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Abstract

A common way to localize 3D human joints in a

synchronized and calibrated multi-view setup is a two-step

process: (1) apply a 2D detector separately on each view

to localize joints in 2D, (2) robust triangulation on 2D

detections from each view to acquire the 3D joint locations.

However, in step 1, the 2D detector is constrained to solve

challenging cases which could be better resolved in 3D,

such as occlusions and oblique viewing angles, purely in

2D without leveraging any 3D information. Therefore, we

propose the differentiable “epipolar transformer”, which

empowers the 2D detector to leverage 3D-aware features

to improve 2D pose estimation. The intuition is: given

a 2D location p in the reference view, we would like to

first find its corresponding point p′ in the source view,

then combine the features at p′ with the features at p,

thus leading to a more 3D-aware feature at p. Inspired

by stereo matching, the epipolar transformer leverages

epipolar constraints and feature matching to approximate

the features at p′. The key advantages of the epipolar

transformer are: (1) it has minimal learnable parameters,

(2) it can be easily plugged into existing networks, moreover

(3) it is interpretable, i.e., we can analyze the location p′

to understand whether matching over the epipolar line was

successful. Experiments on Human3.6M [9] show that our

approach has consistent improvements over the baselines.

Specifically, in the condition where no external data is

used, our Human3.6M model trained with ResNet-50 and

image size 256×256 outperforms state-of-the-art by a large

margin and achieves MPJPE 26.9 mm. Code is available1.

This is the workshop version of our CVPR 2020 paper [8]

1. Introduction

The pose estimation task can be divided into two

categories: single-view and multi-view 3D pose estimation.

∗Equal contribution
1github.com/yihui-he/epipolar-transformers
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Figure 1: Overview of the proposed epipolar transformer, which

enables 2D detectors to leverage 3D-aware features for more

accurate keypoint localization. For a query vector (e.g., with

length 256) on the deep feature maps (256×H×W), we extract K

samples along the epipolar line of the source view. Dot-product

and softmax are used to compute similarity between the query

and sampled vectors to find correspondences. The corresponding

features are then fused into the reference view.

Single-view pose estimation [23, 22, 2, 5] directly estimates

3D pose from a monocular image. This is an ill-posed

problem due to the ambiguity in depth, which can be

alleviated through multi-view pose estimation. This paper

focuses on the latter.

Multi-view pose estimation leverages multiple

synchronized views with known intrinsic and extrinsic

calibration to resolve the depth ambiguity in single-view

pose estimation. A common framework [17, 11, 10] to

resolve the 3D location of joints follows a two-step process:

(1) apply a 2D pose detector on each view separately to

localize joints in 2D, and (2) robust triangulation based on

camera calibration and 2D detections from each view to

acquire the 3D location of joints. Robust triangulation is



required as the prediction of the 2D pose detector could

be incorrect or missing due to occlusions. One main

disadvantage of this framework is that step 2 only has

access to the 2D detections from the 2D detector, which

predicts keypoint locations independently from all other

views. Thus, challenging cases that could potentially be

better resolved in 3D, such as occlusions and viewing the

scene from oblique angles, are all resolved in 2D by the

detector without leveraging any 3D information. This could

lead to inaccurate detections that are inconsistent in 3D, or

the network might require more capacity and training data

to resolve these challenging cases.

Therefore, in this paper, we explore the possibility

of leveraging 3D information not only on the final 2D

detections, but also on the features of the 2D detector. The

intuition behind our 3D-aware features is shown in Figure 1:

given a 2D location p in reference view, we would like to

first find its corresponding point p′ in source view, then

combine the features at p′ with the features at p. In this way,

the 2D detector can leverage features from neighboring

views to compute 3D-aware features, thus empowering the

detector to perform 3D reasoning in the 2D detector itself,

not only during the triangulation phase.

