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Abstract

Recently, neural-network based lossy image compres-

sion methods have been actively studied and they have

achieved remarkable performance. However, the classi-

cal evaluation metrics, such as PSNR and MS-SSIM, that

the recent approaches have been using in their objective

function yield sub-optimal coding efficiency in terms of hu-

man perception, although they are very dominant metrics

in research and standardization fields. Taking into ac-

count that improving the perceptual quality is one of ma-

jor goals in lossy image compression, we propose a new

training method that allows the existing image compression

networks to reconstruct perceptually enhanced images. By

experiments, we show the effectiveness of our method, both

quantitatively and qualitatively.

1. Introduction

Recently, neural-network based lossy image compres-

sion methods [23, 10, 4, 22, 5, 14, 16, 15] have been ac-

tively studied. They have been progressively improving

the coding efficiency and the latest approach [15] has ob-

tained a remarkable coding efficiency that outperforms Ver-

satile Video Coding (VVC) Intra (VTM 7.1 [1]), which

has been almost finalized for standardization by ISO/IEC

MPEG, in terms of both PSNR and multi-scale structural

similarity index (MS-SSIM) [25]. However, the classical

metrics, such as PSNR and MS-SSIM, for which most of

the recent neural-network based approaches [23, 10, 4, 22,

5, 14, 16, 15] have been developed, may yeild sub-optimal

coding efficiency in terms of human perception. Although

those metrics are dominantly used in research and standard-

ization fields, they may be inappropriate to measure quality
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perceived by very complex human visual systems.

Meanwhile, in image restoration field, several stud-

ies [13, 24, 18, 9] have been conducted for improving

perceptual quality of reconstructed images. Some ap-

proaches [13, 24, 18] have adopted GAN [8]-based gener-

ation models that make a distribution of reconstructed im-

ages as close to that of original images as possible, and the

VGG [20]-based feature space loss [9] also has been ex-

ploited for some recent image restoration approaches [13,

24, 18, 9].

In image compression filed, based on the superior-

ity of generative models in image restoration, some ap-

proaches [17, 19, 3] targeting better perceptual quality have

been proposed. Rippel et al. [17] first introduced GAN [8]-

based training for image compression. Santurkaret al. [19]

also proposed the generative compression models based on

the GAN network. They trained the encoder-decoder net-

works in a step-wise manner (the generator (decoder) first

via the adversarial loss; the encoder next via the L2 norm

and the perceptual loss). Agutsson et al. [3] also have in-

troduced a generative compression method based on GAN,

in which whole encoder and decoder networks are trained

in an end-to-end manner, through a new R-D optimization

scheme for which an adversarial loss is jointly exploited.

These GAN-based approaches [17, 19, 3] have achieved

visually pleasing reconstructions compared to the conven-

tional codecs such as JPEG2000 [21] and BPG [6], espe-

cially at extremely low bit-rate range.

Taking into account that improving the perceptual qual-

ity can be viewed as one of major goals in lossy image

compression, we propose a new training scheme allowing

the perceptually improved reconstruction, in which the up-

to-date perceptual losses are utilized. In contrast to the

previous generative compression methods [17, 19, 3], we

only fine-tune the existing image compression model origi-

nally trained using the classical reconstruction losses, such
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Figure 1: Training scheme of our perceptual quality oriented image Compression network.

as mean-squared-error (MSE) or MS-SSIM, from a more

conservative perspective that the classical fidelity is as im-

portant as visual plausibility in image compression domain.

For example, changing human faces cannot be acceptable in

some applications, no matter how plausible the reconstruc-

tions are. For training our perceptual model, named EIC-

E2E-P, we only fine-tune the reconstruction-related sub-

networks of pre-trained base models, rather than optimizing

the whole networks in an end-to-end manner.

2. Proposed method

As mentioned above, we pre-train a base image com-

pression model, named EIC-E2E-B, and use the base model

for parameter initialization of our model. As the base im-

age compression model, we adopt a simplified version of

JointIQ-Net [15] in which we only adopt the unified scheme

of image compression and quality enhancement, and the

model parameter refinement module (MPRM), for stable

submission. After pre-training the base model using the

MSE or MS-SSIM, we fine-tune only the reconstruction-

related parts, including the decoder network and the quality

enhancement network GRDN [11].

Fig. 1 shows our training scheme. Because we train only

the reconstruction related sub-networks after pre-training,

we omit some diagrams for compression related networks,

such as the sub-networks for the hyperprior [5] and the

context-adaptive model parameter estimating network, for

clear illustration. As shown in Fig. 1, we only train

the decoder network, the quality enhancement network

GRDN [11], and the discriminator network. These train-

able networks are highlighted with orange color. That is,

we allow our decoder and quality enhancement networks to

reconstruct more plausible images than those from the base

model, although our model and the base model can share

the same compressed files because the compression related

elements are exactly same in both models.

To train our model, we exploit three different losses, the

reconstruction loss Lrec., the perceptual loss Lperc, and the

adversarial loss Ladv., motivated by SRGAN [13] and ES-

RGAN [24]. Considering our decoder network and GRDN

network to be a generator in adversarial training, the losses

for the generator and the discriminator are formulated as

follows:

LG =λrecLrec + λpercLperc + λadvLadvG (1)

LD =LadvD
(2)

In Eq. 1 and 2, we basically adopt the typical reconstruc-

tion metric, 1 - MS-SSIM or MSE for the reconstruction

loss Lrec. We choose one out of the two metrics based on

the type of an input image, which will be discussed later in

this section. For the perceptual loss Lperc, we use the MSE

of the features extracted from the ”conv5 4” layer of the

VGG-19 [20] network. For the adversarial loss Ladv , we

do not use only the input x and the reconstruction x
′ as the

real and fake data fed into the discriminator, but we use also

the reconstruction x
′

base from the base model in a pair-wise

manner with the input x and reconstruction x
′ to compose

the real and fake data in adversarial training. The recon-

structions x
′

base from the base model can be viewed as an

additional context for the discriminator. LadvG and LadvD

represents two symmetric adversarial losses for the gener-

ator and discriminator, respectively, which are calculated

based on the relativistic average discriminator, as in ESR-

GAN [24]. λrec, λperc, and λadv represent the pre-defined

weight parameters for Lrec, Lperc, and Ladv , respectively.

