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Abstract

Existing multi target multi camera tracking (MTMCT)

datasets are small in terms of the number of identities and

video length. The creation of new real world datasets is

hard as privacy has to be guaranteed and the labeling is

tedious. Therefore in the scope of this work a mod for

GTA V to record a MTMCT dataset has been developed

and used to record a simulated MTMCT dataset called

Multi Camera Track Auto (MTA). The MTA dataset con-

tains over 2,800 person identities, 6 cameras and a video

length of over 100 minutes per camera. Additionally a

MTMCT system has been implemented to provide a base-

line for the created dataset. The system’s pipeline con-

sists of stages for person detection, person re-identification,

single camera multi target tracking, track distance calcu-

lation, and track association. The track distance calcula-

tion comprises a weighted aggregation of the following dis-

tances: a single camera time constraint, a multi camera

time constraint using overlapping camera areas, an appear-

ance feature distance, a homography matching with pair-

wise camera homographies, and a linear prediction based

on the velocity and the time difference of tracks. When us-

ing all partial distances, we were able to surpass the results

of state-of-the-art single camera trackers by +13% IDF1

score. The MTA dataset, code, and baselines are available

at github.com/schuar-iosb/mta-dataset.

1. Introduction

Multi target multi camera (MTMC) tracking, i.e. track-

ing many persons across a network of possibly non-

overlapping cameras, is an important element of modern

security, sports analysis, or retail systems. The develop-

ment of MTMC tracking approaches is a complex matter,

as they involve a number of tasks, which are themselves

challenging computer vision problems, namely: person de-

Figure 1. Camera view arrangement and sample images of the

MTA dataset.

tection, single camera multi target tracking, and person re-

identification. All these components are impacted by chal-

lenges, such as variation in resolution or camera distance,

variation in view angle, non-overlapping camera views, oc-

clusion in crowded areas, or illumination changes. How-

ever, a more fundamental challenge in the development of

MTMC tracking methods is the lack of suitable datasets.

In order to allow for MTMC development and assessment,

a dataset needs to provide imagery with these challenging

characteristics, as well as comprehensive ground truth, par-

ticularly consistent IDs across all cameras. Such data is not

only difficult to annotate but its collection comes with the

risk of violating current or future data protection rights.

In this work we address the lack of suitable MTMC

datasets by creating a new large scale simulated dataset,

which depicts an urban scene recorded by six cameras as

shown in Figure 1. The dataset is recorded in a small sec-

tion of the Grand Theft Auto 5 (GTA) virtual world, which

offers a high degree of realism and detail. We have taken

care to include overlapping and non-overlapping cameras,



night- and daytime, indoor and outdoor regions, and vary-

ing degrees of crowdedness. Our dataset consists of six

camera views recording over 2,800 different persons for a

combined video length of 10 hours. This makes it by far the

largest existing MTMC dataset available and allows for a

comprehensive evaluation of MTMC tracking approaches

under a variety of conditions. Based on this dataset we

conduct baseline evaluations of several established state-of-

the-art methods in person detection, single camera tracking

and re-identification. We combine the best suited models

into our own modular MTMC tracking system, which re-

lies on calculation and aggregation of a number of relevant

distance measures to associate tracks across the camera net-

work. Our work makes the following contributions: i) We

create the currently largest MTMC dataset for evaluation of

person detection, re-identification, pose estimation, single-

and multi-camera tracking. ii) The dataset, as well as the

code for its creation, will be made available to the com-

munity. iii) We propose our own modular MTMC tracking

system based on aggregation of several track distance mea-

sures as a baseline result on this dataset.