To this end, we propose the “epipolar transformer”,

which is a fully differentiable module that takes a feature at

p from the reference view, and fuses it with the estimated

features at p′ from the source view. Inspired by stereo

matching, we first leverage the epipolar line generated by

p to limit the potential locations of p′. Then, we compute

the similarity between the feature at p and features sampled

along the epipolar line. Ideally, the feature similarity should

be highest when the correct p′ is found. However, we

do not know where p′ is along the epipolar line, so we

perform a weighted sum of the features along the line as

an approximation of the feature at p′. The weights used

for the weighted sum are the feature similarities. Next,

given the features at p and p′, we propose multiple methods

inspired by [20] to fuse the two features. Finally, we train

our network with the epipolar transformer in an end-to-

end fashion. The epipolar transformer not only enables

features of 2D detectors to be influenced by features from

other views, but also potentially promotes features that are

coherent across views. Note that the epipolar transformer

only operates on the features of the network, so the final

output of the 2D detector is still the 2D location of the

keypoints.

To evaluate our epipolar transformer, we conduct

experiments on Human3.6M [9]. On Human3.6M [9], we

achieve 26.9 mm when using the ResNet-50 backbone on

images of resolution 256×256 and trained without external

data. This outperforms the state-of-the-art, Qiu et al. [16]

from ICCV’19 by 4.23 mm.

The proposed epipolar transformer has multiple

advantages, including (1) can easily be added into existing

network architectures, (2) minimal learnable parameters

(parameter size is C-by-C, where C is input feature

channel size) and (3) is interpretable: one can analyze the

feature similarity along the epipolar line to gauge whether

matching is successful.

In sum, our contributions are as follows:

1. We propose the epipolar transformer, which is a

differentiable module that enables existing 2D pose

detectors to gain access to 3D-aware features, thus

leading to more accurate predictions.

2. We performed detailed ablation studies to analyze the

epipolar transformer, and also understand the effect of

different design choices.

3. Experiments show that our proposed model improves

upon state-of-the-art on human pose estimation task.

2. The Epipolar Transformer

There are two main components to our epipolar

transformer: the epipolar sampler and the feature fusion

module. Given a point p in the reference view, the epipolar

sampler will, in the source view, compute the locations

along the epipolar line from which to sample features. The

feature fusion module will then take all the features at the

sampled locations in the source view and the feature at p in

the reference view to produce a final 3D-aware feature. We

now detail each component, and also some implementation

details on how to handle image transformations when using

the epipolar transformer.

2.1. The Epipolar Sampler

We first define the notations used to describe the epipolar

sampler. Given two images captured at the same time

but from different views, namely, reference view I and

source view I ′, we denote their projection matrices as

M, M ′ ∈ R
3×4 and camera centers as C, C ′ ∈ R

4 in

homogeneous coordinates respectively. As illustrated in

Figure 1, assuming the camera centers do not overlap,

the epipolar line l corresponding to a given query pixel

p = (x, y, 1) in I can be deterministically located on I ′

as follows [6].

l = [M ′C]×M
′M+p, (1)

where M+ is the pseudo inverse of M , and [·]× represents

the skew symmetric matrix. p’s correspondence p′ should

lie on the epipolar line, i.e., lT p′ = 0.

The epipolar sampler S uniformly samples K locations

(e.g., 64) on the epipolar line l of the source view, thus

forming a set P ′ of cardinality K. The function takes as

input the query location p on the reference view, and the

projection matrices M,M ′ as shown below.

P
′ = SK(p,M,M ′) (2)



For query points whose epipolar line do not intersect with

the source view image plane, we simply skip them.

2.2. Feature Fusion Module

Ideally, if we knew the ground-truth p′ in the source

view that corresponds to p in the reference view, then all

we need to do is sample the feature at p′: Fsource(p
′),

and then combine it with the feature at p: Freference(p).
However, we do not know the correct p′. Therefore,

inspired by Transformer [19] and non-local network [20],

we approximate Fsource(p
′) by a weighted sum of all the

features along the epipolar line as follows:

F source(p) =
∑

p′∈P′

sim(p, p′)Fsource(p
′), (3)

where the pairwise function sim(·, ·) computes the

similarity score between two vectors. More specifically, it

is the dot-product followed by softmax.