Fig. 2 shows the sample images reconstructed from two

versions of our base model, one optimized for MSE and the

other optimized for MS-SSIM, respectively. As shown in



Figure 2: Visual quality comparison between two versions

of our base model (best viewed in digital format). One ver-

sion is optimized for MSE, whereas the other is optimized

for MS-SSIM (a) MSE optimized, bpp: 0.1307, PSNR:

33.7671, MS-SSIM: 0.9750 (b) MS-SSIM optimized, bpp:

0.1387, PSNR: 31.7666, MS-SSIM: 0.9845

Fig. 2, The base models trained for MSE have strength in

maintaining structural information, whereas those trained

for MS-SSIM preserve more textures. Consequently, we di-

vide our models into two classes, a structure-oriented model

and a texture-oriented model, according to the type of re-

construction loss Lrec. The structure-oriented model adopts

MSE as Lrec, whereas the texture-oriented model uses MS-

SSIM as Lrec. The base model optimized with the same

type of Lrec is used for each type of our model.

3. Implementation

We trained the base model first in the way described

in [15], and then we initialized our model by duplicating

the parameters from the pre-trained base model. For the

structure-oriented model, we set λrec, λperc, and λadv to

40, 0.1, and 0.005, repectively, whereas we set them to 30,

Figure 3: Perceptual index (PI) of the reconstructed images

from the base models and their corresponding perceptual

models.

0.1, and 0.005 for the texture-oriented models. To keep the

fidelity and prevent undesired artifacts or structural distor-

tions due to adversarial training, we increased the λrec val-

ues until those visual artifacts vanish. When we used the

default setting of ESRGAN, our model suffered from the

undesired artifacts. This may be due to the difference be-

tween image compression and super-resolution, in amount

of given contexts.

In the training phase, we used 96×96 patches randomly

extracted from CLIC [2] trainset, and we set the mini-

batch size to 8. We trained each model using ADAM opti-

mizer [12] for 500,000 iterations. We set the initial learning

rate to 0.0001, and then gradient decaying was applied by

decreasing the learning rate by half at every 10,000 steps

during the final 50,000 steps.

4. Experiments

To verify the effectiveness of our method, we compared

the average perceptual index (PI) values of reconstructed

images from the base models with those from the perceptual

models, over the CLIC [2] validation set images. The per-

ceptual index is a metric for measuring perceptual quality

of images, which was used in the PIRM-SR Challenge [7].

The higher perceptual quality is represented by the lower

perceptual index. Fig. 3 shows the average perceptual index

values of the reconstructed images from the base models

and their corresponding perceptual models. The blue circle

represents the base model optimized for MS-SSIM, and its

corresponding texture-oriented perceptual model is denoted

as the blue diamond. Likewise, the base model optimized



Figure 4: Visual quality comparison between the base mod-

els and their corresponding perceptual models (best viewed

in digital format). (a) ground-truth images, (b) the recon-

structions from the base models, (c) the reconstructions

from the perceptual models.

for MSE and its corresponding structure-oriented percep-

tual model are denoted with orange color. As indicated

with the dotted arrows, our perceptual models definitely

improve the perceptual index values, compared with those

from their corresponding base models. The base model

optimized for MS-SSIM shows better results in terms of

the perceptual index although they consume lower bit-rates

compared with the base model optimized for MSE. Like-

wise, the texture-oriented perceptual model outperforms the

structure-oriented perceptual model in terms the perceptual

index. Correspondingly, we use the structure-oriented per-

ceptual model only when there exists significant structural

distortion in a reconstructed image. For further investiga-

tion on how each term in the objective function affects re-

constructions in terms of the perceptual index, we evalu-

ate two more models trained without the Lperc and Ladv ,

respectively. As shown in Fig. 3, in which the two mod-

els are denoted as square and triangle markers, respectively,

our full models show better results in terms of the percep-

tual index, and this represents that Lperc and Ladv are com-

plementary for enhancing the perceptual index. Note that

we trained three texture-oriented perceptual models with the

different λ values to meet the bit-rate constraint of the chal-

lenge, but we omitted two out of the three models in Fig. 3,

for simple illustration.

Fig. 4 shows the visual comparison results of our base

models and the corresponding perceptual models. Com-

pared to the reconstructions from the base model (Fig. 4

(b)), those from our perceptual models (Fig. 4 (c)) are more

visually pleasing with clearer edges and richer textures.

Note that two types of images in Fig. 4 (b) and Fig. 4 (c)

are reconstructed from the same compressed binary files.

5. Conclusion

In this paper, we proposed a new training method for

perceptual-quality oriented image compression. We uti-

lized the existing entropy minimization based image com-

pression approach, and fine-tuned the reconstruction-related

sub-netowrks using the latest objective functions for bet-

ter perceptual quality. We verified the effectiveness of our

method by measuring the perceptual index, the metric indi-

cating the perceptual quality of images. In addition, we pro-

vided visual comparison results, in which the reconstruc-

tions from our perctual models show better quality with

clearer edges and richer textures.
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[4] Johannes Ballé, Valero Laparra, and Eero P. Simoncelli.

End-to-end optimized image compression. In the 5th Int.

Conf. on Learning Representations, 2017. 1
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