2. Related Work

The development and evaluation of MTMC tracking re-

quires data with very specific properties. Datasets must

include temporally synchronized videos from a number of

cameras, some of which should be non-overlapping. Par-

ticularly the requirement that persons must be annotated

with consistent identities across all camera views results in

high annotation cost. Most existing tracking datasets focus

on the multi target aspect but do not provide synchronized

multi camera data [27, 14]. However, some datasets exist

that are suitable for MTMC tracking, see Table 1. Most of

these datasets have the drawback of either being very short

in duration [18, 15, 13, 17], having a very low video resolu-

tion [1, 7] or not providing consistent person IDs [8]. Clos-

est to our dataset in idea is the MOCAT dataset [2], which

comprises three scenes recorded by up to 10 cameras and

100 objects. This dataset was created using Garry’s Mod,

which is a physics-based sandbox game [32]. However, the

small size of the dataset makes it unsuitable to train large

deep learning models and the degree of visual variation is

limited. Closest in scope to our dataset is the popular real

world DukeMTMC dataset [30]. Unfortunately, this dataset

was recently withdrawn due to privacy and consent issues

with the depicted pedestrians. Our dataset aims to provide

a larger basis for training and evaluation than DukeMTMC

while alleviating privacy concerns by relying on high qual-

ity simulated data.

Systems for multi target multi camera tracking often con-

sist of components which solve several subproblems in or-

der to combine them as a solution for entire multi cam-

era tracking problem. Such subproblems are person detec-

tion, appearance description, single camera tracking, fea-

ture calculation for data association and data association

[31]. We will limit our discussion of related methodology

to the main task, i.e., multi camera multi target tracking by

cross-camera data association.

Features for data association In order to perform data as-

sociation, it is often necessary to calculate features, dis-

tances or restrictions between detections, tracklets or tracks

of different cameras. Zhang et al. [38] use a time restric-

tion which leverages the fact that persons can only be vis-

ible at the same time in cameras with overlap. Depending

on the available information about the cameras of the used

dataset, some approaches like the one from Bredereck et al.

[5] transform track positions from multiple cameras with

the help of camera parameters into a 3D coordinate system

to support the data association. Another popular feature that

is being used by Ristani et al. [31] is linear motion infor-

mation of people. In this work we rely on a combination

of these three methods, i.e., time restriction, position pro-

jection through homographies learned from data, and linear

motion projection.

Data association procedure The task of forming groups

of detections, tracklets (short tracks) or tracks to consti-

tute identities is often called data association in this con-

text. Some approaches like, e.g., [7] only look at time con-

secutive data points, whereas others consider all pairwise

datapoints [12]. It is more computationally costly to look

at pairwise datapoints, but more accurate [31]. The actual

association procedures differ as well. Cao et al. [7] create

a graph and solve a min-cost flow network problem. The

approach from Zhang et al. [38] uses hierarchical cluster-

ing to cluster tracklets in order to solve the data association

problem. Ristani et al. [31] utilizes correlation clustering

[4] of detections to tackle the data association problem. A

benefit of correlation clustering is that it is not necessary to

provide a number of clusters in advance. Tang et al. [33]

solves the minimum cost lifted multicut problem to perform

multi person tracking in a single camera. Similar to [38], we

apply hierarchical clustering to group single camera tracks

as well.

3. The MTA Dataset

Our proposed dataset relies on high quality imagery from

the video game GTA V and is created with three key moti-

vations in mind: i) Providing a much needed comprehensive

basis with high fidelity annotations for evaluation of multi

person multi camera tracking in the first place, ii) alleviat-

ing privacy concerns with depicted subjects, and iii) while

direct image processing tasks suffer from a reality gap when

transferred from synthetic training data to real world test

data, this is less true for MCMT tracking, as these methods

often do not directly rely on the imagery. We thus contend

that methods and design choices developed on our dataset



for MCMT tracking can more directly be transferred to real

world data. Following [16], we call our dataset Multi Cam-

era Track Auto (MTA).

Scene Design Unlike existing multi camera tracking

datasets (see Table 1), our recorded scene offers a variety

of different conditions, ranging from day to night and from

sunny to rainy periods. Additionally, cameras mounted in-

door and outdoor are included, making the dataset unique

in its diversity of scenes and range of conditions. Figure

1 provides an overview of the scene with camera positions

and footprints. Please note that only five out of six cameras

are shown, the final camera is located inside a metro station.

