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Abstract

We propose a three-layer image compression system con-
sisting of a base-layer VVC (intra) codec, a learning-based
residual layer codec, and a learnable hyperprior. This pro-
posal (Team: NCTU_Commlab) is submitted to the Chal-
lenge on Learned Image Compression (CLIC) in March
2020. Our contribution is developing a data fusion atten-
tion module and integrating several known components to-
gether to form an efficient image codec, which has a higher
compression performance than the standard VVC coding
scheme. Unlike the conventional residual image coding,
both our encoder and decoder take inputs also from the
base-layer output. Also, we construct a refinement neural
network to merge the residual-layer decoded residual im-
age and the base-layer decoded image together to form the
final reconstructed image. We tested two autoencoder struc-
tures for the encoder and decoder, namely, CNN with GDN
[5, 0], and the generalized octave CNN [41]. Our results
show that the transmitted latent representations are very ef-
ficient in coding the residuals because the object boundary
information can be provided by the proposed spatial atten-
tion module. The experiments indicate that the proposed
system achieves better performance than the single-layer
VVC at both PSNR and subjective quality at around 0.15
bit-per-pixel.

1. Introduction

Recent researches have revealed that the deep learning-
based image compression methods potentially outper-
form the traditional coding scheme, JPEG2000, the
H.265/HEVC-based BPG [7] image codec, and the latest
versatile video coding (VVC)[8].

In participating in the low-rate track of CLIC 2020, we
propose a hybrid coding scheme, which consists of a VVC
(intra) codec as the base-layer, and a residual-layer which
uses an autoencoder architecture and a conditional entropy

model based on Gaussian mixture model. The function of
the residual-layer is to reduce the artifacts generated by the
base-layer at lower bitrates. This method is inspired by the
conventional layered coding concept, and the recent deep
learning-based codec in [6], [12], [3], and [13]. At the re-
ceiver, the decoder network takes the inputs from the out-
puts of the base-layer and the residual-layer to produce an
intermediate output, which is then processed by a refine-
ment network to resynthesize the final output image. This
refinement network can be viewed as a post-processing pro-
cedure to further improve the image quality. At a total bit
rate around 0.15 bit-per-pixel (bpp), our system allocates
about 0.125 bpp to the VVC (intra) base-layer coding and
about 0.025 bpp to the residual-layer coding.
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Figure 1. The architecture of the proposed image compression sys-
tem with residual coding.

Our contribution in this study is developing a data fu-
sion attention module and integrating several known com-
ponents together to form an efficient image codec, which
has a higher compression performance than the standard
VVC coding scheme. Unlike the conventional multi-layer
coding, both our encoder and decoder take inputs also from
the base-layer output. In addition, we construct a refinement
neural network to merge the residual-layer decoded resid-
ual image and the base-layer decoded image together to
form the final reconstructed image. We tested two autoen-
coder structures for the encoder and decoder, namely, CNN
with GDN (Generalize Divisible Normalization) [5, 6], and
the generalized octave CNN [4]. Our results show that in
both cases the transmitted latent representations are very



efficient in coding the residuals because the object bound-
ary information can be provided by the proposed spatial
attention module. The experiments indicate that the pro-
posed system achieves better performance than the single-
layer VVC at both PSNR and subjective quality at around
0.15 bit-per-pixel. Because the above two autoencoder
structures have similar compression performance, only the
CNN with GDN is submitted to the CLIC contest (Team:
NCTU_Commlab).

2. Related work

The recent promising learning-based image compression
studies [5, 6, 10, 11, 12, 14, 15, 16] adopt the autoencoder
structure to extract the latent representation of input data.
Tt was shown that a CNN neural net with GDN nonlin-
earity is able to achieve a high image compression effi-
ciency comparable to that of BPG [5, 6]. Furthermore, a
recent proposal using the generalized octave convolution
can achieve a comparable performance with the best con-
ventional codec, VVC [8].