Once we have the feature from the source view:

F source(p), we can fuse it with the feature in the reference

view: Freference(p) as follows.

Ffused(p) = Freference(p) +Wz(F source(p)) (4)

Note that the output Ffused is of the same shape as the input

Freference, thus this property enables us to insert the epipolar

transformer module into different stages of many existing

networks. The weights Wz can be as simple as a 1 × 1
convolution. In this case, keeping a copy of the original

Freference feature is similar to the design of the residual

block.

We explored some other architectures for the feature

fusion module, as shown in Figure 2. The one we have

just described in Equation 3 and Equation 4 corresponds

to Figure 2 (b): the identity Gaussian architecture.

This architecture is simpler as it only has one learnable

convolution layer. Figure 2 (a) is the bottleneck embedded

Gaussian popularized by non-local network [20]. The

reference view and source view are fed into the embedded

Gaussian kernel, where the input is down-sampled by two,

and the output is up-sampled by two, so that the shape of

the fused feature still matches the input’s shape.

2.3. Dealing with Image Transformations

As the epipolar transformer relies on camera calibration,

any spatial transformations made to the image also need to

be reflected in the calibration parameters. More details are

as follows.

Data Augmentation: Data augmentation like rotation,

scaling and cropping can still be performed with the

epipolar transformer. The projection matrix needs to be

updated accordingly when the image is transformed with
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softmax

1x1,BN

𝐾×𝐻×𝑊

128×𝐻×𝑊

256×𝐻×𝑊

1x1 1x1 1x1

epipolar

sampler
128×𝐻×𝑊

128×𝐾×𝐻×𝑊

128×𝐻×𝑊

256×𝐻×𝑊

256×𝐾×𝐻×𝑊

reference view        source view

softmax

256×𝐻×𝑊

256×𝐻×𝑊

256×𝐻×𝑊

𝐾×𝐻×𝑊

(a) bottleneck embedded Gaussian            (b) identity Gaussian

epipolar

sampler

epipolar

sampler

256×𝐻×𝑊 256×𝐻×𝑊

1x1,BN

Figure 2: Different feature fusion module architectures. The

feature maps are shown as the shape of their tensors, e.g.,

256×H×W for 256 channels. "⊕" and "⊗" denote element-wise

sum and matrix multiplication respectively.

an affine transformation parameterized by A ∈ R
2×2 and

b ∈ R
2:

M :=

[

A b
0
T 1

]

M (5)

Different scaling and cropping parameters can be applied

separately to the reference view and source view.

Scaling of projection matrices: Special care is required

when we scale the projection matrices due to image resizing

or pooling. Suppose the input image is spatially down-

sampled sx and sy times along the x-axis and y-axis (e.g.,

sx = sy = 4 in the hourglass network), the projection

matrix is updated as follows:

M :=





1/sx 0 (1− sx)/2sx
0 1/sy (1− sy)/2sy
0 0 1



M (6)

The coordinates are aligned with the center of pixels rather

than the top-left corners, which is important for extracting

features at precise locations in the epipolar transformer.

3. Experiments

We conducted experiments on a publicly available

dataset, Human3.6M [9]. We adopt the same training and

testing sets as in [16], where subjects 1, 5, 6, 7, 8 are used

for training, and 9, 11 are for testing.