Moreover, one can see that some camera footprints overlap

while others are separated.

Dataset Creation For creation of the MTA dataset, we

created a GTA plugin based on the one provided by Fabbri

et al. [16]. First of all, a mechanism was required which

allows to record multiple cameras synchronously. The key

challenge in creating a camera network dataset is the re-

quirement of multiple synchronized cameras. GTA is a sin-

gle player game and does not support this. As a workaround

we record camera frames one after the other by changing

camera positions and rotations between shots. A slight time

offset occurs, as the game proceeds by one frame each time

the camera position is changed. We reduce this offset to
1
41 of a second by activation slow motion mode. Our plu-

gin also takes full control of all persons in the scene. This

ensures that no persons with the same appearance but differ-

ent assigned IDs occur. Paths to be walked are defined by

a network graph which is used by our plugin to randomly

spawn varying amounts of people with different assigned

walking speeds and paths starting from different locations.

Our plugin also handles several technical issues, such as

avoiding collisions of pedestrians and cars or persons erro-

neously marked as being visible through walls.

Dataset IDs Minutes Cams Resolution

Fleuret et al. [18]  7 3,6,4  4 320x240

Passageway [1] 4 20 4 320x240

Issia Soccer [15] 25 2 6 1920x1080

Apidis Basket. [13] 12 1 7 1600x1200

PETS2009 [17] 30 1 8 768x576

NLPR MCT [7]  235 20,20,5,25  5 320x240

Dana36 [28] 24 N/A 36 2048x1536

USC [21] 146 25 3 852x480

CamNeT [37] 50 30 8 640x480

MOCAT [2]  100 2,2,2  10 1920x1080

WILDTRACK [8] N/A 60 7 1920x1080

Duke (deleted) [30] 2,834 85 8 1920x1080

MTA (ours) 2,840 102 6 1920x1080

Table 1. Comparison of different multi target tracking datasets.

Multiple values for duration indicate sets of separate sequences.

MTA Characteristics Table 1 compares our MTA

Figure 2. Track duration distribution over the MTA dataset.

Person Camera

Unique ID Sync. Frame Number

Position (2D,3D) Sync. Game Time of Day

Bounding Box (2D) 3D Position

Orientation (Yaw) 3D Rotation

22 Body Joints (2D,3D) Field of View

Table 2. Types of annotations in the MTA dataset.

dataset to further widely-used multi target tracking datasets.

The MTA dataset consists of 102 minutes of video from

each camera at 41 fps, 37,324,348 bounding boxes and

2,840 tracks. Our originally generated data is cut into two

equal pieces for training and testing. A small gap of time

is discarded to avoid the same person being present in train

and test set. As a result, the training set consists of videos

with a duration of 00:50:29 per camera and the test set

00:51:59. The dataset includes a wide range of different

bounding box sizes, from very small ones with less than

50 pixels in height to large ones with more than 350 pix-

els. The distribution of bounding box sizes is visualized in

Figure 2. The dataset thus represents a realistic scenario

since surveillance cameras usually cover large areas and,

as a result, a variety of different sizes of persons occur de-

pending on the distance from the camera. Similarly, the dis-

tance from camera and pathing can cause a variety of track

lengths, see Figure 2. We provide a variety of automatically

generated annotations for the MTA dataset. An overview is

given in Table 2. Annotations include general information

about time, camera position, person identities and positions,

as well as 22 body keypoints for each person in 2D and 3D.

