
Joint motion and residual information latent representation for P-frame coding

Renam Castro da Silva†, Nilson Donizete Guerin Jr.⋆, Pedro Sanches⋆, Henrique Costa Jung⋆,

Eduardo Peixoto⋆, Bruno Macchiavello⋆, Edson M. Hung⋆, Vanessa Testoni†, Pedro Garcia Freitas†

⋆Universidade de Brası́lia, †Samsung R&D Institute Brazil

renam.cs@samsung.com, nguerinjr@aluno.unb.br

Abstract

This paper proposes an inter-frame prediction frame en-

coding for the P-frame video compression challenge of the

Workshop and Challenge on Learned Image Compression

(CLIC). For this challenge, we use an uncompressed refer-

ence (previous) frame to compress the current frame. So,

this is not a complete solution for learning-based video

compression. The main goal is to represent a set of frames

with an average of 0.075 bpp (bits per pixel), which is a very

low bitrate. A restriction on the model size is also requested

to avoid overfitting. Here we propose an autoencoder archi-

tecture that jointly represents the motion and residue infor-

mation at the latent space. Three trained models were used

to achieve the target bpp and a bit allocation algorithm is

also proposed to optimize the quality performance of the

encoded dataset.

1. Introduction

A conventional digital video is a set of digital images

that are periodically captured over time giving rise to the

set of so-called video frames. In order to efficiently com-

press the video frames, traditional video encoders exploit

temporal, spatial, and statistical redundancies in the video

sequence. Temporal redundancy is associated with inter-

frame coding and considers that video frames closer in time

are more similar. Spatial redundancy, associated with intra-

frame coding, means that nearby pixels within a frame are

often similar, and statistical redundancy is associated with a

general similarity in the data.

Although a complete video decoder needs to handle

these three types of redundancy, our focus in this paper is

to exploit temporal redundancy to achieve inter-frame com-

pression. Inter-frame coding can be further classified into

B-frame compression and P-frame compression. P-frame

compression uses only frames that should be displayed pre-

viously in the video, but B-frames may use both previous

and posterior frames to achieve better compression, as video

frames do not need to be compressed in the same order as

they are displayed.

This paper proposes a prediction-based inter-frame cod-

ing method for the P-frame video compression challenge of

the Workshop and Challenge on Learned Image Compres-

sion (CLIC). For this challenge, we use an uncompressed

reference (previous) frame to compress the current frame.

Hence, this is not a complete solution for learning-based

video compression but is focused only on inter-frame and

data redundancy. The main goal is to represent a set of

frames with an average of 0.075 bpp, which is a very low

bitrate. Instead of splitting the dataset into training and test

sets, in this challenge, the entire dataset is released before

the test phase. To discourage overfitting, the model size is

added to the compressed dataset size and the sum cannot

exceed a target bitrate. Therefore, participants should try

to minimize both dataset and model sizes. In the validation

and test phases, the CLIC’s organizers evaluate the submis-

sions on a randomly picked subset of the dataset. Details on

how to achieve the target compression rate are detailed in

Section 2.4.

2. Proposed P-frame codec

An overview of our solution submitted to the P-frame

track of the CLIC is schematically shown in Figure 1. It

is comprised of stacked convolutional layers as detailed in

Tables 1 and 2. Given the frame to be coded xi and its ref-

erence (previous) frame xi−1, the Encoder is assigned the

task of producing a latent representation y conveying both

motion information for inter-frame prediction and residual

information error between the raw frame being coded xi

and the warped previous frame W (xi−1;θ). The latent rep-

resentation y undergoes a first step of joint processing in the

Common trunk decoder, and the resulting feature maps are

then fed to the Motion decoder network and to the Residue

decoder network. The Motion decoder network aims at pro-

ducing the parameters θ of an affine transformation W (·,θ)
which is applied to previous frame xi−1 to produce a pre-

diction xi,pred, whereas the Residue decoder targets to de-

code the residue ri to be added to the mentioned predic-

tion, and in turn producing the decoded frame xi,dec. This

1

residue conveys the novelty within the frame xi that could

not be inferred from xi−1.

xi−1

+ xi;dec

Encoder

0010111

Residue

xi;pred

Residue

decoder

Warping

W (xi−1; θ)

xi

ri

Common

trunk

decoder Motion

decoder

Figure 1. Overall model architecture

2.1. Encoder and common trunk decoder

The Encoder and the Common trunk decoder employ a

standard autoencoder architecture, leveraged from the ar-

chitecture proposed in [1], schematically shown in Fig-

ure 2), and detailed in Table 1. However, this architecture

was modified to jointly encode both motion and residual

information at the latent representation. The motion in-

formation is used to perform pixel-wise motion compen-

sation with a spatial transformer network as described in

Section 2.2. The decoder reconstructs the motion vector

and warps the reference frame to obtain the predicted frame.

