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Abstract

In this paper, we propose a joint learned and tradi-

tional video compression framework for the P frame track

on learned image compression hosted at CVPR2020. The

main difference between video compression and image com-

pression is that the former has high degree of similarity be-

tween the successive frames which can be utilized to reduce

the temporal redundancy. Therefore, we first introduce a

decoder-side template-based inter prediction method as an

efficient way to obtain reference blocks without the need to

signal the motion vectors. Secondly, a CNN post filter is

proposed to suppress visual artifacts and improve the de-

coded image quality. Specifically, the spatial and temporal

information is jointly exploited by taking both the current

block and similar block in reference frame into considera-

tion. Furthermore, an advanced SSIM based rate-distortion

optimization model is proposed to achieve best balance be-

tween the coding bits and the decoded image quality. Exper-

imental results show that the proposed P frame compression

scheme achieves higher reconstruction quality in terms of

both PSNR and MS-SSIM.

1. Introduction

Efficient video compression (also named video coding)

has been a critical factor for enabling many popular con-

sumer applications, e.g., TV broadcasting, video confer-

ence, social networking, e-commerce, remote education,

and so on. For example, without video compression, the

High Definition (HD) video at 1080p resolution and 60

frames per second demands about 1.44Gbps bandwidth to

transmit, which can’t be adopted by any video consumer.

Video compression systems exploit the internal redundancy

of the video signal to significantly reduce the storage size

and transmission bandwidth.

Over the past decades, a large number of companies and

research institutes around the world have been working on

video compression and released several video coding stan-

dards, such as the H.264/MPEG4 part 10 AVC standard [1]

and the H.265/HEVC standard [2]. In recent years, a new

Versatile Video Coding (VVC) standard [3] is under devel-

opment to further improve video coding efficiency. In all

these standards, a block-based hybrid video coding frame-

work is used to exploit the spatial redundancy, temporal re-

dundancy and information entropy redundancy in video.

In VVC, the to-be-coded frame is first divided into non-

overlapping equal-sized image regions, such as 128 × 128,

and then further divided into smaller blocks called Coding

Units (CU), following a hierarchical quad-ternary-binary

partitioning tree to adapt to the local content properties.

A CU can be coded by intra- or inter- prediction. If intra

prediction is used, spatial neighboring samples are used to

predict the current block. If inter prediction is used, one or

more similar blocks will be searched from the already coded

pictures and used to predict the current block. The rela-

tive position shift between the current block and its similar

blocks (also called reference blocks) is called motion vector

(MV) and also need to be signalled to decoder. The resid-

ual, namely the difference between the current block and

the prediction block, is sent to the transform and quantiza-

tion modules to generate the quantized residual coefficients,

which are then sent to entropy coding module to be coded.

At the decoder side, the quantized residual coefficients will

be inverse quantized and inverse transformed to obtain the

reconstructed residual. The intra or inter prediction block

and the reconstructed residual are added together to form

the reconstructed block.

In recent years, convolutional neutral networks (CNN)

based image/video compression has become an active re-

search area. Many works have revealed great potentials in

learned image compression [4, 5, 6], such as high-efficiency

transforms, soft-to-hard quantization, and learned entropy

model (e.g., hyperpriors for probability estimation and joint

priors from autoregressive neighbors and hyperpriors). An

end-to-end learned video compression framework was pro-

posed in CVPR2019 [7]. Specifically, learning based op-

tical flow estimation is utilized to obtain the motion infor-

mation and reconstruct the current frames. Then two auto-

encoder style neural networks are deployed to compress the

corresponding motion and residual information.

By investigating the traditional and learned methods on



Figure 1. Illustration of DTIP.

video compression, it is found that the learned method can-

not outperform the traditional inter prediction in view of

reducing temporal redundancy, especially in the case when

few reference frames are available. However, the traditional

video compression framework consumes much rate cost to

signal the motion information which limits the overall com-

pression efficiency. This observation motivates us to pro-

pose a decoder-side template-based inter prediction method

to efficiently obtain similar reference blocks without explic-

itly signalling the motion information. Considering visually

annoying artifacts are often observed in the reconstructed

frames, a CNN filter is adopted to address this issue and im-

prove the reconstructed video quality. Specifically, the spa-

tial and temporal information is jointly exploited by taking

both the current block and the reference block into consid-

eration during the processing of CNN filter. To achieve the

best performance in balancing the coding bits and the re-

constructed distortion, a rate-distortion optimization func-

tion is trained offline and deployed to dynamically adjust

the weight between rate and distortion.