MTA Tasks The MTA dataset natively lends itself to

evaluation of pedestrian detection, pose estimation, single

camera tracking, person re-identification, and, of course,

multi camera tracking. We define several subsets to stan-

dardize the evaluation of individual tasks. For person de-

tection and pose estimation we select one image per sec-

ond, i.e., every 41st frame. Our subset for person re-

identification, termed MTA-ReID, is created by selecting

one image every 5 seconds (205 frames) and cropping in-

dividual persons. The larger interval avoids near-identical

person images in the subset. We randomly choose 20% of



Figure 3. Example images of the MTA-ReID dataset. The relative

dimensions of the cropped images are preserved.

the cropped test images for queries and leave the remainder

as gallery. Samples of MTA-ReID are visualized in Figure

3. While there are a few re-identification datasets of simi-

lar size available, MTA-ReID uniquely offers the possibility

to evaluate methods across weather conditions, at night or

low light, across indoor and outdoor areas, and at signifi-

cant differences in image resolution. Note that MTA-ReID

also contains distractor images comprised of cropped areas

with single or few body joints or test set identities that are

not part of the randomly chosen query set.

4. MTMCT by Weighted Distance Aggregation

Our MTMC tracking approach comprises all necessary

steps for MTMC tracking from person detection to con-

necting person tracks from different cameras. The frame-

work has a modular design so that each individual compo-

nent can be exchanged or adapted to suit the requirements

of application in a surveillance scenario. It was designed

for offline use which means that the focus is on forensic

evaluation of collected video mass data and not on the real-

time tracking of persons. However, only small alterations

like a track management would be necessary to transform

the approach into an online MTMC tracking method. Core

components such as the weighted distance aggregation can

be used directly. Figure 4 presents an overview of the pro-

posed system. In general, it consists of 5 main components.

First, a person detection module predicts person bound-

ing boxes for which person appearance features are com-

puted. Bounding boxes along with corresponding person

embeddings are then forwarded to the single camera track-

ing stage, which calculates and outputs tracklets for each

camera view separately. Resulting tracklets are then passed

to the core of the framework which is track comparison

by computing a set of different feature distances between

tracks. Subsequently, tracklets are merged based on the

weighted aggregation of track distances using a hierarchi-

cal clustering approach. In the following, each component

of our framework will be presented in detail.

4.1. Person detection

Since tracking-by-detection approaches are used in the

single camera tracking component, it is necessary to detect

persons in every frame of every video in advance. A lot of

object detectors already exist in literature which are able to

recognize pedestrians very robustly and accurately. Which

is why the focus was not on this stage of the framework, but

instead state-of-the-art detectors are applied.

4.2. Person re-identification

Person re-identification is the problem of finding a per-

son based on its appearance. This means that an image of

a person of interest serves as query for retrieving further

images showing the same identity from a large number of

gallery images. Similar problems arise in the context of

multi camera tracking of persons. For instance, single cam-

era tracks can break off due to occlusions or persons can

leave a scene and reappear later. If this is the case, person

appearances from completed tracks can be used to compare

it to new ones in order to reassign persons identities. To

make appearances of persons in images comparable, person

images are embedded into a feature space using CNNs. Via

distance computation in this learned embedding space, the

similarity of persons can be determined.

4.3. Single camera tracking

The idea behind our framework is to compute single

camera tracklets and connect them within and across cam-

era views in order to get multi camera tracks. The single

camera tracking component takes person detections and, if

necessary, person embeddings as input and provides single

camera tracklets as output that are clustered in the next step

in order to combine tracklets of the same persons. A variety

of tracking-by-detection single camera trackers exist in lit-

erature and are suitable for the framework, ranging from

simple intersection over union (IoU) approaches to more

sophisticated ones which additionally leverage embeddings

extracted from person images, e.g. DeepSORT [34].

4.4. Track association via clustering

The goal of track association is to create groups of track-

lets that belong together which means that they come from

the same person. Note that our clustering approach not only

focuses on combining tracklets across camera views but in

addition is able to correct tracking errors resulting from the

single camera step. Also within one camera there might be

multiple tracks of one person that can be grouped together.

