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Abstract

In this paper, we propose a joint learned and tradi-
tional video compression framework for the P frame track
on learned image compression hosted at CVPR2020. The
main difference between video compression and image com-
pression is that the former has high degree of similarity be-
tween the successive frames which can be utilized to reduce
the temporal redundancy. Therefore, we first introduce a
decoder-side template-based inter prediction method as an
efficient way to obtain reference blocks without the need to
signal the motion vectors. Secondly, a CNN post filter is
proposed to suppress visual artifacts and improve the de-
coded image quality. Specifically, the spatial and temporal
information is jointly exploited by taking both the current
block and similar block in reference frame into considera-
tion. Furthermore, an advanced SSIM based rate-distortion
optimization model is proposed to achieve best balance be-
tween the coding bits and the decoded image quality. Exper-
imental results show that the proposed P frame compression
scheme achieves higher reconstruction quality in terms of
both PSNR and MS-SSIM.

1. Introduction

Efficient video compression (also named video coding)
has been a critical factor for enabling many popular con-
sumer applications, e.g., TV broadcasting, video confer-
ence, social networking, e-commerce, remote education,
and so on. For example, without video compression, the
High Definition (HD) video at 1080p resolution and 60
frames per second demands about 1.44Gbps bandwidth to
transmit, which can’t be adopted by any video consumer.
Video compression systems exploit the internal redundancy
of the video signal to significantly reduce the storage size
and transmission bandwidth.

Over the past decades, a large number of companies and
research institutes around the world have been working on
video compression and released several video coding stan-
dards, such as the H.264/MPEG4 part 10 AVC standard [1]
and the H.265/HEVC standard [2]. In recent years, a new

Versatile Video Coding (VVC) standard [3] is under devel-
opment to further improve video coding efficiency. In all
these standards, a block-based hybrid video coding frame-
work is used to exploit the spatial redundancy, temporal re-
dundancy and information entropy redundancy in video.

In VVC, the to-be-coded frame is first divided into non-
overlapping equal-sized image regions, such as 128 x 128,
and then further divided into smaller blocks called Coding
Units (CU), following a hierarchical quad-ternary-binary
partitioning tree to adapt to the local content properties.
A CU can be coded by intra- or inter- prediction. If intra
prediction is used, spatial neighboring samples are used to
predict the current block. If inter prediction is used, one or
more similar blocks will be searched from the already coded
pictures and used to predict the current block. The rela-
tive position shift between the current block and its similar
blocks (also called reference blocks) is called motion vector
(MV) and also need to be signalled to decoder. The resid-
ual, namely the difference between the current block and
the prediction block, is sent to the transform and quantiza-
tion modules to generate the quantized residual coefficients,
which are then sent to entropy coding module to be coded.
At the decoder side, the quantized residual coefficients will
be inverse quantized and inverse transformed to obtain the
reconstructed residual. The intra or inter prediction block
and the reconstructed residual are added together to form
the reconstructed block.

In recent years, convolutional neutral networks (CNN)
based image/video compression has become an active re-
search area. Many works have revealed great potentials in
learned image compression [4, 5, 6], such as high-efficiency
transforms, soft-to-hard quantization, and learned entropy
model (e.g., hyperpriors for probability estimation and joint
priors from autoregressive neighbors and hyperpriors). An
end-to-end learned video compression framework was pro-
posed in CVPR2019 [7]. Specifically, learning based op-
tical flow estimation is utilized to obtain the motion infor-
mation and reconstruct the current frames. Then two auto-
encoder style neural networks are deployed to compress the
corresponding motion and residual information.

By investigating the traditional and learned methods on
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Figure 1. Illustration of DTIP.

video compression, it is found that the learned method can-
not outperform the traditional inter prediction in view of
reducing temporal redundancy, especially in the case when
few reference frames are available. However, the traditional
video compression framework consumes much rate cost to
signal the motion information which limits the overall com-
pression efficiency. This observation motivates us to pro-
pose a decoder-side template-based inter prediction method
to efficiently obtain similar reference blocks without explic-
itly signalling the motion information. Considering visually
annoying artifacts are often observed in the reconstructed
frames, a CNN filter is adopted to address this issue and im-
prove the reconstructed video quality. Specifically, the spa-
tial and temporal information is jointly exploited by taking
both the current block and the reference block into consid-
eration during the processing of CNN filter. To achieve the
best performance in balancing the coding bits and the re-
constructed distortion, a rate-distortion optimization func-
tion is trained offline and deployed to dynamically adjust
the weight between rate and distortion.

