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Abstract

We propose a three-layer image compression system con-

sisting of a base-layer VVC (intra) codec, a learning-based

residual layer codec, and a learnable hyperprior. This pro-

posal (Team: NCTU Commlab) is submitted to the Chal-

lenge on Learned Image Compression (CLIC) in March

2020. Our contribution is developing a data fusion atten-

tion module and integrating several known components to-

gether to form an efficient image codec, which has a higher

compression performance than the standard VVC coding

scheme. Unlike the conventional residual image coding,

both our encoder and decoder take inputs also from the

base-layer output. Also, we construct a refinement neural

network to merge the residual-layer decoded residual im-

age and the base-layer decoded image together to form the

final reconstructed image. We tested two autoencoder struc-

tures for the encoder and decoder, namely, CNN with GDN

[5, 6], and the generalized octave CNN [4]. Our results

show that the transmitted latent representations are very ef-

ficient in coding the residuals because the object boundary

information can be provided by the proposed spatial atten-

tion module. The experiments indicate that the proposed

system achieves better performance than the single-layer

VVC at both PSNR and subjective quality at around 0.15
bit-per-pixel.

1. Introduction

Recent researches have revealed that the deep learning-

based image compression methods potentially outper-

form the traditional coding scheme, JPEG2000, the

H.265/HEVC-based BPG [7] image codec, and the latest

versatile video coding (VVC)[8].

In participating in the low-rate track of CLIC 2020, we

propose a hybrid coding scheme, which consists of a VVC

(intra) codec as the base-layer, and a residual-layer which

uses an autoencoder architecture and a conditional entropy

model based on Gaussian mixture model. The function of

the residual-layer is to reduce the artifacts generated by the

base-layer at lower bitrates. This method is inspired by the

conventional layered coding concept, and the recent deep

learning-based codec in [6], [12], [3], and [13]. At the re-

ceiver, the decoder network takes the inputs from the out-

puts of the base-layer and the residual-layer to produce an

intermediate output, which is then processed by a refine-

ment network to resynthesize the final output image. This

refinement network can be viewed as a post-processing pro-

cedure to further improve the image quality. At a total bit

rate around 0.15 bit-per-pixel (bpp), our system allocates

about 0.125 bpp to the VVC (intra) base-layer coding and

about 0.025 bpp to the residual-layer coding.
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Figure 1. The architecture of the proposed image compression sys-

tem with residual coding.

Our contribution in this study is developing a data fu-

sion attention module and integrating several known com-

ponents together to form an efficient image codec, which

has a higher compression performance than the standard

VVC coding scheme. Unlike the conventional multi-layer

coding, both our encoder and decoder take inputs also from

the base-layer output. In addition, we construct a refinement

neural network to merge the residual-layer decoded resid-

ual image and the base-layer decoded image together to

form the final reconstructed image. We tested two autoen-

coder structures for the encoder and decoder, namely, CNN

with GDN (Generalize Divisible Normalization) [5, 6], and

the generalized octave CNN [4]. Our results show that in

both cases the transmitted latent representations are very
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efficient in coding the residuals because the object bound-

ary information can be provided by the proposed spatial

attention module. The experiments indicate that the pro-

posed system achieves better performance than the single-

layer VVC at both PSNR and subjective quality at around

0.15 bit-per-pixel. Because the above two autoencoder

structures have similar compression performance, only the

CNN with GDN is submitted to the CLIC contest (Team:

NCTU Commlab).

2. Related work

The recent promising learning-based image compression

studies [5, 6, 10, 11, 12, 14, 15, 16] adopt the autoencoder

structure to extract the latent representation of input data.

Tt was shown that a CNN neural net with GDN nonlin-

earity is able to achieve a high image compression effi-

ciency comparable to that of BPG [5, 6]. Furthermore, a

recent proposal using the generalized octave convolution

can achieve a comparable performance with the best con-

ventional codec, VVC [8].

In addition to the trainable autoencoder, many learned

codecs contain a highly efficient entropy coder (arithmetic

coder) and an accurate rate estimator. In [6], the Gaussian

scalar mixture (GSM) model is used to model the entropy

probability distribution, and it is implemented by using the

so-called hyperprior network to estimate entropy in an end-

to-end training manner. Furthermore, a complicated condi-

tional entropy model based on the Gaussian mixture model

(GMM) was mentioned in [14],and proposed in [10, 4]. For

the multi-layer coding, a deep semantic segmentation-based

layered image compression (DSSLIC) was proposed in [3],

which integrates the semantic segmentation task with im-

age compression; it intends to take the advantages of the

learning-based system and the BPG-based codec.

