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Abstract 
 

In this paper, a low bit-rate compressed image quality 
enhancement framework is presented. A recent image/video 
coding method and a deep learning based quality 
enhancement method are integrated to improve the 
perceptual quality of compressed images. The proposed 
architecture is designed to reduce the coding artifact and 
restore the blurred texture details. The experimental results 
presents that the proposed framework yields a 33% 
improvement in the Perceptual Index score which is 
consistent with visual evaluation on a sample of results. 
 

1. Introduction 
Image compression has been a long research topic and 

the compression ratio is improved continuously. As we 
consume the massive multimedia data everyday, the 
traditional image compression techniques do not provide 
the sufficient compression ratio.  

Joint Video Experts Team (JVET) is ready to release a 
new video coding standard named Versatile Video Coding 
(VVC). VVC aims to provide two times higher 
compression ratio than the recent standard High Efficient 
Video Coding (HEVC).  

High compression inevitably comes with artifacts such 
as blocking artifacts, ringing effects and blurring. Recent 
research has started to apply deep learning to artifact 
reduction problem. Yu [1] designed AR-CNN to reduce the 
coding artifact and showed an improvement in terms of 
PSNR and SSIM. Kim [2] proposed GRDN, which is based 
on the residual dense network (RDN), and won the image 
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denoising challenge, NTIRE 2019. Both methods still 
optimize the CNN based network using pixel difference 
between the original images and the network output. 

In this paper, in order to provide the good perceptual 
quality at low bit-rate compressed images, a perceptual 
image quality enhancement framework is proposed in 
pursuit of reducing coding artifact and restoring the texture 
details. 

2. Proposed Methods 
In the proposed framework, an image is encoded using 

VVC intra coding and then the network based quality 
enhancement process is followed. The networks used in the 
quality enhancement are trained toward the coding artifact 
reduction and the texture details restoration. 

2.1. Encoding using VVC intra coding 

We utilize the VVC intra coding scheme to obtain high 
bit saving. VVC intra coding has a 23% BD-rate gain 
compared to the previous HEVC intra coding. Various tools 
were newly adopted to achieve the high compression in 
VVC. The number of directional intra mode was extended 
to 65 [3]. Multi-line intra prediction [4] used non-adjacent 
lines as a reference for the prediction. Position Dependent 
Prediction Combination (PDPC) [5] [6] utilized both left 
and above reference samples to reduce the prediction error. 
Block size and intra mode dependent filter selection [7], and 
Cross component linear model (CCLM) [8] [9] were 
adopted to improve the prediction. In the proposed 
framework, we utilizes VTM 7.3 (all intra configuration in 
the common condition setting) to encode the original 
images with the quantization parameter range between 35 
and 38 for the targeted low bit-rate. 



 

 

 
  

2.2. Network based quality enhancement 

Low bit-rate compression results in blocking artifacts, 
ringing effects, and blurring. Traditionally, specific filters 
to reduce such artifacts have been designed. Various deep 
learning based image restoration methods such as super 
resolution (SR) recently have been proposed. Since artifacts 
reduction problem is a similar problem to SR, the state-of-
the-art SR networks are widely adopted in the artifact 
reduction. 

First approach is designed to optimize the pixel 
difference between the input and output, which results in 
improving PSNR value. These PSNR-oriented approaches 
are effective in suppressing blocking artifact while 
retaining edges. However, the PSNR-oriented approaches 
results in over blurred images.  

Second approach is designed to improve the perceptual 
quality. These perception-oriented approaches are effective 
in restoring texture details and naturalness.  

In the proposed framework, we adopt the PSNR-oriented 
approach for noise reduction and the perception-oriented 
approach for texture restoration. 