2. Proposed method

The proposed method is implemented on VVC test
model [3] and includes three additional components:
1) decoder-side template-based inter prediction, 2) joint
spatial-temporal CNN filter, 3) rate-distortion optimization
model, as detailed in the following.

2.1. Decoder-side template-based inter prediction

Based on the JEM codec [8], a decoder-side template-
based inter prediction (DTIP) is proposed to fetch the ref-
erence block from the reference frame (namely the input
frame in the P frame challenge) without cost of signalling
motion information. The proposed DTIP is based on the
truth of high correlations in spatial neighboring samples.
Because the block-based hybrid coding scheme compresses
frame block by block following the top-to-bottom and left-
to-right order, the left and top image regions of the current
to-be-coded block have been reconstructed, which contains
some information that can be used to generate the current
block. As illustrated in Figure 1, for the current block, tem-
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Figure 2. Architecture of the spatial-temporal CNN filter.

plate is specified as the left and top neighboring samples,
such as the left two columns and the top two rows in our
implementation. In the reference frame, motion estimation
is applied to search the reference template which has the
minimal matching cost with the current template. Then, the
co-located block corresponding to the template in the ref-
erence frame is fetched to be the prediction of the current
block.

Though the motion estimation introduces computation
cost at the decoder, it is tolerable because DTIP serves as
an optional prediction mode. Whether to be used is decided
for each block at the encoder and one flag is signalled to
decoder. To further reduce the computational complexity,
a fast motion estimation algorithm based on local greedy
strategy is applied.

2.2. Spatial-temporal block based CNN filter

To reduce the visually annoying artifacts and further en-
hance the decoded video quality, a post-processing CNN
filter is added. There are two novel designs in the proposed
CNN filter. Firstly, besides the spatial samples, the temporal
samples in the reference frame will also be taken into con-
sideration and jointly trained. Secondly, the proposed net-
work is deployed block by block and the input samples in-
clude the current/reference blocks and corresponding their
margins. Specifically, 32 x 32 processing size is adopted
in our implementation while 36 x 36 regions (adding the
neighbouring four rows/columns) are used as input. The
reference block is obtained by motion estimation in the ref-
erence frame.

The structure of the proposed network is shown in Fig-
ure 2 where the feature map numbers of each layer are also
provided. The current image region and the reference image
region are input to the first layer and convolutional opera-
tions with 5 x 5 kernel are conducted to extract the spatial
features. The output features of the first layer are stacked
for subsequent layers through fusion of spatial feature maps.
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Three more convolution layers are followed and all of them
utilize 3 x 3 filters. It is worth noting that rectified linear
units (ReLU) are adopted as nonlinear mapping for all con-
volution layers [9]. To accelerate the speed of training, we
design the convolution layers as residue learning [10] and
the final output of the fifth layer is the element-wise sum of
the current block.

To handle various quality levels of the decoded frames,
the training data are generated in a wide bit-per-pixel (bpp)
range from 0.002 to 0.03. Before the training and deployed
of network, all frames will be extended to four more rows
and four more columns by padding and motion estimation is
conducted for each block. With respect to the loss function,
only the distortion in terms of Structure Similarity Index
(SSIM) is taken into consideration since no additional bits
are introduced by this procedure.

2.3. Rate-distortion optimization

In video coding scheme, the compression efficiency is
jointly evaluated by the bitrate and the coding distortion be-
tween the original and the reconstructed video. In general,
for the same codec, compressed bitrate and coding distor-
tion are two balancing factors. When more bits are con-
sumed, more details can be reserved and hence lower dis-
tortion is achieved, as shown in Figure 3. Therefore, rate-
distortion optimization (RDO) dedicated to achieving the
optimal balance between the rate and the distortion plays
a crucial role in video coding scheme [11]. The following
RDO cost function is used,

J=R+A-D (1)

where D, R and J denote the rate, the distortion and the
joint cost, respectively. The factor A is the Lagrangian mul-
tiplier, which is quite important in the RDO cost function.

