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Abstract

We address the problem of reposing an image of a hu-

man into any desired novel pose. This conditional image-

generation task requires reasoning about the 3D structure

of the human, including self-occluded body parts. Most

prior works are either based on 2D representations or re-

quire fitting and manipulating an explicit 3D body mesh.

Based on the recent success in deep learning-based vol-

umetric representations, we propose to implicitly learn a

dense feature volume from human images, which lends itself

to simple and intuitive manipulation through explicit geo-

metric warping. Once the latent feature volume is warped

according to the desired pose change, the volume is mapped

back to RGB space by a convolutional decoder.

Our state-of-the-art results on the DeepFashion and the

iPER benchmarks indicate that dense volumetric human

representations are worth investigating in more detail.

1. Introduction

The ability to freely change a human’s pose in an im-

age opens the door to a variety of applications, from gen-

erating large crowds or performing stunts in filmmaking to

data augmentation for human-centric computer vision tasks.

State-of-the-art approaches to this problem employ fully-

convolutional neural networks. However, convolutional fea-

tures tend to strongly depend on the input pixels near the

center of the receptive field and CNNs often fail to move

information over large distances. This makes person repos-

ing difficult when input and target pose differ strongly, as

the appearance information of the various body parts needs

to move to different places compared to their position in the

input image. To tackle this, many recent approaches ap-

ply some form of explicit transformations. Some warp 2D

features such that they become aligned to the target pose,

which is also specified in 2D [2, 32, 9, 3, 23, 6]. We argue

that this is insufficient to capture 3D human pose changes.

Mesh-based approaches fit a 3D body model to the in-

put, infer the texture and render the mesh in the target pose

[38, 17]. While capturing the 3D aspect, this has the down-
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Figure 1. Our encoder network implicitly learns a volumetric rep-

resentation of the input person, such that 3D feature warping can

be applied in the middle of the architecture to achieve reposing.

side that a specific human might not be captured well by

a general model, for example due to uncommon hairstyles

and spacious clothing.

Inspired by recent volumetric approaches for related

tasks [25, 24], we propose a novel reposing method, illus-

trated in Fig. 1, which warps 3D volumetric CNN-features

without requiring an explicit mesh model. Using only a 2D

image as input, our model implicitly learns a latent volumet-

ric representation of the input person. This representation is

then warped using 3D transformations based on input and

target pose to align it to the target pose. We process the

warped features along with 3D target pose heatmaps with a

decoder, to synthesize the reposed image.

By ablation, we show the benefits of the two 3D aspects

of our work: first the 3D warping, and second, representing

the target pose in 3D. Overall, our method achieves state-

of-the-art scores on the commonly used DeepFashion and

the newer iPER benchmarks.

2. Related Work

Image generation methods have come a long way

since the introduction of generative adversarial networks

(GAN) [5]. Building on Isola et al.’s image-conditioned

GAN [12], Ma et al. were first to tackle pose-conditioned

person image generation [20]. They feed the image and 2D

target pose heatmap through two stages: the first is trained

with a pixel-wise L1 loss, the second with an adversarial

loss. Lakhal et al. [10] use two encoders in both stages, dis-

tinguishing between aligned and misaligned input in Stage

I and between pose and images in Stage II. Similar subdivi-

sions are used in other works [31, 40].
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Figure 2. Generator architecture. The foreground stream learns 3D features from a 2D image and applies 3D feature warping. The result

is combined with the target pose and projected to an RGBA image. Alpha blending with an inpainted background yields the final output.

The misalignment of input and target is tackled by ex-

plicit warping in many works. Siarohin et al. [32] use affine

warps on the skip connections of a U-net architecture [28].

They mask out features corresponding to bodyparts based

on the input pose and warp them to align with the target

pose. An extension is proposed in [9], adding self-attention

layers, spectral normalization and a relativistic discrimina-

tor to the architecture. In [2], a similar transformation is ap-

plied directly on the input image, using learned soft masks.