2.2.1 Noise reduction network 

In this paper, HGRDN [10] is utilized to reduce the 
coding artifact, particularly blocking artifact and ringing 
effect. The HGRDN has improved GRDN [2], which 
ranked first place for real image denoising in terms of 
PSNR and SSIM. HGRDN structure is shown in Figure 1. 
HGRDN is consisted of four grouped residual dense 
connections (GRDB), a down-sampling layer, a up-
sampling layer, and a CBAM [11] layer. The loss function 
of the noise reduction network denoted as  is:  = [‖() −  ‖],                                            (1) 
where   and   are input image and ground truth image, 
respectively, and (∙) represents the output of the noise 
reduction network. [∙] represents the expectation that has 

applied to the batch data. 

2.2.2 Texture restoration network 

We also employed HGRDN as the basic architecture for 
texture restoration. We applied the loss functions borrowed 
from the well known perception-oriented SR network in 
order to obtain the naturalness, particularly restoration of 
the texture details. Three losses defined in ESRGAN [12] 
are applied. 

The fist loss is a feature loss. Johnson et al. [13] proposed 
this feature loss using VGG [14] features to measure the 
perceptual similarity, and many SR methods such as 
SRGAN [15] and ESRGAN [12] have employed the feature 
loss. The feature loss in the texture restoration network is 
defined as follows:   = [‖19 () − 19 ()‖]                     (2) 
where   and   are input image and ground truth image, 
respectively, and 19  represents the features obtained 
by the 4th convoluation before the 5th layer of 19-layer VGG 
network. [∙] represents the expectation that has applied to 
the batch data. 

The second loss is an adversarial loss. The GAN [16] 
framework has been known to be able to generate the 
realistic images. The generator generates an image and the 
discriminator distinguishes if the generated image looks 
real. We adopted the adversarial loss of relative GAN 
(RaGAN) that ESRGAN [12] designed. The discriminator 
and generator losses are defined as follows:      = −  log(D(  , )) −  log(D(  , )),                     (3)         = −  log1 − D(  , )−  log(D(  , )),                     (4)       D(  , ) = D() - (),                                    (5)       D(  , ) = D() - [()],                                    (6)   
where   and   denote real data and fake data, 
respectively, and  denotes the expectation of all mini-

Figure 1: HGRDN architecture. 



 

 

batch data.  
The third loss is a pixel loss. The pixel loss is 

incorporated to reduce the unpleasant noise created by the 
GAN-based methods [17]. The pixel loss is defined as 
follows:  = [‖() − ‖],                                            (7) 
where   and   are input image and ground truth image, 
respectively, ()  represents the output of the texture 
restoration network. 

2.3. Implementation 

To implement the proposed framework, we integrated 
the VVC Test Mode (VTM) [18] version 7.3 with the noise 
reduction network (NR) and texture restoration network 
(TR). For image encoding, the original image is first 
converted into YUV420 and encode it using VTM with all 
intra configuration setting. The reconstructed image is 
converted again into RGB format and fed into the network 
based quality enhancement process which includes the NR 
and/or TR. We defined the quality enhancement types 
according to the applying of NR and TR as Table 1. 

We used 1633 CLIC training images and 36,000 images 
of Microsoft COCO training dataset [19]. The training 
dataset images are encoded using VTM and then randomly 
cropped with the size 96 × 96  for training. We trained 
using Adam [20] with  = 0.9,  = 0.999 . The initial 
learning rate was set to1 × 10, and then decreased to half 
at [50k, 100k, 200k, 300k] iterations. We used 64 filters, 8 3x3 convolutions and 16 RDBs in HGRDN. We trained the 
noise reduction network using   loss as eq. (1). The 
texture restoration network loss is defined as follows:  = α  +    +    ,                                      (8) 
where the hyper parameter for α, γ, δ were set as 2 × 10, 
1, 5 × 10, respectively.  
 

