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Abstract

In this paper, we propose a simple yet effective frame-

work, named LightTrack, for online human pose tracking.

Existing methods usually perform human detection, pose

estimation and tracking in sequential stages, where pose

tracking is regarded as an offline bipartite matching prob-

lem. Our proposed framework is designed to be generic,

efficient and truly online for top-down approaches. For

efficiency, Single-Person Pose Tracking (SPT) and Visual

Object Tracking (VOT) are incorporated as a unified on-

line functioning entity, easily implemented by a replaceable

single-person pose estimator. To mitigate offline optimiza-

tion costs, the framework also unifies SPT with online iden-

tity association and sheds first light upon bridging multi-

person keypoint tracking with Multi-Target Object Track-

ing (MOT). Specifically, we propose a Siamese Graph Con-

volution Network (SGCN) for human pose matching as a

Re-ID module. In contrary to other Re-ID modules, we

use a graphical representation of human joints for match-

ing. The skeleton-based representation effectively captures

human pose similarity and is computationally inexpensive.

It is robust to sudden camera shifts that introduce human

drifting. The proposed framework is general enough to

fit other pose estimators and candidate matching mecha-

nisms. Extensive experiments show that our method out-

performs other online methods and is very competitive with

offline state-of-the-art methods while maintaining higher

frame rates. Code and models are publicly available at

https://github.com/Guanghan/lighttrack.

1. Introduction

Pose tracking is the task of estimating multi-person hu-

man poses in videos and assigning unique instance IDs for

each keypoint across frames. Accurate estimation of hu-

man keypoint-trajectories is useful for human action recog-

nition, human interaction understanding, motion capture

and animation, etc. Recently, the publicly available Pose-

Track dataset [1, 2] and MPII Video Pose dataset [3] have

pushed the research on human motion analysis one step fur-

ther to its real-world scenario. Two PoseTrack challenges

have been held. However, most existing methods are of-

fline hence lacking the potential to be real-time. More em-

phasis has been put on the Multi-Object Tracking Accuracy

(MOTA) criterion while neglecting the Frame Per Second

(FPS) criterion. Existing offline methods divide the tasks

of human detection, candidate pose estimation, and identity

association into sequential stages. In the procedure, multi-

person poses are estimated across frames within a video.

Based on the pose estimation results, pose tracking outputs

are derived by solving an offline optimization problem. It

requires the poses across frames to be pre-computed, or at

least for the frames within some range.

In this paper, we propose a simple yet effective frame-

work for pose tracking. It is designed to be generic, top-

down (i.e., pose estimation is performed after candidates

are detected), and truly online. To efficiently perform

pose tracking, we incorporate Single-Person Pose Track-

ing (SPT) and Visual Object Tracking (VOT) as a uni-

fied online functioning entity, easily implemented by a re-

placeable single-person pose estimatior. Therefore, ob-

ject detection can be performed scarcely (in key frames).

In order to mitigate the offline optimization cost, we

unify single-person pose tracking with intervallic person

re-identification, namely, key-frame pose matching. This

problem conversion bridges multi-person keypoint tracking

with multi-target object tracking. Since the proposed frame-

work is general enough to fit other pose estimators and can-

didate matching mechanisms, advances in pose estimation,

person re-identification and multi-target object tracking can

be conveniently utilized for pose tracking in the future.

Specifically, in contrast to VOT methods, in which the

visual features are implicitly represented by kernels or CNN

feature maps, we track each human pose by recursively up-

dating the bounding box and its corresponding pose in an

explicit manner. The bounding box region of a target is in-

ferred from the explicit features, i.e., the human keypoints.

Human keypoints can be considered as a series of special

visual features. The advantages of using pose as explicit

features include: (1) The features are human-related, inter-

pretable, and have strong, stable correlation with the bound-

ing box position. Human pose enforces direct constraint on

the bounding box region. (2) The task of pose estimation
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Figure 1. Overview of the proposed online pose tracking framework. We detect human candidates in the first frame, then track each

candidate’s position and pose by a single-person pose estimator. When a target is lost, we perform detection for this frame and data

association with a graph convolution network for skeleton-based pose matching. We use skeleton-based pose matching because visually

similar candidates with different identities may confuse visual classifiers. Extracting visual features can also be computationally expensive

in an online tracking system. Pose matching is considered because we observe that in two adjacent frames, the location of a person may

drift away due to sudden camera shift, but the human pose will stay almost the same as people usually cannot act that fast.

and tracking requires human keypoints to be predicted in

the first place. Taking advantage of the predicted keypoints

is efficient in tracking the ROI region, which is almost free.