As there are only four views in Human3.6M [9], we

choose the closest view as source view. We adopt ResNet-

50 with image resolution 256×256 proposed in simple

baselines for human pose estimation [21] as our backbone

network. We use the ImageNet [4] pre-trained model [14]

for initialization. The networks are trained for 20 epochs

with batch size 16 and Adam optimizer [13]. Learning

rate decays at 10 and 15 epochs. Unless specified, we do



Net scale shlder elb wri hip knee ankle root belly neck nose head Avg

- R152 320 88.50 88.94 85.72 90.37 94.04 90.11 - - - - - -

sum over epipolar line[16] R152 320 91.36 91.23 89.63 96.19 94.14 90.38 - - - - - -

max over epipolar line[16] R152 320 92.67 92.45 91.57 97.69 95.01 91.88 - - - - - -

cross-view fusion [16] R152 320 95.58 95.83 95.01 99.36 97.96 94.75 - - - - - -

cross-view fusion [16]⋆ R50 320 95.6 95.0 93.7 96.6 95.5 92.8 96.7 96.4 96.5 96.4 96.2 95.9

cross-view fusion [16]⋆ R50 256 86.1 86.5 82.4 96.7 91.5 79.0 100.0 94.1 93.7 95.4 95.5 95.1

epipolar transformer R50 256 96.44 94.16 92.16 98.95 97.26 96.62 99.89 99.86 99.68 99.78 99.63 97.01

epipolar transformer+ R50 256 97.71 97.34 94.85 99.77 98.32 97.55 99.99 99.99 99.76 99.74 99.54 98.25

Table 1: 2D pose estimation accuracy comparison on the Human3.6M [9], where no external training data is used. The metric is joint

detection rate, JDR (%). +: indicates using data augmentation mentioned in Section 2.3. "-": We cite numbers from [16] and these entries

are absent. ⋆: We trained the models using released code [16]. R50 and R152 are ResNet-50 and ResNet-152 [7] respectively. Scale is the

input resolution of the network.

MPJPE (mm) Dir Disc Eat Greet Phone Photo Pose Purch Sit SitD Smoke Wait WalkD Walk WalkT Avg

Multi-View Martinez [18] 46.5 48.6 54.0 51.5 67.5 70.7 48.5 49.1 69.8 79.4 57.8 53.1 56.7 42.2 45.4 57.0

Pavlakos et al. [15] 41.2 49.2 42.8 43.4 55.6 46.9 40.3 63.7 97.6 119.0 52.1 42.7 51.9 41.8 39.4 56.9

Tome et al. [18] 43.3 49.6 42.0 48.8 51.1 64.3 40.3 43.3 66.0 95.2 50.2 52.2 51.1 43.9 45.3 52.8

Kadkhodamohammadi & Padoy [12] 39.4 46.9 41.0 42.7 53.6 54.8 41.4 50.0 59.9 78.8 49.8 46.2 51.1 40.5 41.0 49.1

R50 256×256+triangulate 38.9 46.1 36.2 59.7 46.4 44.7 44.9 37.7 51.2 72.0 48.2 61.0 46.2 45.7 52.0 48.7

R50 256×256+crossview+triangulate[16] - - - - - - - - - - - - - - - 45.5

R50 256×256+ours+triangulate 30.6 33.2 26.7 28.2 32.8 38.4 29.3 28.9 36.6 45.2 34.3 31.7 33.1 34.8 31.2 33.1

R50 256×256+ours+triangulate + 29.0 30.6 27.4 26.4 31.0 31.8 26.4 28.7 34.2 42.6 32.4 29.3 27.0 29.3 25.9 30.4

R50 256×256+crossview+RPSM [16] - - - - - - - - - - - - - - - 41.2

R50 256×256+ours+RPSM [16] 25.7 27.7 23.7 24.8 26.9 31.4 24.9 26.5 28.8 31.7 28.2 26.4 23.6 28.3 23.5 26.9

R152 320×320+crossview+triangulate[16] 34.8 35.8 32.7 33.5 34.4 38.2 29.7 60.7 53.1 35.2 41.0 41.6 31.9 31.4 34.6 38.3

R152 320×320+crossview+RPSM [16] 28.9 32.5 26.6 28.1 28.3 29.3 28.0 36.8 42.0 30.5 35.6 30.0 29.3 30.0 30.5 31.2