Table 1.  
Type Method 

Type 1 NR 
Type 2 TR 
Type 3 NR + TR 
Type 4 CAS 

3. Experimental results 
 We defined four types of the image enhancement 

process. In Table 1, NR and TR refer to the noise reduction 
network and the texture restoration network, respectively. 
CAS refers that cascade training of NR and TR. The type 1 
enhancement process means that the VVC reconstructed 
image is fed into only the NR network. The type 2 
enhancement process means that the VVC reconstructed 
image is fed into only the TR network. The type 3 
enhancement process means that the reconstructed image is 
fed into pre-trained NR first and then fed into pre-trained 

TR. The type 4 enhancement process means that the 
reconstructed image is fed into the cascade trained NR and 
TR. 

We employed the perceptual index metric to measure the 
perceptual quality of our framework. The PI (Perceptual 
Index) was used from the PIRM-SR Challenge [21] to judge 
the perceptual quality of the SR algorithms. The PI is 
calculated as follows:   PI =  ( )   ,                                               (9) 
where Ma [22] and NIQE [23] are two different well known 
non-reference quality metrics. The PI value is the lower, 
when the perceptual quality is better. 

Figure 2 and Figure 3 show the PSNR values and PI 
values for each type according to the bit rate in BPP. The 
rank order of the type in the PSNR measure and PI measure 
are different. For example, Type 1 is the best in PSNR but 
Type 4 is the best in PI.  

As the second row (IMG_20170504_183130) in Figure 
4 showed, Type 1 method reduces significantly the ringing 
artifact around the elbow. Type 2 method tends to add 
noticeable noise. The Type 3 and Type 4 methods show the 
trade off between the artifacts and the texture detail 
restoration. The Type 3 applied image remains the ringing 
artifact but recovers the realistic elbow, not too smoothed. 
The Type 4 image has the noticeable grain noise in the 
elbow.  

 
 
 

 
 

Figure 2: Comparison of the quality enhancement types in PSNR 

Figure 3: Comparison of the quality enhancement types in PI 



 

 

4. Conclusion 
In this paper, a low bit-rate image compression 

framework towards high perceptual quality is presented. An 
image is encoded using VVC, and then fed into a network-
based quality enhancement process. We employed two 
networks for the post processing and defined four types of 
the enhancement process according to the combination of 
the post processing networks. The proposed method (Type 
3 and Type 4) has shown that the coding artifact is reduced 
and the texture detail is recovered in the visual quality. The 
enhancement of the quality is also measured using the PI 

and a 33% improvement has achieved. We remain various 
network combinations (e.g., changing the order of NR and 
TR) for further study. 

Acknowledgement 
This work was supported by Institute for Information & 
communications Technology Planning & Evaluation 
(IITP) grant funded by the Korea government(MSIT) (No. 
2017-0-00072, Development of Audio/Video Coding and 
Light Field Media Fundamental Technologies for Ultra 
Realistic Tera-media).

 

     

 

VVC (29.37/3.53) Type 1 (30.45/7.64) Type 2 (28.68/5.36) Type 3 (28.16/5.19) Type 4 (28.47/4.97) 

     
VVC (36.01/6.84) Type 1 (37.66/6.87) Type 2 (35.60/5.37) Type 3 (34.73/5.02) Type 4 (34.82/5.10) 

     
VVC (34.13/6.38) Type 1 (35.11/6.55) Type 2 (34.18/4.97) Type 3 (33.24/3.93) Type 4 (33.75/4.25) 

     
VVC (28.59/3.01) Type 1 (29.62/3.22) Type 2 (27.78/2.49) Type 3 (27.32/2.45) Type 4 (27.68/2.39) 

     
VVC (28.46/3.18) Type 1 (29.44/3.16) Type 2 (27.42/2.76) Type 3 (26.88/2.75) Type 4 (27.14/2.77) 

 

Figure 4: PSNR and PI results after Type 1, Type 2, Type 3, and Type 4 processing. The images are selected from validate set, 
which names are IMG_0470_1, IMG_20170504_183130, IMG_20170114_204505, IMG_20170721_103913, 

IMG_20170730_133144 from the top row. 
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