This mechanism makes the online tracking possible. (3) It

naturally keeps the identity of the candidates, which greatly

alleviates the burden of data association in the system. Even

when data association is necessary, we can re-use the pose

features for skeleton-based pose matching. In this way, SPT

and VOT are unified with a replaceable single-person hu-

man pose estimation module.

Our contributions are three-fold: (1) We propose a gen-

eral online pose tracking framework that is suitable for

top-down approaches of human pose estimation. Both hu-

man pose estimator and Re-ID module are replaceable. In

contrast to Multi-Object Tracking (MOT) frameworks, our

framework is specially designed for the task of pose track-

ing. (2) We propose a Siamese Graph Convolution Network

(SGCN) for human pose matching as a Re-ID module in our

pose tracking system. Unlike existing Re-ID methods, we

use a graphical representation of human joints for match-

ing. The skeleton-based representation effectively captures

human pose similarity and is computationally inexpensive.

It is robust to sudden camera shift that introduces human

drifting. (3) We conduct extensive experiments with vari-

ous settings and ablation studies. Our proposed online pose

tracking approach outperforms existing online methods and

is competitive to the offline state-of-the-art methods, with

much higher frame rates. We make the code publicly avail-

able to facilitate future research.

2. Related Work

Human Pose Estimation and Tracking: Human Pose Es-

timation (HPE) has seen rapid progress with the emergence

of CNN-based methods [4, 5, 6, 7]. The most widely used

datasets, e.g., MPII [8] and LSP [9], are saturated with

methods that achieve 90% and higher accuracy. Multi-

person human pose estimation is more realistic and chal-

lenging, and has received increasing attentions with the

hosting of COCO keypoints challenges [10] since 2017. Ex-

isting methods can be classified into top-down and bottom-

up approaches. The top-down approaches [11, 12, 13] rely

on the detection module to obtain human candidates and

then applying single-person pose estimation to locate hu-

man keypoints. The bottom-up methods [14, 15, 16, 17] de-

tect human keypoints from all potential candidates and then

assemble these keypoints into human limbs for each indi-

vidual based on various data association techniques. The

advantage of bottom-up approaches is their excellent trade-

off between estimation accuracy and computational cost be-

cause the cost is nearly invariant to the number of human

candidates in the image. In contrast, the advantage of top-

down approaches is their capability in disassembling the

task into multiple comparatively easier tasks, i.e., object de-

tection and single-person pose estimation. The object detec-

tor is expert in detecting hard (usually small) candidates, so

that the pose estimator will perform better with a focused re-

gression space. Pose tracking is a new topic that is primarily

introduced by the PoseTrack dataset [1, 2] and MPII Video

Pose dataset [3]. A typical top-down but offline method was

introduced in [3], where pose tracking is transformed into

a minimum cost multi-cut problem with a graph partition-

ing formulation. Existing methods [18, 19, 20] are either

offline or theoretically online but requires heavy overhead

across frames pre-computed before performing an actual

batch process. [21] propsosed to use box propagation to re-

fine detection. In our approach, we also employs box propa-

gation, but we incorporate the box propagation scheme with

a pose estimator to form a single-object tracker. In their ap-

proach, detection is performed for every frame, while we

only perform detection at keyframes.

Object Detection vs. Human Pose Estimation: Earlier

works in object detection regress visual features into bound-

ing box coordinates. HPE, on the other hand, usually re-



gresses visual features into heatmaps, each channel repre-

senting a human joint. Recently, research in HPE has in-

spired many works on object detection [22, 23, 24]. These

works predict heatmaps for a set of special keypoints to in-

fer detection results (bounding boxes). Based on this mo-

tivation, we propose to predict human keypoints to infer

bounding box regions. Human keypoints are a special set

of keypoints to represent detection of the human class only.

Multi-Object Tracking: MOT aims to estimate trajectories

of multiple objects by finding target locations while main-

taining their identities across frames. Offline methods use

both past and future frames to generate trajectories while

online methods are performed on the go. An online MOT

pipeline [25] was presented where a single object tracker

keeps tracking targets given their detections across frames.