2. Proposed method

The proposed method is implemented on VVC test

model [3] and includes three additional components:

1) decoder-side template-based inter prediction, 2) joint

spatial-temporal CNN filter, 3) rate-distortion optimization

model, as detailed in the following.

2.1. Decoder­side template­based inter prediction

Based on the JEM codec [8], a decoder-side template-

based inter prediction (DTIP) is proposed to fetch the ref-

erence block from the reference frame (namely the input

frame in the P frame challenge) without cost of signalling

motion information. The proposed DTIP is based on the

truth of high correlations in spatial neighboring samples.

Because the block-based hybrid coding scheme compresses

frame block by block following the top-to-bottom and left-

to-right order, the left and top image regions of the current

to-be-coded block have been reconstructed, which contains

some information that can be used to generate the current

block. As illustrated in Figure 1, for the current block, tem-

Figure 2. Architecture of the spatial-temporal CNN filter.

plate is specified as the left and top neighboring samples,

such as the left two columns and the top two rows in our

implementation. In the reference frame, motion estimation

is applied to search the reference template which has the

minimal matching cost with the current template. Then, the

co-located block corresponding to the template in the ref-

erence frame is fetched to be the prediction of the current

block.

Though the motion estimation introduces computation

cost at the decoder, it is tolerable because DTIP serves as

an optional prediction mode. Whether to be used is decided

for each block at the encoder and one flag is signalled to

decoder. To further reduce the computational complexity,

a fast motion estimation algorithm based on local greedy

strategy is applied.

2.2. Spatial­temporal block based CNN filter

To reduce the visually annoying artifacts and further en-

hance the decoded video quality, a post-processing CNN

filter is added. There are two novel designs in the proposed

CNN filter. Firstly, besides the spatial samples, the temporal

samples in the reference frame will also be taken into con-

sideration and jointly trained. Secondly, the proposed net-

work is deployed block by block and the input samples in-

clude the current/reference blocks and corresponding their

margins. Specifically, 32 × 32 processing size is adopted

in our implementation while 36 × 36 regions (adding the

neighbouring four rows/columns) are used as input. The

reference block is obtained by motion estimation in the ref-

erence frame.

The structure of the proposed network is shown in Fig-

ure 2 where the feature map numbers of each layer are also

provided. The current image region and the reference image

region are input to the first layer and convolutional opera-

tions with 5 × 5 kernel are conducted to extract the spatial

features. The output features of the first layer are stacked

for subsequent layers through fusion of spatial feature maps.



Figure 3. Illustration of rate-distortion optimization.

Three more convolution layers are followed and all of them

utilize 3 × 3 filters. It is worth noting that rectified linear

units (ReLU) are adopted as nonlinear mapping for all con-

volution layers [9]. To accelerate the speed of training, we

design the convolution layers as residue learning [10] and

the final output of the fifth layer is the element-wise sum of

the current block.

To handle various quality levels of the decoded frames,

the training data are generated in a wide bit-per-pixel (bpp)

range from 0.002 to 0.03. Before the training and deployed

of network, all frames will be extended to four more rows

and four more columns by padding and motion estimation is

conducted for each block. With respect to the loss function,

only the distortion in terms of Structure Similarity Index

(SSIM) is taken into consideration since no additional bits

are introduced by this procedure.

2.3. Rate­distortion optimization

In video coding scheme, the compression efficiency is

jointly evaluated by the bitrate and the coding distortion be-

tween the original and the reconstructed video. In general,

for the same codec, compressed bitrate and coding distor-

tion are two balancing factors. When more bits are con-

sumed, more details can be reserved and hence lower dis-

tortion is achieved, as shown in Figure 3. Therefore, rate-

distortion optimization (RDO) dedicated to achieving the

optimal balance between the rate and the distortion plays

a crucial role in video coding scheme [11]. The following

RDO cost function is used,

J = R+ λ ·D (1)

where D, R and J denote the rate, the distortion and the

joint cost, respectively. The factor λ is the Lagrangian mul-

tiplier, which is quite important in the RDO cost function.

In our scheme, the distortion is evaluated by SSIM and

the RDO cost function is converted into,

J = R+ λ · n · (1− SSIM) (2)

where n is the number of image samples. Assuming the rate

R and the distortion D are differentiable everywhere, the

Figure 4. Illustration of the relationship between rate and QP.

Figure 5. Illustration of the relationship between distortion and QP.

minimum of the RDO cost J is given by setting its deriva-

tive to zero,

λ = −

∂R

∂D
(3)

Though the R − D model is complex in real video coding

scenarios, the most important factor lies in the quantization

level which decides the relationship between rate and dis-

tortion directly. Therefore, the lambda derivation can be

modelled as,

λ = −

∂R(QP )

∂D(QP )
= −

∂R/∂QP

∂D/∂QP
(4)

where QP represents the quantization parameter used in the

codec.