Some methods warp based on body part segmentation or

dense pose [1] to encode input and target pose instead of

using keypoint representations [3, 23, 6]. This tells the net-

work the exact shape of the target person, making the task

simpler, but a dense target pose is not available in general.

The 3D mesh-based approach of [38] fits a body model

to the given person, back-projects pixels onto the mesh and

transforms the mesh to the target pose. Unseen texture is

inpainted with a neural net. Other methods [17, 15] use

meshes to compute a transformation flow from input to tar-

get pose, which is used to transform network features in 2D.

A line of works in 3D human pose estimation [25, 35,

19, 30] has shown that it is feasible to predict depth-related

information from images in a volumetric representation (in

that case volumetric body joint heatmaps), by a tensor re-

shaping operation. We take this as inspiration to predict

volumetric feature maps of humans in our work.

Human reposing can be viewed as a generalization of

novel-view synthesis (NVS) from rigid to articulated pose.

As volumetric prediction has also been successfully applied

for NVS [34, 24], we take this as further motivation to inves-

tigate the usefulness of a similar representation in reposing.

In contrast to the volumetric approach, a sparse 3D repre-

sentation is used in [27] to learn NVS. The encoder outputs

an appearance feature vector and a 3D point cloud repre-

senting the pose. After rotating the point cloud, the decoder

transforms both back to an image from another view. The

implicitly learned point cloud is given to a shallow human

pose estimation network, thereby reducing the amount of la-

beled pose estimation data needed. Similar to our method,

an implicitly learned 3D structure is explicitly transformed,

however, instead of a point cloud which only represents the

pose we transform volumetric features which also contain

appearance information.

3. Method

Given an input image II of a person and a target pose

PT , we aim at generating an image ÎG of the person in pose

PT . We use a two-stream generator network to tackle this

problem, where the first stream reposes the person using our

novel volumetric feature warping approach, while the sec-

ond inpaints missing parts of the background. To utilize the

volumetric warping, the model has to estimate the depth of

different bodyparts such that it can lift the corresponding

features accordingly to a 3D volume. This is learned im-

plicitly from the 3D warping, we neither give depth infor-

mation about the input pose to our model nor do we apply

any explicit supervision with respect to the input pose.

3.1. Architecture

Our architecture consists of a lifting encoder, a 3D warp-

ing module, a projection decoder and a background in-

painter as shown in Fig. 2.

The lifting encoder maps a 2D input image to 3D

volumetric features. The 2D input image II is passed

to a convolutional network E2D which outputs 2D fea-

ture maps E2D(II) ∈ R
H×W×D·C . A reshape operation

splits the channel dimension of the resulting tensor into

different depth layers, yielding the feature volume F ∈
R

H×W×D×C . This is similar to how joint heatmaps are es-

timated in [25], but instead of heatmaps, we produce a latent

feature volume. E2D thus learns that different features in its

output belong to different depths. To further process these

volumetric features, a 3D convolutional network (E3D) is

applied to yield V ∈ R
H×W×D×C .

The key element of our approach is our novel 3D warp-

ing module, whose purpose is to shuttle voxel features



to their target location. It gets a feature volume V ∈
R

H×W×D×C , together with the 3D input and target pose

PI , PT ∈ R
J×3 which are given as 3D joint coordinates.

The input pose PI is used to create ten masks Mi ∈
{0, 1}H×W×D, one per bodypart. Masks are generated by

drawing capsular shapes between the joints corresponding

to that bodypart, e.g., the lower left leg’s mask is based on

the left ankle and the left knee joints and the mask of the

torso depends on the hips and shoulders. We then create ten

copies Vi of the feature volume and apply the correspond-

ing mask by voxel-wise multiplication, giving ten volumes,

one per body part. Next, we fit a transformation Ti for each

body part based on input and target joints. We assume that

each part moves rigidly, but as the scale of the person in

pixel space may change, we also add a scale parameter. The

result is a 7-parameter Helmert transformation, estimated

by least squares. When a body part has only two joints, as

for leg and arm parts, we use a third joint to specify the

rotation around the body part’s axis. For example, the left

lower arm’s motion would only depend on left wrist and left

elbow, so we use the left shoulder’s position as an anchor.