The target state is set as ”tracked” until the tracking result

turns unreliable. The target is then considered lost, and data

association is performed to compute the similarity between

the track-let and detections. Our proposed framework also

tracks each target (with corresponding keypoints) individ-

ually while keeping their identities, and performs data as-

sociation when target is lost. However, our framework is

distinct in two aspects: (a) the detection is generated by ob-

ject detector only at keyframes. It can be provided scarcely;

(b) the single object tracker is actually a pose estimator that

predicts keypoints based on an enlarged region.

Graphical Representation for Human Pose: It is recently

studied in [26] on how to effectively model dynamic skele-

tons with a specially tailored graph convolution operation,

which turns human skeletons into spatio-temporal represen-

tation of human actions. Inspired by this work, we propose

to employ GCN to encode spatial interdependencies among

human joints into a latent representation of human pose.

The representation aims to robustly encode the pose, which

is invariant to human location or view angle. We measure

similarities of such encodings for the pose matching prob-

lem.

3. Proposed Method

3.1. Top­Down Pose Tracking Framework

We propose a novel top-down pose tracking framework.

It has been proved that human pose can be employed for bet-

ter inference of human locations [27]. We observe that, in a

top-down approach, accurate human locations also ease the

estimation of human poses. We further study the relation-

ship between these two levels of information: (1) Coarse

person location can be distilled into body keypoints by a

single-person pose estimator. (2) The position of human

joints can be straightforwardly used to indicate rough loca-

tions of human candidates. (3) Thus, recurrently estimating

one from the other is a feasible strategy for SPT.

However, it is unreliable to merely consider the Multi-

target Pose Tracking (MPT) problem as a repeated SPT

problem for multiple individuals. Because certain con-

straints need to be met, e.g., in a certain frame, two different

IDs cannot belong to the same person, nor should two candi-

dates share the same identity. A better way is to track mul-

tiple individuals simultaneously and preserve/update their

identities occasionally with an additional Re-ID module.

The Re-ID module is essential because it is usually hard to

maintain correct identities all the way. It is unlikely to track

the individual poses effectively across frames of the entire

video. For instance, under the following scenarios, iden-

tities have to be updated: (1) human candidates disappear

from the camera view or get occluded; (2) new candidates

enter the scene or previous ones re-appear; (3) people walk

across each other (two identities may merge into one if not

treated carefully); (4) tracking fails due to fast camera shift-

ing or zooming.

In our method, we first treat each human candidate sep-

arately such that their corresponding identity is kept across

the frames. In this way, we circumvent the time-consuming

offline optimization procedure. In case the tracked candi-

date is lost due to occlusion or camera shift, we then call the

detection module to revive candidates and associate them to

the tracked targets from the previous frame via pose match-

ing. In this way, we accomplish multi-target pose tracking

with an SPT module and a pose matching module.

Specifically, the bounding box of the person in the up-

coming frame is inferred from the joints estimated by the

pose module from the current frame. We find the minimum

and maximum coordinates and enlarge this ROI region by

20% on each side. The enlarged bounding box is treated

as the localized region for this person in the next frame. If

the average confidence score s̄ from the estimated joints is

lower than the standard τs, it reflects that the target is lost

since the joints are not likely to appear in the bounding box

region. The state of the target is defined as:

state =

{

tracked, if s̄ > τs,

lost, otherwise.
(1)

If the target is lost, we have two modes: (1) Fixed

Keyframe Interval (FKI) mode. Neglect this target until

the scheduled next key-frame, where the detection module

re-generate the candidates and then associate their IDs to the

tracking history. (2) Adaptive Keyframe Interval (AKI)

mode. Immediately revive the missing target by candidate

detection and identity association. The advantage of FKI

mode is that the frame rate of pose tracking is stable due

to the fixed interval of keyframes. The advantage of AKI

mode is that the average frame rate can be higher for non-

complex videos. In our experiments, we incorporate them

by taking keyframes with fixed intervals while also calling

detection module once a target is lost before the arrival of



Figure 2. Sequentially adjacent frames with sudden camera shift

(left frames), and sudden zooming (right frames). Each bound-

ing box in the current frame indicates the corresponding region

inferred from the human keypoints from the previous frame. The

human pose in the current frame is estimated by the pose estimator.

The ROI for the pose estimator is the expanded bounding box.

the next arranged keyframe. The tracking accuracy is higher

because when a target is lost, it is handled immediately.