The residual information is decoded and added to the pre-

dicted frame to get the reconstructed frame.

xi−1 0010111

xi

AC

Hyper
encoder

Hyper
decoder

AC AD

Prob.
model

Prob.
model

0101

AD

Ψ

Forward
transform

Backward
transform

~y, ŷ ~y, ŷ

~z, ẑ ~z, ẑabs(~y, ŷ)

fi

Figure 2. Encoder/Common trunk decoder architecture. AC and

AD stand for Arithmetic encoder and decoder, respectively.

2.2. Spatial transformer network

The spatial transformer network [2] is comprised of the

blocks Motion decoder and Warping as shown in Figure 1.

The Motion decoder is required to produce the parameters θ

of the warping W (·;θ) applied to the previous frame. The

warping function could be a more general affine transforma-

tion, but for this challenge, it was constrained to be a simple

translation, thus θ ∈ R
2·w·h conveys the horizontal and ver-

tical displacement of each pixel from the previous frame to

the current frame, the same warping is applied to each color

component. Following [2], each pixel in the warped output

xi,pred is computed by applying a sampling kernel centered

at a particular location (xi−1, yi−1) in xi−1:

(

xi−1

yi−1

)

= Wθ

xi

yi
1

 ,Wθ =

(

1 0 tx
1 0 ty

)

(1)

Encoder Common trunk decoder

Forward transform Backward transform

C-5× 5, ↓2, GDN, 192 TC-5× 5, ↑2, IGDN, 192

C-5× 5, ↓2, GDN, 192 TC-5× 5, ↑2, IGDN, 192

C-5× 5, ↓2, GDN, 192 TC-5× 5, ↑2, IGDN, 192

C-5× 5, ↓2, 192 TC-5× 5, ↑2, 192

Hyper encoder Hyper decoder

C-3× 3, ReLU, 192 TC-5× 5, ↑2, ReLU, 192

C-5× 5, ↓2, ReLU, 192 TC-5× 5, ↑2, ReLU, 192

C-5× 5, ↓2, 192 TC-3× 3, 192

Table 1. Encoder and decoder networks. In our notation, C-

5×5, ↓2,GDN, 192 indicates a convolutional layer with 192 filters,

each with spatial support 5 × 5, stride 2, and the Generalized Di-

visive Normalization (GDN) as activation function. Similarly, TC

refers to transposed convolutional layer, IGDN to inverse GDN,

and ReLU to the rectified linear unit.

Motion decoder Residue decoder

C-5× 5, ReLU, 32 C-5× 5, ReLU, 32

C-1× 1, 2 C-1× 1, 3

Table 2. Motion decoder and residue decoder networks

In our notation, θ gathers the displacement parameters

tx and ty for the whole frame domain. For sampling, we

adopt the differentiable sampling method described in [2]

(bilinear interpolation).

2.3. Training procedure

Training a neural network involves using a dataset to up-

date the model parameters to create a good mapping from

inputs to outputs. When using autoencoders, this objective

is translated to compress data and reconstruct it as good as

possible. In this track of the challenge, it is required to com-

press a video frame conditioned on a previous frame.

The dataset used is the one CLIC organizers provided,

where the training data is a subset of UGC Dataset, com-

posed of 739 videos, with a total of∼ 466684 frames. Each

of these frames is represented by 3 PNG images, one for

each channel of the YUV encoding, where the Y (luma)

channel has twice the weight and twice the height of the

others U and V color channels.

In the reported approach, based on autoencoders, a La-

grangian cost function is optimized. It takes into account

not only the reconstruction distortion D of the frame be-

ing coded but also the rate R of the latent representation.