In our scheme, the distortion is evaluated by SSIM and
the RDO cost function is converted into,

J=R+X-n-(1—SSIM) )

where n is the number of image samples. Assuming the rate
R and the distortion D are differentiable everywhere, the
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Figure 4. Illustration of the relationship between rate and QP.
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Figure 5. Illustration of the relationship between distortion and QP.

minimum of the RDO cost J is given by setting its deriva-
tive to zero,

A= 3)

Though the R — D model is complex in real video coding
scenarios, the most important factor lies in the quantization
level which decides the relationship between rate and dis-
tortion directly. Therefore, the lambda derivation can be
modelled as,

OR(QP) OR/0QP

A= T0D(QP) ~  9D/oQP @

where () P represents the quantization parameter used in the
codec.

To exactly explore the expressions of OR(QP) and
0D(QP), extensive experiments are conducted on videos
with different contents and motion activities. The tested
videos are compressed with the QP in the range between
15 and 40 and the corresponding bitrate and distortion per
pixel are recorded. By averaging the recorded data at each
QP, the relationship of R — QP and D — QP are illus-
trated in Figure 4& 5, respectively. From figure 4, it is
observed that there exists a clear exponential relationship
between bpp and QP. This relationship can be modelled
as:

R/n=bpp=p-e 79 (5)

where p and ¢ are the model parameters, and are set to be
6.28 and 0.167 respectively. With respect to the relation-
ship between distortion and QP, it can be approximately
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Figure 6. Visual quality comparisons among HEVC, VVC and the
proposed method.
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expressed as
D/n=1—8SIM = q - e&+b/e (6)

where the parameters a, b and c are set to be 0.00052, 0.238
and 12.05, respectively. By incorporating 5 and 6 into 4, the
multiplier A can be determined as

\ = 24302 x ¢ (0-25:QP+0.02) o

3. Experimental results

In our proposed scheme, a rate control algorithm is de-
signed to allocate bits for each frame dynamically. Each
video is compressed with multiple quantization levels. The
slopes between delta MS-SSIM and delta rate under differ-
ent quantization levels are computed, which indicates the
benefits to image quality when the rate is increased, and the
data points with the largest slopes will be selected. Accord-
ing to the CLIC challenge requirement, the target bitrate is
set to be about 0.075 bpp. To verify the performance of
the proposed method, we have submitted one result named
DAMO_XG for compressing the frames in the validation
dataset. Table 1 demonstrates the coding performance of
different methods in the validation phase. Among these
methods, the proposed system achieves higher reconstruc-
tion quality in terms of both PSNR and MS-SSIM when
the target bitrate is satisfied. With respect to our submis-
sion in the test phase, it achieves 0.9968 in MS-SSIM and
41.547dB in PSNR.

The visual quality comparisons are provided in Figure
6 and Figure 7, where the tested frames are compressed
by HEVC, VVC and the proposed method respectively.
From Figure 6, it is observed that the proposed method can
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Figure 7. Visual quality comparisons among HEVC, VVC and the
proposed method.
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Table 1. Evaluation results on CLIC2020 validation dataset.

Team MS-SSIM  PSNR Data size
TUCODEC_SSIM 0.9969 37.309 37870015
IMCL_MSSSIM 0.9968 37.309 37960950
ZJUCSEFj 0.9967 36.585 38113147
DAMO_XG 0.9966 41.158 37312334
EDVC 0.9961 37.029 37941105
HUST_ZX 0.9960 42.344 38701571
Man 0.9959 41.811 38587535
Dolores_baseline 0.9953 41.563 31223104

achieve visually much better quality, especially for the re-
gions rich with textures. From Figure 7, blocking artifacts
are observed in the decoded frames of HEVC and VVC,
while it is suppressed in the frames compressed by the pro-
posed method, and such visual benefits mainly come from
the proposed joint spatial-temporal CNN filter.

4. Conclusions

In this paper, a novel joint learned and traditional video
compression scheme is proposed for the P frame track
in CLIC2020 challenge. We first propose a decoder-side
template-based inter prediction method to predict the cur-
rent block without signaling overhead of motion informa-
tion. Secondly, a spatial-temporal CNN post filter is pro-
posed to suppress visual artifacts and improve the decoded
image quality. Furthermore, an advanced SSIM based
rate-distortion optimization model is proposed to achieve
best balance between the coding bits and the decoded im-
age quality. Experimental results show that the proposed
method can achieve higher reconstruction quality.
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