For identity association, we propose to consider two

complementary pieces of information: spatial consistency

and pose consistency. We prioritize spatial consistency,

i.e., if two bounding boxes from the current and the previ-

ous frames are adjacent, or their Intersection Over Union

(IOU) is above a certain threshold, we consider them to

belong to the same target. Specifically, we set the match-

ing flag m(tk, dk) to 1 if the maximum IOU overlap ratio

o(tk,Di,k) between the tracked target tk ∈ Tk and the cor-

responding detection dk ∈ Dk for key-frame k is above a

threshold τo. Otherwise, m(tk, dk) is set to 0:

m(tk, dk) =

{

1, if o(tk,Di,k) > τo,

0, otherwise.
(2)

The above criterion is based on the assumption that the

tracked target from the previous frame and the actual lo-

cation of the target in the current frame have significant

overlap, which is true in most cases. However, such as-

sumption is not always reliable, especially when the cam-

era shifts swiftly. In such cases, we need to match the new

observation to the tracked candidates. In Re-ID problems,

this is usually accomplished by a visual feature classifier.

However, visually similar candidates with different identi-

ties may confuse such classifiers. Extracting visual features

can also be computationally expensive in an online tracking

system. Therefore, we design a Graph Convolution Net-

work (GCN) to leverage the graphical representation of the

human joints. We observe that in two adjacent frames, the

location of a person may drift away due to sudden cam-

era shift, but the human pose will stay almost the same as

people usually cannot act that fast, as illustrated in Fig. 2.

Consequently, the graph representation of human skeletons

can be a strong cue for candidate matching, which we refer

to as pose matching in the following text.

3.2. Siamese Graph Convolutional Networks

Siamese Network: Given the sequences of body joints in

the form of 2D coordinates, we construct a spatial graph

with the joints as graph nodes and connections in human

body structures as graph edges. The input to our graph

convolutional network is the joint coordinate vectors on the

graph nodes. It is analogous to image-based CNNs where

the input is formed by pixel intensity vectors residing on

the 2D image grid [26]. Multiple graph convolutions are

performed on the input to generate a feature representation

vector as a conceptual summary of the human pose. It in-

herently encodes the spatial interdependencies among the

human joints. The input to the Siamese networks, there-

fore, is a pair of inputs to the GCN network. The distance

between two output features indicate the similarity of the

corresponding poses. Two poses are called a match if they

are conceptually similar. The network is illustrated in Fig.

3. The Siamese network consists of 2 GCN layers and 1
fully convolutional layer. We take normalized keypoint co-

ordinates as input; the output is a 128 dimensional feature

vector. The network is optimized with contrastive loss L be-

cause we want the network to generate feature vectors, that

are close by enough for positive pairs, whereas they are far

away at least by a minimum for negative pairs. we employ

the margin contrastive loss:

L(pj , pk, yjk) =
1

2
yjkD

2 +
1

2
(1− yjk)max(0, ǫ−D2),

(3)

where D = ‖f(pj) − f(pk)‖2 is the Euclidean distance

of two ℓ2-norm normalized latent representations, yjk ∈
{0, 1} indicates whether pj and pk are the same pose, and ǫ

is the minimum distance margin that pairs depicting differ-

ent poses should satisfy.

Graph Convolution for Skeleton: For standard 2D convo-

lution on natural images, the output feature maps can have

the same size as the input feature maps with stride 1 and

appropriate padding. Similarly, the graph convolution op-

eration is designed to output graphs with the same number
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Figure 3. The Siamese graph convolution network for pose match-

ing. We extract two feature vectors from the input graph pair with

shared network weight. The feature vectors inherently encode the

spatial interdependencies among the human joints.

of nodes. The dimensionality of attributes of these nodes,

which is analogous to the number of feature map channels

in standard convolution, may change after the graph convo-

lution operation.

The standard convolution operation is defined as follows:

given a convolution operator with the kernel size of K×K,

and an input feature map fin with the number of channels

c, the output value of a single channel at the spatial location

x can be written as:

fout(x) =
K
∑

h=1

K
∑

w=1

fin(s(x, h, w)) ·w(h,w), (4)

where the sampling function s : Z2 × Z2 → Z2 enu-

merates the neighbors of location x. The weight function

w : Z2 → R
c provides a weight vector in c-dimension real

space for computing the inner product with the sampled in-

put feature vectors of dimension c.