The masked bodypart features are then warped according

to the respective transformation using trilinear interpolation

and combined using the maximum activation. Given Mi

and Ti, the output feature volume of the warping module is

V ′ = max
i

Ti(Mi ⊙ V ).

The target pose encoder Epose feeds the target pose into

our model. Its input are Gaussian volumetric heatmaps

H ∈ R
H×W×D×J , one per body joint. The result is con-

catenated to the warped volumetric features and processed

by the projection decoder.

Mirroring the lifting encoder, our projection decoder

contains two parts D3D and D2D. The 3D convolutional net-

work D3D allows to enhance the warped features and also

combines them with the output of the target pose encoder.

This volume is reshaped to 2D by combining depth and vol-

umetric channels into a single channel dimension. We then

apply the second decoder network D2D, yielding the gener-

ated RGB image ÎFG together with a soft mask M̂FG.

We apply a background inpainter stream, since our

warping module masks bodyparts and only copies those to

the decoder, so background information is lost. We remove

the person from the inpainter’s input by using the bodypart

masks from our warping module. Pixels not included in any

of the projected bodypart masks become part of the back-

ground mask MBG. The inpainting itself is performed using

PartialConv layers [16]. The final result is a weighted com-

bination (alpha blending) of the inpainted background ÎBG

and the generated person ÎFG using M̂FG as the weights.

Architectural details. All our sub-networks except the

background inpainter, but including the discriminator, are

based on ResNet [7, 8]. We use GroupNorm [37] instead

of BatchNorm [11] due to its better performance with small

batch sizes. In E2D and D2D we use bottleneck residual

blocks to reduce computational cost. Our 3D convolutional

networks E3D, D3D and Epose do not use bottlenecks, as the

number of features is already comparatively low.

3.2. Training

The perceptual loss Lperc [13] compares generated and

target image by passing both images through an ImageNet-

pretrained VGG net [33] and computing the L1 loss on mul-

tiple feature maps. The adversarial loss Ladv uses a discrim-

inator net as in a classical GAN. The discriminator gets the

generated or ground truth image along with the input image

and the 3D target heatmap. We jointly optimize a weighted

combination of these losses:

L(θ) = λpercLperc(θ) + λadvLadv(θ)

We use data augmentation with rotation, scaling, transla-

tion, horizontal flip and color distortion. We train with the

Adam optimizer [14] for 150,000 steps with batch size 2 and

learning rate α = 2 · 10−4. We set λadv = 1, λperc = 3.

4. Experiments

4.1. Datasets

Commonly used in related work, the In-shop Clothes

Retrieval Benchmark of the DeepFashion dataset (Fashion)

[18] has almost 50,000 images and 8,000 sets of clothes.

The newer Impersonator dataset (iPER) [17] contains

videos of 30 people and 103 clothing styles in total. Two

videos exist per clothing style, filmed from a static cam-

era. In one, the person turns around in an A-pose, the other

shows arbitrary movements.

As these benchmark datasets do not supply 3D poses, we

apply a 3D human pose estimation network based on [30]

to obtain the input and target poses PI and PT .

4.2. Evaluation Metrics

Although generated image quality is somewhat subjec-

tive, several quantitative metrics have been used in related

work to compare methods. The structural similarity index

(SSIM) [36] compares patches of the generated image to

patches of the ground truth according to luminance, contrast

and structure. While also used in some related work, we ar-

gue that the Inception score [29] is not suited for this task

(we elaborate this in the supplementary). We further use

the learned perceptual image patch similarity (LPIPS) [39],

which compares deep features between generated image

and ground truth, similar to perceptual losses [13].

