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Abstract

Traditional video coding standards, such as HEVC and

VVC, have achieved significant compression performance.

To further improve the coding efficiency, a post-processing

network is proposed to enhance the compressed frames in

this paper. Specifically, the proposed network, namely DI-

A Net, contains multiple inception blocks, attention mech-

anism and dense residual structure. The DIA Net can ef-

ficiently extract information of multiple scale and fully ex-

ploit the extracted feature to improve image quality. In ad-

dition, the DIA Net is integrated into the latest test model

of VVC (VTM-8.0) to post-process the reconstructed frames

of the decoder for better compression performance. The

proposed scheme has achieved the best performance in the

sense of PSNR at the similar bitrate in the validation sets

of challenge on learned image compression (CLIC), which

demonstrates the superiority of our approach.

1. Introduction

With the blossom of consumer electronics industry, there

is an exponential increase in demand of digital image and

video services, which leads to an ever stronger demand for

high efficiency video compression techniques. Unlike im-

ages, in addition to spatial correlation, there is also temporal

correlation between successive video frames. Consequent-

ly, extensive researches are devoted to fully exploiting tem-

poral correlation to improve compression efficiency.

The past few decades has witnessed the great progress

in video compression and many video coding standard-

s have been released. Among them, the standards re-

leased by Moving Picture Experts Group (MPEG), eg.,

Advanced Video Coding (AVC)[1], High Efficiency Video

Coding (HEVC)[2] and Versatile Video Coding (VVC)[3]

are widely applied to video compression and transmission.
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In order to remove temporal redundancy in videos, many

coding techniques aiming at representing the moves be-

tween the continuous video frames in an efficient way have

been adopted in the standards. Multiple novel coding tech-

niques have been integrated into the latest VVC standard,

which leads to its superb coding performance at present.

With the booming of deep learning in recent years, many

researchers focus on improving video compression perfor-

mance with the help of neural network. Video coding stan-

dardization organizations, such as MPEG and AVS, have set

up intelligent video coding group to promote the develop-

ment of learning based video compression. Meanwhile, ex-

tensive works have demonstrated the superiority of applying

deep learning to video coding and the learning based post-

process technique is an outstanding branch of them. Dai et

al. [4] designed a Variable-filter-size Residue-learning con-

volutional neural network (VRCNN) to improve the post-

processing performance of HEVC and achieved on average

4.6% bit-rate reduction. Liu et al. [5] proposed a frame-

based post-processing scheme for HEVC, which adopts a

20-layers CNN aided with metadata to reduce reconstruc-

t error and to improve the post-processing perfoamance.

Yet the methods have improved compression performance

in HEVC to a certain extent, post-processing performance

in VCC still can be improved.

In order to further enhance the quality of compressed

frames in VVC, a novel video compression scheme based

on post-processing network is proposed in this paper. To

reduce the compression artifacts and obtain compressed

frames of better quality, we design a dense inception at-

tention based neural network (DIA Net) to post-process the

reconstructed frames at the decoding side. The DIA Net

contains multiple inception blocks which utilize kernels of

different size to dig out features in different scale. Mean-

while, attention mechanism including spatial attention and

channel attention is proposed to fully exploit feature infor-

mation and dense residual structure is adopted to deepen

the network and increase model capacity. In addition, the

DIA Net is integrated into VTM-8.0 to serve as a post-

processing module for better compression quality. Exper-
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imental results demonstrate that the proposed video com-

pression approach can achieve superb performance in the

validation sets of CLIC[6].

The rest of this paper is organized as follow: inter pre-

diction methods in VVC will be reviewed in section II and

our DIA-Net will be concretely described in section III. Ex-

perimental results will be presented and analyzed in Section

IV and the conclusion will be given in the Section V.

2. Inter Prediction in VVC

In video compression, current frame can be predicted

from previous compressed frames and only the residual

need to be transmitted. In this section, we will concisely

review the key techniques for inter prediction in VVC.

2.1. Partitioning of the CTUs in VVC

Video frames are divided into a sequence of coding tree

units (CTUs) and a CTU is further split into coding unit-

s (CUs) to adapt to various local characteristics. A quad-

tree with nested multi-type tree using binary and ternary s-

plits segmentation structure is proposed to split the CTUs in

VVC, which replaces the concepts of multiple partition unit

types in HEVC, eg., prediction units (PUs) and transform

units (TUs). As shown in Figure 1 (a), a CTU is split in-

to multiple CUs with a quad-tree and nested multi-type tree

coding block structure, where the bold block edges repre-

sent quad-tree partitioning and the remaining edges repre-

sent multi-type tree partitioning. Besides, the split mode

decision is made by the procedure shown in Figure 1 (b).

(a)

qt_split_flag

MTT_nodes with BT_VER split

MTT_nodes with TT_VER split

MTT_nodes with BT_HOR split

MTT_nodes with TT_HOR split

MTT_leaf_node

mtt_split_

binary_flag

mtt_split_

binary_flag

mtt_split_

vertical_flag

mtt_split_flag

CTU/QT_node

1

0

QT_nodes

QT_leaf_node

/MTT_node

0

1

MTT_leaf_node

1

0

1

0

1

0

(b)

Figure 1. Example of quad-tree with nested multi-type tree coding

block structure and split mode decision procedure.