The convolution operation on graphs is defined by ex-

tending the above formulation to the cases where the in-

put features map resides on a spatial graph Vt, i.e. the fea-

ture map f t
in : Vt → Rc has a vector on each node of the

graph. The next step of the extension is to re-define the

sampling function p and the weight function w. We fol-

low the method proposed in [26]. For each node, only its

adjacent nodes are sampled. The neighbor set for node vi
is B(vi) = {vj |d(vj , vi) ≤ 1}. The sampling function

p : B(vi) → V can be written as p(vi, vj) = vj . In this

way, the number of adjacent nodes is not fixed, nor is the

weighting order. In order to have a fixed number of samples

and a fixed order of weighting them, we label the neighbor

nodes around the root node with fixed number of partitions,

and then weight these nodes based on their partition class.

The specific partitioning method is illustrated in Fig. 4.

Therefore, Eq. (4) for graph convolution is re-written as:

fout(vi) =
∑

vj∈B(vi)

1

Zi(vj)
fin(p(vi, vj)) ·w(vi, vj), (5)

where the normalization term Zi(vj) =| {vk|li(vk) =
li(vj)} | is to balance the contributions of different subsets

Figure 4. The spatial configuration partitioning strategy proposed

in [26] for graph sampling and weighting to construct graph con-

volution operations. The nodes are labeled according to their dis-

tances to the skeleton gravity center (black circle) compared with

that of the root node (green). Centripetal nodes have shorter dis-

tances (blue), while centrifugal nodes have longer distances (yel-

low) than the root node.

to the output. According to the partition method mentioned

above, we have:

li(vj) =











0 if rj = ri

1 if rj < ri

2 if rj > ri

(6)

where ri is the average distance from gravity center to joint

i over all frames in the training set.

4. Experiments

In this section, we present quantitative results of our ex-

periments. Some qualitative results are shown in Fig. 5.

4.1. Dataset

PoseTrack [2] is a large-scale benchmark for human pose

estimation and articulated tracking in videos. It provides

publicly available training and validation sets as well as an

evaluation server for benchmarking on a held-out test set.

The benchmark is a basis for the challenge competitions at

ICCV’17 [28] and ECCV’18 [29] workshops. The dataset

consisted of over 68, 000 frames for the ICCV’17 challenge

and is extended to twice as many frames for the ECCV’18

challenge. It now includes 593 training videos, 74 valida-

tion videos and 375 testing videos. For held-out test set, at

most four submissions per task can be made for the same

approach. Evaluation on validation set has no submission

limit. Therefore, ablation studies in Section 4.4 are per-

formed on the validation set. Since PoseTrack’18 test set is

not open yet, we compare our results with other approaches

in Section 4.5 on PoseTrack’17 test set.

4.2. Evaluation Metrics

The evaluation includes pose estimation accuracy and

pose tracking accuracy. Pose estimation accuracy is evalu-

ated using the standard mAP metric, whereas the evaluation

of pose tracking is according to the clear MOT [30] metrics

that are the standard for evaluation of multi-target tracking.



Figure 5. Qualitative evaluation results. Each person is visualized with a different color. Same color indicates identical IDs.

4.3. Implementation Details

To hightlight the generality of our framework, we adopt

out-of-the-shelf object detectors trained with ImageNet and

COCO datasets. Specifically, we use pre-trained models

from deformable ConvNets [31]. We conduct experiments

on validation sets to choose the object detector with bet-

ter recall rates. We compare the deformable convolution

versions of the R-FCN network [32] and of the FPN net-

work [33], both with ResNet101 backbone [34]. The FPN

feature extractor is attached to the Fast R-CNN [35] head

for detection. We also compare the detection results with

the ground truth based on the precision and recall rate on

PoseTrack’17 validation set. In order to eliminate redun-

dant candidates, we drop candidates with lower likelihood.

Table 2 shows the precision and recall of the detectors given

various drop thresholds. Since the FPN network performs

better, we choose it as our detector. During training, we

infer ground truth bounding boxes of candidates from the

annotated keypoints, because in PoseTrack’17 dataset, the

bounding box positions are not provided in the annotations.

Specifically, we locate a bounding box from the minimum

and maximum coordinates of the 15 keypoints, and then en-

large this box by 20% both horizontally and vertically.

For the single-person human pose estimator, we adopt

CPN101 [36] and MSRA152 [21] with slight modifications.

We first train the networks with the merged dataset of Pose-

Track’17 and COCO for 260 epochs. Then we finetune the

network solely on PoseTrack’17 for 40 epochs in order to

mitigate the inaccurate regression on head and neck. For

COCO, bottom-head and top-head positions are not given.