E.g. interrupted tracks resulting from single camera track-

ing errors or occlusions or people leaving a camera view and

coming back later. To be able to form a cluster of a person’s

tracks, a distance metric is required. This metric must meet

the requirement that the distance between tracks of the same
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Figure 4. An overview of our proposed MTMC tracking framework.
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Figure 5. Illustration of the multi camera time constraint.

person are significantly smaller than between tracks show-

ing different people. As a further main contribution of this

work, several partial distances were developed in order to

fulfill this requirement. In the following, the concept of the

partial distances and constraints are explained. The overall

distance is calculated by weighted aggregation of 5 individ-

ual distances.

Single camera time constraint The single camera time

constraint leverages the fact that one person cannot appear

in multiple tracks of the same camera at the same time.

Therefore, tracks are not connected if they harm this con-

straint.

Multi camera time constraint The multi camera time

constraint exploits that it is impossible for persons to be

visible in the views of two non-overlapping cameras at the

same time. Again, tracks will only be clustered if this is not

the case. An example is visualized in Figure 5. In order to

apply this constraint, it is necessary to determine the over-

lapping areas. If training data is available, this can be done

by using ground truth annotations. For every combination

of cameras, positions of person ids that appear in both cam-

eras simultaneously can be used to compute convex hulls

around this positions to estimate overlapping areas.

Homography matching distance The homography

matching distance uses the fact that a person walking

through overlapping camera view areas produces tracks in

both cameras at the same time. These tracks are obviously

not connected by the single camera tracker, although they

actually belong to the same track. In order to get an indi-

cation of their affiliation, the precise location information

of track positions visible in both cameras is used. First, it

is checked if bounding box centers are within an overlap-

ping area. This is done by using the convex hulls already

computed for the multi camera time constraint. If that is

the case the centers of the bounding boxes are transformed

from one camera to the other. Projected track positions are

counted as match if the transformed position is close to the

track detection in this camera at the corresponding time. We

transform track positions from one camera view to another

by using a linear transformation which we call homogra-

phy in this context. The homography is computed using

point correspondences between cameras, in this case posi-

tions of people in overlapping areas from the training data.

Based on the RANSAC algorithm [22], homographies for

all camera combinations with overlapping areas are deter-

mined. In doing so, the centers of the bounding box with

larger heights are always transformed to the camera with the

smaller bounding box. After calculating all transformations

and matches for two tracks, the matching score is defined

as the portion of transformation matches. As this score is a

similarity measure and can’t be calculated for all tracks, it

is subtracted from the total distance. In Figure 6 an example

for the distance calculation is presented.
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ing are track interruptions, which can be caused e.g. by oc-

clusions or missing detections. To correct such errors and

to connect corresponding tracklets, we exploit the principle

that persons often walk along a straight line with a constant

velocity. That means it can be estimated where a person

might be after a certain time period using a linear prediction

model. With these assumptions, the probability of a track

being the continuation of another track is estimated based

on the time difference of both tracks and the estimated ve-

locity of tracks. As the value which indicates the described

property can only be calculated if both input tracks come

from the same camera, which is not the case for all track

pairs, it has been constructed as a discount. Assuming that

two tracks exist: to which is an older track and ty which is a

younger track for which this discount should be calculated.

A tail with the length ntail is taken from the end of the older

track. ntail = 40 was chosen because at a frame rate of 41

FPS it corresponds to one second. For such a short time pe-

riod the assumption of linear motion of pedestrians is valid.

An estimated velocity ~vo of the older track can be calculated

by using the position and frame number of the first and last

track position of the tail. Let to[�1] be the last position of

the older track and let ∆t be the frame number (time) dis-

tance between to and ty , then the predicted position p can

be calculated as p = to[�1] + ~vo ⇤∆t. An example of the

calculation is depicted in Figure 7. The distance which in-

dicates if the predicted position p explains the start of the

younger track can be calculated via an euclidean distance

divided by the bounding box height of the last position of

the older track:

distm(ty[0], p) = kty[0] � pk/bbox height(to[�1]). Di-

viding by the bounding box height leads to a normalization

regarding the different distances resulting from the perspec-

tive of the camera view.