Table 2: Comparison with state-of-the-art multi-view keypoint estimation methods on Human3.6M [9], where no external training data is

used. The metric is MPJPE (mm). "+": rotation and scaling augmentation. "-": models trained using released code [16], where the per

action MPJPE evaluation were not provided.

not use data augmentation for fair comparisons, following

Qiu et al. [16]. We follow Qiu et al. [16] for other hyper-

parameters. Following [16], as there are only four cameras

in this dataset, direct linear transformation (DLT) is used

for triangulation (Hartley & Zisserman [6], p.312), instead

of RANSAC which also needs tuning the inlier/outlier

threshold.

2D Pose Estimation: Following Qiu et al. [16], the 2D

pose estimation accuracy is measured by Joint Detection

Rate (JDR), which measures the percentage of the

successfully detected joints. A joint is detected if the

distance between the estimated location and the ground

truth is smaller than half of the head size [1]. Shown

in Table 1, sum or max over the epipolar line does

not perform well. The cross-view fusion [16] achieved

better performance by fusing with learned global attention,

which resembles the non-local network [20]. Epipolar

transformer instead attends the features along the epipolar

line and fuse them. Using the same backbone ResNet-

50 image size 256×256, epipolar transformer achieves

97.01% JDR, which outperforms 95.9% JDR from Qiu et

al. [16] (ICCV’19) by a large margin. The improvement

consolidates the idea that fusing along the epipolar line is

better than fusing globally.

We apply data augmentation as is mentioned in

Section 2.3, which consists of random scales drawn from

a truncated normal distribution TN(1, 0.252, 0.75, 1.25)
and random rotations from TN(0◦, (30◦)2,−60◦, 60◦) [21].

JDR is further improved to 98.25% JDR.

Effect of the number of views: Shown in Figure 4,

compared with ICCV’19 cross-view [16], epipolar

transformer still have better performance when there

are fewer views. This shows that epipolar transformer

efficiently fuses features from other views.

Compare with state-of-the-art: Table 2 demonstrates

state-of-the-art multi-view keypoint estimation methods.

Our epipolar transformer outperforms the state-of-the-

artby a large margin. Specifically, using triangulation

for estimating 3D human poses, epipolar transformer

achieves 33.1 mm, which is ∼ 12 mm better than



Reference view Source view

(i) Right knee selected, denoted in green.

Figure 3: Visualizations of the matching results along the epipolar line in more difficult cases in InterHand. We here use E.T. as a

shorthand for Epipolar Transformer. The compared features are (a) deep features learned through the epipolar transformer (deep features

with E.T., denoted in red), (b) deep feature learned by ResNet-50 [7] without epipolar transformer (deep features w/o E.T., denoted in

yellow), and (c) RGB features (denoted in blue). Green dot on the reference view is the selected joint, and the green dot on the source view

is the corresponding point offered by the groundtruth.
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Figure 4: MPJPE by varying the number of views on Human3.6M

the cross-view [16], using the same backbone network

(ResNet-50, input size 256×256). Using the recursive

pictorial structural model (RPSM [16]) for estimating

3D poses, our epipolar transformer achieves 26.9 mm,

which is ∼ 14 mm better than cross-view [16]. More

importantly, epipolar transformer on ResNet-50 input size

256×256 even surpasses the state-of-the-art result from

cross-view [16] on ResNet-152 input size 320×320 by ∼

4 mm, which is 13% relative improvement. We argue that

epipolar transformer find correspondences and fuse features

based on feature similarity, which is superior than cross-

view [16] which use fixed attention for specific cameras

settings.

Our model with data augmentation achieves MPJPE 30.4

mm with triangulation, which is better than state-of-the-art

even without RPSM.

Visualization: As shown in Figure 3, our predictions with

epipolar transformer (red dot) are closer to the ground truth

points, compared to the features without the awareness of

the multi-view information.
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