2.2. Key Inter Prediction Techniques in VVC

Generally, in order to obtain a prediction picture of the

current frame, motion estimation and motion compensa-

tion will be performed on the reference picture. Multiple

techniques aiming at improving the aforementioned process

are adopted to obtain a prediction picture of better quality.

To achieve higher-precision motion estimation, subblock-

based temporal motion vector prediction (SbTMVP) is pro-

posed to obtain the optimal motion vector in sub-CU lev-

el. Adaptive motion vector resolution (AMVR) scheme

and higher-precision motion field storage are proposed to

more efficiently process the motion vectors of high preci-
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Figure 2. The architecture of the proposed DIA Net.

sion. Besides, a block-based affine transform motion mod-

el is applied in motion estimation and motion compensa-

tion. Compared with traditional translation motion model,

motion vector can be derived from more directions and the

compensated block can be more similar with the original

block, which leads to better coding performance. Owing to

these inter prediction methods, the coding performance is

significantly improved. More details can be found in [7].

3. Dense Inception Attention Based Post-

Processing Network

Since the block based hybrid coding structure is adopt-

ed in VCC, major operations such as quantization, intra-

prediction, inter-prediction are performed block by block.

Consequently, the coding parameters vary by the blocks,

which leads to blocking effects. In addition, high frequen-

cy components of the video will be lost during quantization

and transform process, which results in ringing and blurring

effects. Aiming at eliminating these compression artifacts, a

post-processing network is designed to improve the quality

of compressed videos. The proposed post-processing net-

work, namely DIA Net, contains inception structure, atten-

tion mechanism and dense residual structure, which makes

it capable of processing different kinds of compression ar-

tifacts. More details about the DIA Net will be introduced

below.

3.1. Network Architecture

As shown in Figure 2, the proposed DIA Net is main-

ly composed of three modules, namely inception module,

dense residual block and attention mechanism. The input

frame is first fed to the feature extraction layer to gener-

ate a feature map, which is utilized as the input of dense

residual blocks then. After the feature map got through the

dense blocks which include multiple residual blocks order-

ly attached with spatial attention layer and channel atten-

tion layer, the features are finally sent to the global fusion

layer. The final output frame is generated by adding the in-

put frame and the output of global fusion layer. Due to the

well-designed network architecture, the DIA Net can cap-

ture features of multiple scale and fully exploited the spatial
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and channel correlation.

Inception Structure: As illustrated in [8], kernels with

different size are sensitive to information of different scale.

Specifically, smaller kernels are more sensitive to subtle in-

formation like dense contours while kernels with larger size

focus on coarse outlines. In view of this, the kernel size

of the convolution layers in the DIA Net are set to be 1×1,

3×3, 5×5 and 7×7, which is shown in the bottom squares

of Figure 2. Consequently, the convolution operation can

be preformed in different scale and then all outputs are con-

catenated together. To generate the final output, the con-

catenated features are fed into a local fusion layer and a

short skip connection is also applied. The aforementioned

process can be formulated as fellow:

fm
i = Resm(fm−1

i ) = fm−1

i +ReLU

(cat[Conv1(f
m−1

i ), ..., Convk(f
m−1

i )])
(1)

Where fm−1

i and k denote input frame and kernel size, re-

spectively. The activation function utilized here is rectifier

linear unit (ReLU). The processed features are then added

with input fm−1

i .

Attention Mechanism: Fei et al. [9] have indicated that

network performance can be significant improved by atten-

tion mechanism. Therefore, we also applied it to our DI-

A Net. In order to weight the importance of different chan-

nels and spatial regions to the quality of final reconstruction

frame, channel attention (CA) and spatial attention (SA)

are introduced to the post-processing network in a learn-

ing manner. Inspired by the fact that some channels take

no effects to the final output while others have great impact

on that, an intuitive idea is to distribute weights to differ-

ent channels according to its importance, which is the main

principle of CA. Similarly, there also exits importance dif-

ference in different spatial regions. Consequently, a weight

map aiming at allocating weights to each pixel is learned to

represent the SA.

As shown in Figure 3, features with size H×W ×C are

fed into CA layer where C denotes the channel number and

the weights of channels are extracted with average and max

pooling. The outputs are then concatenated and activated

by sigmoid function. In addition, the weights are squashed

within [0,1] and a channel-wise multiplication is employed

between input and squashed weights. The aforementioned

process is formulated as follows:

zc =
1

H ×W

W∑

i=1

H∑

j=1

xc(i, j) (2)

ẑc = max(xc(i, j)) (3)

y = [x× σ(z), x× σ(ẑ)] (4)

Where xc and y denote input and output of CA layer. σ

is sigmoid function, zc, ẑc represent output of average and
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Figure 3. Details of spatial attention layer and channel attention

layer.

max pooling. As for SA layer, features are fed to the con-

volution layers and activated by ReLU function. As formu-

lated in equation (5), the final output is the element-wise

product of input features and activated outputs.

y = x× σ(MSA(x)) (5)

Dense Residual Structure: As illustrated in [10] and

[11], dense architecture and residual learning can deepen

the model and exploit hierarchical information. Consider-

ing that memory consumption increases when dense net-

work is utilized, we propose a dense residual (DR) struc-

ture to implement a dense network with low memory cost.

