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Abstract

Recently, neural-network based lossy image compres-
sion methods have been actively studied and they have
achieved remarkable performance. However, the classi-
cal evaluation metrics, such as PSNR and MS-SSIM, that
the recent approaches have been using in their objective
function yield sub-optimal coding efficiency in terms of hu-
man perception, although they are very dominant metrics
in research and standardization fields. Taking into ac-
count that improving the perceptual quality is one of ma-
jor goals in lossy image compression, we propose a new
training method that allows the existing image compression
networks to reconstruct perceptually enhanced images. By
experiments, we show the effectiveness of our method, both
quantitatively and qualitatively.

1. Introduction

Recently, neural-network based lossy image compres-
sion methods [23, 10, 4, 22, 5, 14, 16, 15] have been ac-
tively studied. They have been progressively improving
the coding efficiency and the latest approach [15] has ob-
tained a remarkable coding efficiency that outperforms Ver-
satile Video Coding (VVC) Intra (VIM 7.1 [1]), which
has been almost finalized for standardization by ISO/IEC
MPEQG, in terms of both PSNR and multi-scale structural
similarity index (MS-SSIM) [25]. However, the classical
metrics, such as PSNR and MS-SSIM, for which most of
the recent neural-network based approaches [23, 10, 4, 22,

, 14, 16, 15] have been developed, may yeild sub-optimal
coding efficiency in terms of human perception. Although
those metrics are dominantly used in research and standard-
ization fields, they may be inappropriate to measure quality
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perceived by very complex human visual systems.

Meanwhile, in image restoration field, several stud-
ies [13, 24, 18, 9] have been conducted for improving
perceptual quality of reconstructed images. Some ap-
proaches [13, 24, 18] have adopted GAN [&]-based gener-
ation models that make a distribution of reconstructed im-
ages as close to that of original images as possible, and the
VGG [20]-based feature space loss [9] also has been ex-
ploited for some recent image restoration approaches [13,
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In image compression filed, based on the superior-
ity of generative models in image restoration, some ap-
proaches [17, 19, 3] targeting better perceptual quality have
been proposed. Rippel et al. [17] first introduced GAN [8]-
based training for image compression. Santurkaret al. [19]
also proposed the generative compression models based on
the GAN network. They trained the encoder-decoder net-
works in a step-wise manner (the generator (decoder) first
via the adversarial loss; the encoder next via the L2 norm
and the perceptual loss). Agutsson et al. [3] also have in-
troduced a generative compression method based on GAN,
in which whole encoder and decoder networks are trained
in an end-to-end manner, through a new R-D optimization
scheme for which an adversarial loss is jointly exploited.
These GAN-based approaches [17, 19, 3] have achieved
visually pleasing reconstructions compared to the conven-
tional codecs such as JPEG2000 [21] and BPG [6], espe-
cially at extremely low bit-rate range.

Taking into account that improving the perceptual qual-
ity can be viewed as one of major goals in lossy image
compression, we propose a new training scheme allowing
the perceptually improved reconstruction, in which the up-
to-date perceptual losses are utilized. In contrast to the
previous generative compression methods [17, 19, 3], we
only fine-tune the existing image compression model origi-
nally trained using the classical reconstruction losses, such
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Figure 1: Training scheme of our perceptual quality oriented image Compression network.

as mean-squared-error (MSE) or MS-SSIM, from a more
conservative perspective that the classical fidelity is as im-
portant as visual plausibility in image compression domain.
For example, changing human faces cannot be acceptable in
some applications, no matter how plausible the reconstruc-
tions are. For training our perceptual model, named EIC-
E2E-P, we only fine-tune the reconstruction-related sub-
networks of pre-trained base models, rather than optimizing
the whole networks in an end-to-end manner.

2. Proposed method

As mentioned above, we pre-train a base image com-
pression model, named EIC-E2E-B, and use the base model
for parameter initialization of our model. As the base im-
age compression model, we adopt a simplified version of
JointIQ-Net [15] in which we only adopt the unified scheme
of image compression and quality enhancement, and the
model parameter refinement module (MPRM), for stable
submission. After pre-training the base model using the
MSE or MS-SSIM, we fine-tune only the reconstruction-
related parts, including the decoder network and the quality
enhancement network GRDN [11].

Fig. | shows our training scheme. Because we train only
the reconstruction related sub-networks after pre-training,
we omit some diagrams for compression related networks,
such as the sub-networks for the hyperprior [5] and the
context-adaptive model parameter estimating network, for
clear illustration. As shown in Fig. 1, we only train
the decoder network, the quality enhancement network
GRDN [11], and the discriminator network. These train-
able networks are highlighted with orange color. That is,
we allow our decoder and quality enhancement networks to
reconstruct more plausible images than those from the base
model, although our model and the base model can share

the same compressed files because the compression related
elements are exactly same in both models.