Figure 2. Visualization of attention masks.

3. Proposed Methods

3.1. Overall architecture and design philosophy

Fig.1 show the proposed our multi-layer image compres-

sion system. As shown in Fig.3, the input to the encoder is

a six-channel tensor, which is a concatenation of a VVC

(intra) decoded image and the original image in RGB for-

mat. Given an input image x, the VVC (intra) encoder

produces a compressed image xc. With both x and xc, a

learning-based encoder generates a set of residual feature

maps z = E(x;xc). To simulate the quantization effect in

the training process, we adopt the additive noise technique

proposed in [5] to prevent the zero gradient problem caused

by quantization. Let ŷ = Q(y); we adopt the technique

in [14] , which uses the Gaussian mixture model N(µ, σ)
to approximate the probability distribution of ŷ. The pa-

rameters of the Gaussian model are estimated by a hyper-

prior model (neural net). The probability model is used to

estimate the entropy value in the training phase and it es-

timates the conditional probability and used by the arith-

metic coder in the testing phase. At the beginning of the

decoding stage, the residual feature sample ŷ is first recov-

ered by the decoder network D(ẑ;xc). And then the re-

finement network generates the final reconstructed image

x̂ = R(D(ẑ;xc);xc) using both decoded VVC (intra) im-

age and decoded residuals.

Noted that instead of using the difference between the

original image x and the decoded base-layer image xc, the

encoder takes inputs of both these two images. Because

our residual-layer encoder input is not identical to the resid-

ual image and it also makes use of the base-layer decoded

output, it may be able to provide some additional “side-

information” for reconstructing the original image at the

decoder. Furthermore, we include a spatial attention mech-

anism at both encoder and decoder, which takes input only

from xc and produces an attention mask. With the help of

the attention mask, the autoencoder can predict the location

of residuals quite precisely, and thus only the most mean-

ingful information is coded. An example of attention mask

is shown in Fig.2.

The decoder is roughly the reverse of the encoder but the

decoder has an additional refinement network, which has

two inputs: the base-layer reconstructed image and the out-

put of the residual-layer decoder. Therefore, the refinement

network plays the role of postprocessing. Nevertheless, be-

cause it is included in the training loop, its function is more

than simply combining the base-layer image and the resid-

uals.

We tried two CNN structures for the residual encoder

and decoder. The first structure is modified from the autoen-

coder architecture, convolutional layers with GDN nonlin-

earity (Fig.3), proposed by [5]. The second structure is the

generalized octave convolution (GoConv) adopted from [4].
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Figure 3. The architecture of proposed autoencoder and hyperprior

In the implementation of the generalized octave network,

we replace all the convolution and transpose-convolution

layers by GoConv and GoTConv layer (Fig.4) in our archi-

tecture.

GDN

GDN

GDN

GDN

IGDN

IGDN

IGDN

IGDN

Figure 4. Architecture of generalize octave convolution (GoConv)

shown in the left figure, and transposed-convolution (GoTConv)

shown in the right figure.

3.2. The loss function

In this work, the loss function is defined as:

L = λ× LR(q) + LD(x, x̂), (1)

where LR is the entropy estimation by the Gaussian mixture

model using the parameters produced by the hyperprior and

LD(x; x̂) is defined by some measure of reconstruction er-

ror, such as mean square error (MSE) or multiscale structure

similarity (MS-SSIM).

In the conventional compression schemes, the recon-

structed errors usually have large magnitude response in the

high frequency region. Since the residual signal has gener-

ally the properties of small variation and spatial sparsity, the

general-purpose network may not be suitable for its repre-

sentation. With the help of base-layer decoded image as the

extra information, the autoencoder can put more attention

on the high frequency region for bit allocation. In our struc-

ture, the entire encoder produces two separate bit streams:

the VVC (intra) codes and residual codes.

3.3. Local Attention Module

Fig.3 also shows the proposed local attention module. It

consists of 4 layers of CNN. Fig.2 shows the local attention

masks produced by our attention module. These attention

masks signal the edges of objects, where often the signifi-

cant coding errors locate. The idea of using attention masks

is to reduce the transmission of the duplicated information

among the feature maps. Some portions of the high-level

feature maps are suppressed in processing and thus they re-

duce the overlapped information. And the ultimate goal is

to reduce the bits in transmission.

(a) (b) (c)

Figure 5. Comparison between images using VVC (intra) and us-

ing our system at around 0.12bpp. (a)Original image (b)VVC (in-

tra): 0.184 bpp, MS-SSIM 0.9468, PSNR 31.53dB;; (c)Our sys-

tem: 0.181 bpp, MS-SSIM 0.9642, PSNR 32.01dB

4. Experiments

4.1. Autoencoder and refinement network

Our autoencoder and the hyperprior structure is similar

to that in [6] shown in Fig 3.