In addition to the trainable autoencoder, many learned
codecs contain a highly efficient entropy coder (arithmetic
coder) and an accurate rate estimator. In [6], the Gaussian
scalar mixture (GSM) model is used to model the entropy
probability distribution, and it is implemented by using the
so-called hyperprior network to estimate entropy in an end-
to-end training manner. Furthermore, a complicated condi-
tional entropy model based on the Gaussian mixture model
(GMM) was mentioned in [ |4],and proposed in [10, 4]. For
the multi-layer coding, a deep semantic segmentation-based
layered image compression (DSSLIC) was proposed in [3],
which integrates the semantic segmentation task with im-
age compression; it intends to take the advantages of the
learning-based system and the BPG-based codec.
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Figure 2. Visualization of attention masks.

3. Proposed Methods
3.1. Overall architecture and design philosophy

Fig.1 show the proposed our multi-layer image compres-
sion system. As shown in Fig.3, the input to the encoder is
a six-channel tensor, which is a concatenation of a VVC
(intra) decoded image and the original image in RGB for-
mat. Given an input image x, the VVC (intra) encoder
produces a compressed image z.. With both z and ., a
learning-based encoder generates a set of residual feature
maps z = E(x;xz.). To simulate the quantization effect in
the training process, we adopt the additive noise technique
proposed in [5] to prevent the zero gradient problem caused
by quantization. Let § = Q(y); we adopt the technique
in [14] , which uses the Gaussian mixture model N (u, o)
to approximate the probability distribution of . The pa-
rameters of the Gaussian model are estimated by a hyper-
prior model (neural net). The probability model is used to
estimate the entropy value in the training phase and it es-
timates the conditional probability and used by the arith-
metic coder in the testing phase. At the beginning of the
decoding stage, the residual feature sample g is first recov-
ered by the decoder network D(%;z.). And then the re-
finement network generates the final reconstructed image
& = R(D(%;x.);x.) using both decoded VVC (intra) im-
age and decoded residuals.

Noted that instead of using the difference between the
original image x and the decoded base-layer image x., the
encoder takes inputs of both these two images. Because
our residual-layer encoder input is not identical to the resid-
ual image and it also makes use of the base-layer decoded
output, it may be able to provide some additional “side-
information” for reconstructing the original image at the
decoder. Furthermore, we include a spatial attention mech-
anism at both encoder and decoder, which takes input only
from . and produces an attention mask. With the help of
the attention mask, the autoencoder can predict the location
of residuals quite precisely, and thus only the most mean-
ingful information is coded. An example of attention mask
is shown in Fig.2.

The decoder is roughly the reverse of the encoder but the
decoder has an additional refinement network, which has
two inputs: the base-layer reconstructed image and the out-
put of the residual-layer decoder. Therefore, the refinement
network plays the role of postprocessing. Nevertheless, be-
cause it is included in the training loop, its function is more
than simply combining the base-layer image and the resid-
uals.

We tried two CNN structures for the residual encoder
and decoder. The first structure is modified from the autoen-
coder architecture, convolutional layers with GDN nonlin-
earity (Fig.3), proposed by [5]. The second structure is the
generalized octave convolution (GoConv) adopted from [4].
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Figure 3. The architecture of proposed autoencoder and hyperprior

In the implementation of the generalized octave network,
we replace all the convolution and transpose-convolution
layers by GoConv and GoTConv layer (Fig.4) in our archi-
tecture.
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Figure 4. Architecture of generalize octave convolution (GoConv)
shown in the left figure, and transposed-convolution (GoTConv)
shown in the right figure.

3.2. The loss function

In this work, the loss function is defined as:
EZAXLR(Q)+LD(12,1%), (D)

where L, is the entropy estimation by the Gaussian mixture
model using the parameters produced by the hyperprior and
Lp(x;2) is defined by some measure of reconstruction er-
ror, such as mean square error (MSE) or multiscale structure
similarity (MS-SSIM).

In the conventional compression schemes, the recon-
structed errors usually have large magnitude response in the
high frequency region. Since the residual signal has gener-
ally the properties of small variation and spatial sparsity, the
general-purpose network may not be suitable for its repre-
sentation. With the help of base-layer decoded image as the
extra information, the autoencoder can put more attention
on the high frequency region for bit allocation. In our struc-
ture, the entire encoder produces two separate bit streams:
the VVC (intra) codes and residual codes.