To train our model, we exploit three different losses, the
reconstruction loss £,.., the perceptual loss L., and the
adversarial loss £, ,., motivated by SRGAN [13] and ES-
RGAN [24]. Considering our decoder network and GRDN
network to be a generator in adversarial training, the losses
for the generator and the discriminator are formulated as
follows:

£G :)\recﬁrec + Apercﬁperc + )\advcadvg (1)
£D :»CadvD (2)

In Eq. 1 and 2, we basically adopt the typical reconstruc-
tion metric, 1 - MS-SSIM or MSE for the reconstruction
loss L,... We choose one out of the two metrics based on
the type of an input image, which will be discussed later in
this section. For the perceptual loss L., we use the MSE
of the features extracted from the “conv5_4” layer of the
VGG-19 [20] network. For the adversarial loss L4, we
do not use only the input « and the reconstruction x’ as the
real and fake data fed into the discriminator, but we use also
the reconstruction x; ,, from the base model in a pair-wise
manner with the input « and reconstruction «’ to compose
the real and fake data in adversarial training. The recon-
structions ;.. from the base model can be viewed as an
additional context for the discriminator. L4y and Lyqy,,
represents two symmetric adversarial losses for the gener-
ator and discriminator, respectively, which are calculated
based on the relativistic average discriminator, as in ESR-
GAN [24]. Arees Apere, and Aqq, represent the pre-defined
weight parameters for L,.cc, Lpere, and Lqqy, respectively.
Fig. 2 shows the sample images reconstructed from two
versions of our base model, one optimized for MSE and the
other optimized for MS-SSIM, respectively. As shown in



Figure 2: Visual quality comparison between two versions
of our base model (best viewed in digital format). One ver-
sion is optimized for MSE, whereas the other is optimized
for MS-SSIM (a) MSE optimized, bpp: 0.1307, PSNR:
33.7671, MS-SSIM: 0.9750 (b) MS-SSIM optimized, bpp:
0.1387, PSNR: 31.7666, MS-SSIM: 0.9845

Fig. 2, The base models trained for MSE have strength in
maintaining structural information, whereas those trained
for MS-SSIM preserve more textures. Consequently, we di-
vide our models into two classes, a structure-oriented model
and a texture-oriented model, according to the type of re-
construction loss L,.... The structure-oriented model adopts
MSE as L., whereas the texture-oriented model uses MS-
SSIM as L,... The base model optimized with the same
type of L, is used for each type of our model.

3. Implementation

We trained the base model first in the way described
in [15], and then we initialized our model by duplicating
the parameters from the pre-trained base model. For the
structure-oriented model, we set Arec, Apere, and Agqy tO
40, 0.1, and 0.005, repectively, whereas we set them to 30,
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Figure 3: Perceptual index (PI) of the reconstructed images
from the base models and their corresponding perceptual
models.

0.1, and 0.005 for the texture-oriented models. To keep the
fidelity and prevent undesired artifacts or structural distor-
tions due to adversarial training, we increased the \,... val-
ues until those visual artifacts vanish. When we used the
default setting of ESRGAN, our model suffered from the
undesired artifacts. This may be due to the difference be-
tween image compression and super-resolution, in amount
of given contexts.

In the training phase, we used 96x96 patches randomly
extracted from CLIC [2] trainset, and we set the mini-
batch size to 8. We trained each model using ADAM opti-
mizer [12] for 500,000 iterations. We set the initial learning
rate to 0.0001, and then gradient decaying was applied by
decreasing the learning rate by half at every 10,000 steps
during the final 50,000 steps.

4. Experiments

To verify the effectiveness of our method, we compared
the average perceptual index (PI) values of reconstructed
images from the base models with those from the perceptual
models, over the CLIC [2] validation set images. The per-
ceptual index is a metric for measuring perceptual quality
of images, which was used in the PIRM-SR Challenge [7].
The higher perceptual quality is represented by the lower
perceptual index. Fig. 3 shows the average perceptual index
values of the reconstructed images from the base models
and their corresponding perceptual models. The blue circle
represents the base model optimized for MS-SSIM, and its
corresponding texture-oriented perceptual model is denoted
as the blue diamond. Likewise, the base model optimized
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Figure 4: Visual quality comparison between the base mod-
els and their corresponding perceptual models (best viewed
in digital format). (a) ground-truth images, (b) the recon-
structions from the base models, (c) the reconstructions
from the perceptual models.

for MSE and its corresponding structure-oriented percep-
tual model are denoted with orange color. As indicated
with the dotted arrows, our perceptual models definitely
improve the perceptual index values, compared with those
from their corresponding base models. The base model
optimized for MS-SSIM shows better results in terms of
the perceptual index although they consume lower bit-rates
compared with the base model optimized for MSE. Like-
wise, the texture-oriented perceptual model outperforms the
structure-oriented perceptual model in terms the perceptual
index. Correspondingly, we use the structure-oriented per-
ceptual model only when there exists significant structural
distortion in a reconstructed image. For further investiga-
tion on how each term in the objective function affects re-
constructions in terms of the perceptual index, we evalu-
ate two more models trained without the Lycr. and Loqy,
respectively. As shown in Fig. 3, in which the two mod-

els are denoted as square and triangle markers, respectively,
our full models show better results in terms of the percep-
tual index, and this represents that £, and L4, are com-
plementary for enhancing the perceptual index. Note that
we trained three texture-oriented perceptual models with the
different A values to meet the bit-rate constraint of the chal-
lenge, but we omitted two out of the three models in Fig. 3,
for simple illustration.

Fig. 4 shows the visual comparison results of our base
models and the corresponding perceptual models. Com-
pared to the reconstructions from the base model (Fig. 4
(b)), those from our perceptual models (Fig. 4 (c)) are more
visually pleasing with clearer edges and richer textures.
Note that two types of images in Fig. 4 (b) and Fig. 4 (c)
are reconstructed from the same compressed binary files.

5. Conclusion

In this paper, we proposed a new training method for
perceptual-quality oriented image compression. We uti-
lized the existing entropy minimization based image com-
pression approach, and fine-tuned the reconstruction-related
sub-netowrks using the latest objective functions for bet-
ter perceptual quality. We verified the effectiveness of our
method by measuring the perceptual index, the metric indi-
cating the perceptual quality of images. In addition, we pro-
vided visual comparison results, in which the reconstruc-
tions from our perctual models show better quality with
clearer edges and richer textures.
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