In our system, the bitrate ratio of the base-layer and the

residual-layer is about 5 : 1. The intermediate feature map

channel number is 96 inside the autoencoder and 8 chan-
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nels for the transmitted feature maps due to the 0.15 bpp

constraint, which is an extremely low bitrate constrain. The

notation “k5 n96-2” represents a convolution layer with ker-

nel size 5, 96 output channels, and a stride of 2. The hyper

autoencoder takes absolute value of latent representation y
as input, and produces 16 output channels representing the

corresponding mean and sigma pair of y for the entropy

coding.

4.2. Training

Our training dataset contains 1672 images provided by

CLIC 2020 [1]. In the training phase, we randomly crop

these images into 256 × 256 patches as inputs to our au-

toencoder. For validation, we use the Kodak dataset [2].

The training procedure of our proposed method consists of

two steps. The first step is to code the base-layer images

using the VVC (intra) codec with appropriate quantization

parameters. The generated decoded images are used in the

second phase learnable training. In the second step, we train

the parameters in the autoencoder and the refinement nets

using the cost function defined by (1) with MS-SSIM dis-

tortion.

We use Adam optimizer [9] with a mini-batch size 8 to

train the model optimized for MS-SSIM. Setting a initial

learning rate at 1 ·10−3 and for 1 ·10−4 for the autoencoder

and the hyperprior respectively. The training procedure is

similar for both CNN with GDN and the GoConv network.

Model Bits/Pixel PSNR MS-SSIM

BPG420 0.1478 28.372 0.9182
VTM7.1 0.1482 29.141 0.9305
Ours(MS-SSIM) 0.1439 27.472 0.9579
Ours(PSNR) 0.1361 30.498 0.9578

Table 1. Compression result comparison on CLIC validation set

and Kodak dataset.

4.3. Experiment results

For the low rate track, we focus on the perception quality.

The distortion loss is defined as D = 1−L(MS−SSIM),
and then four models with λ=0.2/0.3/0.4/0.5 in the loss

fuction 1 are trained to match the target bitrate. Then, the in-

dividual image feature map optimization technique is used

to fine-tune the feature map for each image. Table 1 shows

the comparison of our method (CNN with GDN) optimized

for MS-SSIM around 0.15 bpp. Fig.5 compares the com-

pressed images at around the same rate using VVC (intra)

and using our scheme.

The rate-distortion curves of several schemes are shown

in Fig 6. Our hybrid coding scheme can achieve higher MS-

SSIM value without sacrificing too much PSNR value.

0.12 0.14 0.16 0.18

0.91

0.92

0.93

0.94

0.95

bit rate [bit/px]

MS-SSIM on Kodak

BPG

VTM7.1

proposed

proposed (GoConv)

Figure 6. RD curve of on Kodak dataset.

5. Conclusions

In this paper, we propose an end-to-end trainable hybrid

image coding scheme. The base-layer is the standard VVC

(intra) codec, and the residual-layer is a deep-learning based

codec. Our learning-based encoder and decoder is modified

from [5]. We add a local attention module to enhance the

RD performance, and insert a refinement net to synthesize

the final reconstructed image. We also integrate the latest

GoConv component in the architecture. At the end, our

method outperforms the original VVC (intra) particularly

on the MS-SSIM index.
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[6] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston.

Variational image compression with a scale hyperprior. arXiv

preprint arXiv:1802.01436, 2018. 1, 2, 3

[7] F. Bellard. BPG image format. http://bellard.org/

bpg. 1

[8] HHI. Fraunhofer. VVC official test model VTM.

https://vcgit.hhi.fraunhofer.de/jvet/

VVCSoftware_VTM. 1, 2

[9] D. P Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014. 4

[10] J. Lee, S. Cho, and M. Kim. A hybrid architecture of

jointly learning image compression and quality enhance-

ment with improved entropy minimization. arXiv preprint

arXiv:1912.12817, 2019. 2

[11] M. Li, W. Zuo, S. Gu, D. Zhao, and D. Zhang. Learning con-

volutional networks for content-weighted image compres-

sion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 3214–3223, 2018. 2

[12] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and

L. V. Gool. Conditional probability models for deep im-

age compression. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

4394–4402, 2018. 1, 2

[13] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and

L. V. Gool. Practical full resolution learned lossless im-

age compression. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

10629–10638, 2019. 1
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