To exactly explore the expressions of ∂R(QP ) and

∂D(QP ), extensive experiments are conducted on videos

with different contents and motion activities. The tested

videos are compressed with the QP in the range between

15 and 40 and the corresponding bitrate and distortion per

pixel are recorded. By averaging the recorded data at each

QP , the relationship of R − QP and D − QP are illus-

trated in Figure 4& 5, respectively. From figure 4, it is

observed that there exists a clear exponential relationship

between bpp and QP . This relationship can be modelled

as:

R/n = bpp = p · e−q·QP (5)

where p and q are the model parameters, and are set to be

6.28 and 0.167 respectively. With respect to the relation-

ship between distortion and QP , it can be approximately



(a) Original (b) HEVC

(c) VVC (d) Proposed

Figure 6. Visual quality comparisons among HEVC, VVC and the

proposed method.

expressed as

D/n = 1− SSIM = a · e(x+b)/c (6)

where the parameters a, b and c are set to be 0.00052, 0.238

and 12.05, respectively. By incorporating 5 and 6 into 4, the

multiplier λ can be determined as

λ = 24302× e−(0.25·QP+0.02) (7)

3. Experimental results

In our proposed scheme, a rate control algorithm is de-

signed to allocate bits for each frame dynamically. Each

video is compressed with multiple quantization levels. The

slopes between delta MS-SSIM and delta rate under differ-

ent quantization levels are computed, which indicates the

benefits to image quality when the rate is increased, and the

data points with the largest slopes will be selected. Accord-

ing to the CLIC challenge requirement, the target bitrate is

set to be about 0.075 bpp. To verify the performance of

the proposed method, we have submitted one result named

DAMO XG for compressing the frames in the validation

dataset. Table 1 demonstrates the coding performance of

different methods in the validation phase. Among these

methods, the proposed system achieves higher reconstruc-

tion quality in terms of both PSNR and MS-SSIM when

the target bitrate is satisfied. With respect to our submis-

sion in the test phase, it achieves 0.9968 in MS-SSIM and

41.547dB in PSNR.

The visual quality comparisons are provided in Figure

6 and Figure 7, where the tested frames are compressed

by HEVC, VVC and the proposed method respectively.

From Figure 6, it is observed that the proposed method can

(a) Original (b) HEVC

(c) VVC (d) Proposed

Figure 7. Visual quality comparisons among HEVC, VVC and the

proposed method.

Table 1. Evaluation results on CLIC2020 validation dataset.

Team MS-SSIM PSNR Data size

TUCODEC SSIM 0.9969 37.309 37870015

IMCL MSSSIM 0.9968 37.309 37960950

ZJUCSEFj 0.9967 36.585 38113147

DAMO XG 0.9966 41.158 37312334

EDVC 0.9961 37.029 37941105

HUST ZX 0.9960 42.344 38701571

Man 0.9959 41.811 38587535

Dolores baseline 0.9953 41.563 31223104

.... .... .... ....

achieve visually much better quality, especially for the re-

gions rich with textures. From Figure 7, blocking artifacts

are observed in the decoded frames of HEVC and VVC,

while it is suppressed in the frames compressed by the pro-

posed method, and such visual benefits mainly come from

the proposed joint spatial-temporal CNN filter.

4. Conclusions

In this paper, a novel joint learned and traditional video

compression scheme is proposed for the P frame track

in CLIC2020 challenge. We first propose a decoder-side

template-based inter prediction method to predict the cur-

rent block without signaling overhead of motion informa-

tion. Secondly, a spatial-temporal CNN post filter is pro-

posed to suppress visual artifacts and improve the decoded

image quality. Furthermore, an advanced SSIM based

rate-distortion optimization model is proposed to achieve

best balance between the coding bits and the decoded im-

age quality. Experimental results show that the proposed

method can achieve higher reconstruction quality.



References

[1] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and

Ajay Luthra. Overview of the H. 264/AVC video coding

standard. IEEE Transactions on circuits and systems for

video technology, 13(7):560–576, 2003.

[2] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and

Thomas Wiegand. Overview of the high efficiency video

coding (HEVC) standard. IEEE Transactions on circuits and

systems for video technology, 22(12):1649–1668, 2012.

[3] Chen Jianle, Ye Yan, and Kim Seung Hwan. Algorithm

description for Versatile Video Coding and Test Model

(VTM6). Doc. JVET-O2002, Joint Video Exploration Team

(JVET), 2019.
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