As it makes no sense to assume a younger track as the

continuation of a older track if the distance distm(ty[0], p)
is too large, 0 will be returned if a maximum link distance

lmax has been exceeded. lmax = vmean⇤fmax, with vmean

as mean velocity of all persons over all cameras and a max-

imum number of frames fmax = 500. This maximum num-

ber of frames was chosen because after this time it can be

assumed for the most people that they have changed direc-

tion.

The final discount is then calculated based on Equation

1.

dpred =

(

0 distm(ty[0], p) > lmax

�(1�
distm(ty [0],p)

lmax

) otherwise

(1)

The range of the discount is dpred 2 [�1, 0].
Appearance feature distance The appearance feature

distance is based on the CNN embedding described in Sec-

tion 4.2. Feature vectors are extracted for all bounding

boxes of the tracks. Due to variations in illuminations or

pose of persons in tracks, the person’s track appearance is

represented by the mean feature vector over the entire track.

The appearance feature distance between two tracks is then

calculated by applying the cosine distance metric.

4.5. Hierarchical clustering

As clustering method to group tracks of persons, ag-

glomerative hierarchical clustering is used with an adapted

single linkage. The operating principle is that at the begin-

ning of the clustering every track has its own cluster and

then always the two clusters with the smallest distance will

be merged until a distance threshold or a desired number

of clusters has been reached [19]. In detail the clustering

works as follows. At the beginning all distances of pair-

wise track combinations have to be calculated which leads

to a space complexity of O(n
2

2 ) for the clustering algo-

rithm. Subsequently, every cluster distance will be inserted

into a priority queue based on a heap data structure. Af-

terwards, the cluster pair associated with the smallest dis-

tance at the top of the priority queue will be removed and

the contained clusters will be merged together. For this new

cluster all distances to other clusters have to be calculated

and inserted into the priority queue. There are different so

called linkage methods to calculate that distance, like sin-

gle linkage, complete linkage or average linkage. In this

work an adapted single linkage is used. Single linkage nor-

mally would search the minimum distance of all track pairs



from a cluster pair with one track out of each cluster. What

is changed is, that if one track pair of the clusters has a

distance of infinity, infinity is returned instead of the mini-

mum distance. A distance would be infinity if a constraint

like the one which avoids time overlaps in a single camera

is violated. That means the change of the linkage proce-

dure helps to comply with constraints. After computing the

new distances, the next two clusters with the smallest dis-

tance will be removed from the priority queue and will be

merged. This strategy is repeated until there are only dis-

tances greater than a threshold left. We use a fixed threshold

of 1 as a stop criterion. As weights are searched for the par-

tial distances and discounts, it is not necessary to determine

a threshold, as the weights adapt to this threshold during

optimization.

5. Evaluation

In the following, experimental results on the MTA

dataset are presented. This includes baseline results for e.g.

person detection and person re-identification as well as a

thorough evaluation of our MTMC tracking with weighted

distance aggregation.

5.1. Person Detection

Implementation & evaluation strategy As an imple-

mentation of the different detection approaches the detec-

tion toolbox from Chen et al. [9] was used and approaches

were evaluated using the cocoapi [11]. For all approaches

the values of the default toolbox configuration files were

used. Just the input image size was increased to 1920x1080

pixels. The depicted values of average recall (AR) and av-

erage precision (AP) result from an evaluation mode were

an average of evaluation values resulting from different IoU

(intersection over union) thresholds is calculated. The IoU

threshold denotes the percentage of overlap which is re-

quired between calculated detection and groundtruth detec-

tion that a true positive is counted. The used thresholds

range from 0.5 to 0.95 with a step size of 0.05, which means

that 10 thresholds were used to calculate the average. Note

that bounding boxes of all sizes were incorporated into the

calculation. A maximum count of 100 detections per frame

was used to calculate the shown scores.