3.3. Local Attention Module

Fig.3 also shows the proposed local attention module. It
consists of 4 layers of CNN. Fig.2 shows the local attention
masks produced by our attention module. These attention
masks signal the edges of objects, where often the signifi-
cant coding errors locate. The idea of using attention masks
is to reduce the transmission of the duplicated information
among the feature maps. Some portions of the high-level
feature maps are suppressed in processing and thus they re-
duce the overlapped information. And the ultimate goal is
to reduce the bits in transmission.
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Figure 5. Comparison between images using VVC (intra) and us-
ing our system at around 0.12bpp. (a)Original image (b)VVC (in-
tra): 0.184 bpp, MS-SSIM 0.9468, PSNR 31.53dB;; (c)Our sys-
tem: 0.181 bpp, MS-SSIM 0.9642, PSNR 32.01dB

4. Experiments
4.1. Autoencoder and refinement network

Our autoencoder and the hyperprior structure is similar
to that in [6] shown in Fig 3.

In our system, the bitrate ratio of the base-layer and the
residual-layer is about 5 : 1. The intermediate feature map
channel number is 96 inside the autoencoder and 8 chan-



nels for the transmitted feature maps due to the 0.15 bpp
constraint, which is an extremely low bitrate constrain. The
notation “k5 n96-2” represents a convolution layer with ker-
nel size 5, 96 output channels, and a stride of 2. The hyper
autoencoder takes absolute value of latent representation y
as input, and produces 16 output channels representing the
corresponding mean and sigma pair of y for the entropy
coding.

4.2. Training

Our training dataset contains 1672 images provided by
CLIC 2020 [1]. In the training phase, we randomly crop
these images into 256 x 256 patches as inputs to our au-
toencoder. For validation, we use the Kodak dataset [2].
The training procedure of our proposed method consists of
two steps. The first step is to code the base-layer images
using the VVC (intra) codec with appropriate quantization
parameters. The generated decoded images are used in the
second phase learnable training. In the second step, we train
the parameters in the autoencoder and the refinement nets
using the cost function defined by (1) with MS-SSIM dis-
tortion.

We use Adam optimizer [9] with a mini-batch size 8 to
train the model optimized for MS-SSIM. Setting a initial
learning rate at 1-10~2 and for 1-10~* for the autoencoder
and the hyperprior respectively. The training procedure is
similar for both CNN with GDN and the GoConv network.

Model Bits/Pixel PSNR MS-SSIM
BPG420 0.1478 28.372 0.9182
VIMT7.1 0.1482 29.141 0.9305
Ours(MS-SSIM) 0.1439 27.472 0.9579
Ours(PSNR) 0.1361 30.498 0.9578

Table 1. Compression result comparison on CLIC validation set
and Kodak dataset.

4.3. Experiment results

For the low rate track, we focus on the perception quality.
The distortion loss is defined as D = 1 - L (M S —SSIM),
and then four models with A=0.2/0.3/0.4/0.5 in the loss
fuction | are trained to match the target bitrate. Then, the in-
dividual image feature map optimization technique is used
to fine-tune the feature map for each image. Table 1 shows
the comparison of our method (CNN with GDN) optimized
for MS-SSIM around 0.15 bpp. Fig.5 compares the com-
pressed images at around the same rate using VVC (intra)
and using our scheme.

The rate-distortion curves of several schemes are shown
in Fig 6. Our hybrid coding scheme can achieve higher MS-
SSIM value without sacrificing too much PSNR value.
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Figure 6. RD curve of on Kodak dataset.

5. Conclusions

In this paper, we propose an end-to-end trainable hybrid
image coding scheme. The base-layer is the standard VVC
(intra) codec, and the residual-layer is a deep-learning based
codec. Our learning-based encoder and decoder is modified
from [5]. We add a local attention module to enhance the
RD performance, and insert a refinement net to synthesize
the final reconstructed image. We also integrate the latest
GoConv component in the architecture. At the end, our
method outperforms the original VVC (intra) particularly
on the MS-SSIM index.
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