Specifically, as shown in Figure 2, the DR blocks are or-

derly connected and each block includes M residual block-

s. Since we just concatenate the output of each DR block

as formulated in equation (6), memory consumption can be

greatly reduced compared with a fully connected dense net-

work.

fn
i = cat[fn−1

i , DR(fn−1

i )] (6)

Where fn−1

i and fn
i denote the input and output of DR

block. The fn−1

i is fed to DR and processed by M cas-

caded residual blocks. Besides, N DR blocks are employed

in our DIA Net.

3.2. The DIA NetBased PostProcessing Scheme

The proposed DIA Net is mainly utilized in the decod-

ing end of the VTM-8.0 to enhance the quality of recon-

struction frame. Specifically speaking, immediately after

the decoder has generated the reconstruction frame, it will

be fed to the DIA Net to obtain the final enhanced frame. In

particular, the proposed post-processing scheme can be ap-

plied for different kinds frames including I-frame, P-frame

and B-frame.
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Figure 4. The framework of the proposed SmartPCodec.

4. Experimental Results

4.1. Implementation

Special P-frame Codec for CLIC: In view of the su-

perb coding performance of VVC, a special codec, namely

SmartPCodec, is developed from the VTM-8.0. As shown

in Figure 4, the proposed codec is customized for the P-

frame track of CLIC. Since we need to compress a video

frame conditioned on the previous uncompressed frame, we

modified VTM-8.0 by skipping the encoding process of the

first frame and directly adding the previous frame to the

reference picture list for P-frame compression. In addi-

tion, we also remove many syntax which are not utilized

in P-frame compression to reduce bit cost and complexity.

Meanwhile, corresponding modifications are made in the

decoder to keep consist with the encoder.

SmartPCodec Configuration: Since the SmartPCodec

is a modified version of VTM-8.0, the general test condi-

tion is consistent with the Common Test Conditions[12] of

VVC. It’s worth noting that we simplified the hierarchical

P-frame coding structure for just one P-frame per sequence.

In addition, the quantization parameter (QP) is set accord-

ing to the target bit-rate.

Training Dataset: The UGC dataset, released by CLIC,

contains 739 videos, with a total of 466684 frames. S-

ince the designed DIA Net is aimed at enhancing the re-

constructed frame of SmatrPCodec, we first pre-process the

videos by encoding them with SmartPCodec and utilize the

reconstructed video frames as the input of DIA Net dur-

ing the training phase. It should be noted that the post-

processing module of SmartPCodec is disabled when pre-

processing the dataset.

Training Settings: We train our network using

Adam[13] with β1 = 0.9, β2 = 0.999, a learning rate of

0.001 and a mini-batch size of 16 samples. The network

is optimized in the sense of L1 loss and one patch with size

64×64 is randomly cropped from each frame as input dur-

ing the training. Besides, we also augment the input data by

randomly rotating the patches.

Method Data Size(Bytes) PSNR(dB) MS-SSIM

VTM-8.0 38,891,706 42.081 0.9958

SmartPCodec 38,701,571 42.344 0.9960

Table 1. Compression performance in the validation sets of CLIC.

4.2. Performance

In order to evaluate the proposed SmartPCodec, the

codec is tested in the validation sets of CLIC. Meanwhile,

the VTM-8.0 is also tested in the aforementioned sets for

comparing with our SmartPCodec. As shown in Table 1,

compared with original VTM-8.0, the improvement of P-

SNR is 0.263 dB and the improvement of MS-SSIM is

0.0002, respectively. Since we applied the post-processing

network to enhance the compressed frames and remove the

syntax that are not related to P-frame compression, the bit

consumption of our codec is lower while the compression

performance is better. Besides, the performance of SmartP-

Codec ranks first among all the participants of CLIC in the

sense of PSNR, which demonstrates the superiority of the

proposed scheme.

5. Conclusion

In this paper, we propose a novel video compression

scheme based on post-processing network. In order to im-

prove the quality of compressed frames in VVC, we design

a dense inception attention based post-processing network.

The proposed post-processing network is composed of in-

ception structure, dense residual blocks and attention mech-

anism, which makes it capable of extracting feature of mul-

tiple scale and process various kinds of compression arti-

facts. In addtion, the proposed scheme is applied in P-frame

track of CLIC and a special codec is developed from VTM-

8.0 to meet the conditions of P-frame compression. Evalua-

tion results demonstrate that our scheme outperforms others

in the validation sets of CLIC.
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