Results We rely on R-CNN approaches because they

show good performance in detecting small and overlapping

objects compared to, e.g., SSD architectures [25]. Since

people in the back areas of surveillance camera recordings

are usually very small, such detectors suit our needs very

well. The first row in Table 3 shows the MTA evaluation

results for Faster R-CNN [29] with ResNet-50 (RN-50) as

backbone trained on the COCO dataset [24]. Looking at the

first two rows of Table 3, one can observe that training de-

tectors on COCO or similar datasets has the problem that

only a few small people are included in the training data.

Therefore, a noticeable performance gap exists to detectors

that have been trained on the MTA dataset. When using

ResNext-101 (RNX-101) [35] as a backbone for Faster R-

CNN instead of ResNet-50 [20] an improvement by +2.8

AR percentage points could be observed. The best results

with 69.5% AR and 67.0% AP were achieved when using

Cascade R-CNN with ResNext-101 [6].

Approach Trained on AR AP

R
N

-5
0 Faster R-CNN [29] COCO 14.6 11.3

Faster R-CNN [29] MTA 64.8 61.6

R
N

X
-1

0
1 Faster R-CNN [29] MTA 67.6 64.9

Cascade R-CNN [6] MTA 69.5 67.0

RetinaNet [23] MTA 67.3 62.8

Table 3. Person detection evaluation results on the MTA dataset.

5.2. Person re-identification

In this section the evaluation results for person re-

identification will be discussed.

Parameters & implementation We use the official im-

plementations and standard parameters of state-of-the-art

approaches to provide baseline results on the MTA-ReID

dataset. Note that the results for our tracking method pre-

sented in Section 5.3 were achieved using an extended ver-

sion of the MTA-ReID dataset.

Results Person re-identification results for three state-

of-the-art approaches are shown in Table 5.2. In line with

results on other datasets, the ABD-Net[10] achieves the

best mAP of 30.5%, followed by the AGW [36] approach.

The Strong Baseline approach from Luo et al. [26] re-

sulted in 25.8% mAP. For all methods random erasing data

augmentation (RE) led to a performance degradation be-

cause additional data augmentation is not necessary due

to the large number of images in the MTA-ReID dataset.

To demonstrate the benefit and practical relevance of the

synthetic data, Table 5.2 provides results when approaches

were trained on the artificial MTA data and evaluated on

the real-world Market-1501 [39] dataset. For comparison,

the first row shows the mAP score of 25.5% for the Strong

Baseline [26] approach trained on DukeMTMC-reID [30].

It is observable the each of the approaches trained on the

MTA data outperforms this significantly. In this case, AGW

leads to the best mAP score of 33.7%. So it can be stated

that the domain gap between the synthetic MTA dataset and

real-world images is similar or even smaller than the do-

main gap between datasets recorded from the real world.

Regarding cross-domain person re-identification, the most

complex ABD-Net leads to the worst performance because

it tends to overfit the training data and thus the learned

information is too specific for domain transfer. Note that

since the Market-1501 and DukeMTMC-reID dataset only



Approach mAP R-1 R-5 R-10

Strong Baseline [26] 25.8 50.5 69.7 74.9
Strong Baseline [26] + RE 22.4 46.6 66.1 72.0
AGW [36] 27.7 53.8 71.7 76.5
AGW [36] + RE 26.0 50.8 69.7 75.0
ABD [10] 30.5 56.6 72.4 76.8
ABD [10] + RE 30.3 56.5 73.0 77.0

Table 4. Person re-identification results on our MTA dataset.

Approach Trained on mAP R-1 R-5 R-10

Strong Baseline* [26] Duke 25.5 54.3 � �

Strong Baseline [26]

MTA-ReID

31.1 60.7 75.7 80.8
AGW [36] 33.7 64.0 77.4 82.6
ABD [10] 27.6 54.4 71.0 78.3

Table 5. Cross-domain person re-identification results on Market-

1501 dataset. Note that we restricted the MTA-ReID training data

to images with a height of more than 65 pixels for fair comparison.

