.55)

VVC (28.59/3.01) Type 1 (29.62/3.22)

- = s Ny
VVC (28.46/3.18)  Type 1 (29.44/3.16)

Type 2 (35.60/5.37)

Type 2 (34.18/4.97)

Type 2 (27.78/2.49)

Type 2 (27.

and a 33% improvement has achieved. We remain various
network combinations (e.g., changing the order of NR and
TR) for further study.
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