Therefore, the loss is one in the form:

L = R+ λ×D (2)

Adam was used as the default optimizer, and the training

data was structured in batches of size 8. During training,

patches (256× 256) were extracted from the data.

A couple of models were trained by varying the La-

grangian multiplier λ, and all of them were optimized using

the mean squared error (MSE) as the reconstruction metric.

These models were tuned from two hundred thousand to 1

million iterations, depending on the observed convergence

of the model in the course of training.

In order to discourage overfitting, one of the rules of the

challenge imposes a maximum file size restriction on sub-

mission. This restriction considers both the trained models

and the compressed dataset. Therefore, to fulfill task re-

quirements, three models with λ values of 0.002, 0.01, and

0.05 were empirically chosen out of all that were trained.

2.4. Bit allocation

In order to allocate the bit budget to the frames in the

validation/test dataset, it is employed a couple of trained

models targeted at different rate-distortion trade-offs and a

simple procedure described in Algorithm 1. For the P-frame

track of the challenge, contestants are asked to allocate the

given bit budget to encode the validation/test dataset and to

represent the model according to the following rule:

ModelSize+ 100 ·

|Dataset|
∑

j

FileSizej < K (3)

where K = 3, 900, 000, 000 bytes and |·|means cardinality.

Assuming one decides to allocate the bit budget evenly

over the frames of the validation/test set, the FileSize
would be required to be < (K − ModelSize)/(100 ·
|Dataset|).

Let p = [q, b] be the tuple of arrays q (quality) and b
(bitstream) associated to a given frame xi. The lengths of q
and b are defined by the number of encoders used. Also, let

X be a set of frames to be coded and its (reference) previous

frame {xi,xi−1}. The tuples p associated to each frame xi

is initialized as zero.

The bit allocation procedure described in pseudocode in

Algorithm 1 accomplishes its task in three steps. In the first

step, each frame is encoded in Compress with all available

encoders resulting in the arrays of quality and bitstream,

each entry associated with an encoder. Those arrays are

input to the ConvexHullTarget which outputs the index of

the encoder lying in the upper convex hull with the highest

bitstream length below the target Filesize. If the returned

index is valid, the bitstream is written to file. Otherwise,

the frame is let to be encoded in the second step. At the

end of this first step, the easiest frames would be encoded,

remaining only the frames demanding higher rates. The

second step, therefore, is targeted at encoding the high rate

frames by allowing bitstream lengths higher than the tar-

get FileSize (ConvexHull). Also, in case there is budget,

frames with low quality will have the chance to be amelio-

rated. The third step just to check whether Budget has not

changed, meaning that the available Budget could not be

used to improve any frame.

Algorithm 1: Bit allocation procedure

Data: A set X of frames pair {xi,xi−1}, Budget
and FileSize

Result: A set of compressed bitstream

1 STEP 1 ;

2 for {xi,xi−1} in X do

3 p← Compress(xi,xi−1) ;

4 i← ConvexHullTarget(p, F ileSize) ;

5 if i is valid then

6 WriteBitstream(p.b(i)) ;

7 Budget← Budget− length(p.b(i))

8 STEP 2 ;

9 X ← Sort(X) by increasing order of quality ;

10 for {xi,xi−1} in X do

11 it ← i ;

12 i← ConvexHull(p) ;

13 Budget← Budget+ length(p.b(it)) ;

14 if length(p.b(i)) < Budget then

15 WriteBitstream(p.b(i)) ;

16 Budget← Budget− length(p.b(i))

17 else

18 Budget← Budget− length(p.b(it))

19 STEP 3 ;

20 if Budget has not changed in STEP 2 then

21 Finish

22 else

23 Do STEP 2

2.5. Results

Our team name is UnB-SRBR. We obtained at the Vali-

dation dataset an average PSNR of 29.349 dB, an MS-SSIM

of 0.9599. To compress all the data, we spent 18,665,233

bytes, the decoder size was 70,677,284 bytes and we spent

15,921 seconds to decode this dataset.

References

[1] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin

Hwang, and Nick Johnston. Variational image compression

with a scale hyperprior, 2018. International Conference on

Learning Representations. 2

[2] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and

Koray Kavukcuoglu. Spatial transformer networks, 2016.

Computer Vision and Pattern Recognition. 2