To evaluate high-level structure, we compare the re-

sponse of a pretrained 3D pose estimator based on [30],

when applied to the generated and the true image. We use

the area under the PCK (percentage of correct keypoints)

curve (AUC@150mm), a standard pose metric [22].



3D warping 3D target pose SSIM ↑ SSIMfg ↑ Pose AUC ↑

– – 0.872 0.566 0.698

– X 0.875 0.578 0.749

X – 0.877 0.607 0.749

X X 0.883 0.626 0.777

Table 1. Ablation on iPER. SSIMfg only evaluates the foreground.

iPER Fashion

SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS ↓

PG2, Ma et al. [20] 0.854 0.135 0.762 –

SHUP, Balakrishnan et al. [2] 0.823 0.099 – –

DSC, Siarohin et al. [32] 0.829 0.129 0.756 –

LWB, Liu et al. [17] 0.840 0.087 – –

SGW, Dong et al. [3] – – 0.793 –

UPIS, Pumarola et al. [26] – – 0.747 –

VUNET, Esser et al. [4] – – 0.786 0.196

BodyROI7, Ma et al. [21] – – 0.614 –

DPT, Neverova et al. [23] – – 0.796 –

CTI, Grigorev et al. [6] – – 0.791 0.169

Li et al. [15] – – 0.778 –

Ours 0.883 0.081 0.800 0.186

Table 2. Comparison to prior work. iPER scores taken from [17].

4.3. Ablation Study

In contrast to prior work on person reposing, we pro-

pose to perform two different aspects in 3D: first, we use a

3D target pose and second, we perform 3D feature warping

in the center of our model. Architectural differences make

it hard to directly compare our results to prior works, so

we define ablation models to investigate these two aspects

while keeping the exact same architecture otherwise.

To drop the depth information from the 3D target pose

heatmaps, we project the pose to the image plane and repli-

cate it to all depth layers. Similarly, to perform warping in

2D, we project the body part masks to the image plane and

copy them to all depths and apply 2D affine warpings to all

depths independently.

The results on iPER (Tab. 1) show that both of our 3D

enhancements improve the scores compared to the 2D base-

line and the results get even better when they are combined.

This is supported by the qualitative results (Tab. 3). In the

first row, the 2D pose models wrongly generate the right

hand in front of the body, while the second row shows that

a combination of both 3D aspects achieves the best results.

4.4. Comparison to Prior Work

Our model achieves state-of-the-art scores on both

datasets (Tab. 2). Comparison to [17] on iPER (Tab. 3)

shows that our model is able to transform the features of

the left arm independently from the body features. In the

upper row the hand correctly appears behind the body and

the blue jacket in the lower row does not have a white stain

as residue from the arm color. On Fashion (Tab. 4), our

model generates the overlapping arms of the right person

input

image

target

pose

LWB

[17]
2D

3D

pose

3D

warp

3D both

(ours)

Table 3. Comparison to a mesh-based method and ablation models.

input

image

target

pose

DSC

[32]

ours input

image

target

pose

DSC

[32]

ours

Table 4. Comparison with a 2D feature warping method. The tar-

get image is not used as input, only its pose.

better than the 2D feature warping approach of [32].

Our architecture decreases the spatial size of the feature

maps, which has the result that fine details are lost in some

cases, which is also visible in the generated results. The

buttons on the shirt in the first row of Tab. 3 are missing

in two ablation models and replaced by a zipper and shirt

pockets in the other two.

5. Conclusion

We presented a novel architecture for person reposing,

which relies on 3D warping of implicitly learned volumetric

features. Different from prior work, our approach is neither

limited by approximating 3D motion with 2D transforma-

tions nor is an explicit 3D human mesh model required.

The ablation study and the comparison to related ap-

proaches showed that our method outperforms 2D warping

methods by a significant margin. This indicates that volu-

metric representations and 3D warping are a promising way

to tackle reposing and we expect that more sophisticated

neural rendering techniques could further improve results.
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