(* result was taken from literature)

include a fixed image size, we restricted our training data to

images with a height of more than 65 pixels for fair com-

parison.

5.3. Tracking

Implementation & evaluation strategy In surveillance

scenarios, the core task is to track people across multiple

cameras for as long as possible. Identity metrics [30] best

reflect this requirement and are therefore used below as

evaluation metrics. The evaluation scores which are pre-

sented were achieved by dividing the MTA test set into 10

parts with an approximate length of 5 min each with sub-

sequent tracking and evaluation on every part as otherwise

the evaluation time would have been extremely long. The

depicted scores denote the mean over all ten parts. To cal-

culate the identity metrics it is necessary to find matches

of computed tracks and ground truth tracks that minimize

the overall number of detection misses (FP and FN). This

problem can be formulated as a minimum weight bipartite

graph matching problem. In this work, the IDF1 metric was

selected as the target metric, which was used to measure

an improvement in the tracking procedure. Due to practi-

cal considerations regarding computation time, we decided

to rely on Faster R-CNN and Strong baseline as standard

configurations for person detection and re-identification.

Single camera tracking results Results on the MTA

dataset for different single camera tracking approaches are

presented in Table 6. The depicted values represent the

mean over the 6 cameras. The DeepSORT [34] approach

greatly outperforms the IoU tracker. One main reason for

that is the use of person embeddings in order to not only

consider detections but instead leverage appearance features

of pedestrians.

Tracker IDF1 IDP IDR IDs

IoU [3] 38.1 40.9 35.8 2370.3

DeepSORT [34] 42.0 45.1 39.6 1797.8

Table 6. Tracking results for two different single camera trackers.

Configuration IDF1 IDP IDR IDs

None 17.3 19.2 15.7 11535.3

All 30.1 33.6 27.3 7107.5

w/o Single Camera Time Constraint 26.8 41.9 24.3 6869.5

w/o Multi Camera Time Constraint 26.0 28.9 23.6 6693.0

w/o Homography 28.5 31.8 25.9 6781.3

w/o Linear Prediction 29.7 33.0 26.9 7726.1

Table 7. MTMC tracking results and ablation study to determine

the influence of distances on the Weighted Distance Aggregation

approach.

Multi camera tracking results Table 7 presents the final

multi camera tracking results as well as an ablation study.

Results without person embeddings are not shown since we

use this as basis distance for the clustering. If all distances

and constraints are used an improvement from 17.3% to

30.1% in IDF1 is achieved. Leaving out the time constraints

leads to the largest drop in performance. The reason for this

is that if these constraints are harmed, tracks to be merge

cannot belong to the same person and thus always lead to

tracking errors. In contrast, the difference between ’All’

distances and without the linear prediction distance is low

because this only improves the results from the single cam-

era trackers and therefore leads to improvements of only a

few tracks. The influence of the homographies lies in be-

tween, because on the one hand they can only be applied to

overlapping areas. On the other hand, the camera footprints

overlap mainly in areas that are in the focus of one camera,

but far from a second one. As a result, stable detections

are available in one camera that can be transformed to the

second camera for which only a few small detections are

available.

6. Conclusion

In summary, we provide a new and currently largest
synthetic dataset for development and evaluation of multi
camera multi person tracking methods. Our dataset con-
tains a diversity of weather conditions, times of day, in-
door and outdoor scenes and is not susceptible to privacy
claims. We provide useful baseline results for person detec-
tion, re-identification, single camera tracking and our own
MTMC tracking method. While we achieve reasonable ac-
curacies, the results also show the challenging nature of the
dataset and room for improvement remains. We hope that
the data and reference results will spark further activities in
the field.
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