- Train Validation

Positive Pairs 56908 9731

Hard Negative Pairs 25064 7020

Other Negative Pairs 241450 91228

Table 1. Pose pairs collected from PoseTrack’18 dataset.

We infer these keypoints by interpolation on the annotated

keypoints. We find that by finetuning on the PoseTrack

dataset, the prediction on head keypoints will be refined.

During finetuning, we use the technique of online hard key-

point mining, only focusing on losses from the 7 hardest

keypoints out of the total 15 keypoints. Pose inference is

performed online with single thread.

For the pose matching module, we train a Siamese graph

convolutional network with 2 GCN layers and 1 convolu-

tional layer using contrastive loss. We take normalized key-

point coordinates as input; the output is a 128 dimensional

feature vector. Following [26], we use spatial configuration

partitioning as the sampling method for graph convolution

and use learnable edge importance weighting. To train the

Siamese network, we generate training data from the Pose-

Track dataset. Specifically, we extract people with same IDs

within adjacent frames as positive pairs, and extract people

with different IDs within the same frame and across frames

as negative pairs. Hard negative pairs only include spatially

overlapped poses. The number of collected pairs are illus-

trated in Table 1. We train the model with batch size of 32
for a total of 200 epochs with SGD optimizer. Initial learn-

ing rate is set to 0.001 and is decayed by 0.1 at epochs of

40, 60, 80, 100. Weight decay is 10−4.



4.4. Ablation Study

We conducted a series of ablation studies to analyze the

contribution of each component on the overall performance.

- Method / Thresh 0.1 0.2 0.3 0.4 0.5

Prec
Deformable FPN 17.9 27.5 32.2 34.2 35.7

Deformable R-FCN 15.4 21.1 25.9 30.3 34.5

Recall
Deformable FPN 87.7 86.0 84.5 83.0 80.8

Deformable R-FCN 87.7 86.5 85.0 82.6 80.1

Table 2. Comparison of detectors: Precision-Recall on PoseTrack

2017 validation set. A bounding box is correct if its IoU with GT

is above certain threshold, which is set to 0.4 for all experiments.

- Estimation (mAP) Tracking (MOTA)

Method Wri Ankl Total Wri Ankl Total

GT Detections 74.7 75.4 81.7 56.3 56.2 67.0

Deformable FPN-101 70.2 64.7 74.6 54.6 48.7 61.3

Deformable RFCN-101 69.0 64.3 73.7 52.2 47.4 59.0

Table 3. Comparison of offline pose tracking results using various

detectors on PoseTrack’17 validation set.

Detectors: We experiment with several detectors and de-

cide to use Deformable ConvNets with ResNet101 as back-

bone, Feature Pyramid Networks (FPN) for feature extrac-

tion, and fast R-CNN scheme as detection head. As shown

in Table 2, this detector outperforms Deformable R-FCN

with the same backbone. It is no surprise that better detec-

tors result in improved performance on both pose estimation

and pose tracking tasks, as shown in Table 3.

Offline vs. Online: We study the effect of keyframe in-

tervals of our online method and compare with the offline

method. For fair comparison, we use identical human can-

didate detector and pose estimator for both methods. For

the offline method, we pre-compute human candidate detec-

tion and estimate the pose for each candidate, then we adopt

a flow-based pose tracker [19], where pose flows are pre-

built by associating keypoints that indicate the same per-

son across frames. For online method, we perform truly

online pose tracking. Since human detection is performed

only at keyframes, the online performance varies with dif-

ferent intervals. In Table 4, we illustrate the performance of

the offline method, compared with the online method that

is given various keyframe intervals. Online methods per-

form competitively with offline methods. The upper-bound

of detections (DET) at keyframes is achieved with ground

truth (GT) detections. As expected, the performance is pos-

itively correlated with the keyframe frequency. Note that

the online methods only use spatial consistency for data as-

sociation at keyframes. We report ablation experiments on

the pose matching module in the following text.

GCN vs. Spatial Consistency (SC): Next, we report re-

sults when pose matching is performed during the data as-

sociation stage, compared with only employing spatial con-

sistency. It can be shown in Table 5 that the tracking perfor-

- Estimation (mAP) Tracking (MOTA)

Method Wri Ankl Total Wri Ankl Total

Offline-CPN101 72.6 68.9 76.4 56.1 55.3 62.4

Offline-MSRA152 73.6 70.5 77.3 58.5 58.5 64.9

Online-DET-CPN101-8F 70.5 68.3 74.0 52.4 50.3 58.1

Online-DET-CPN101-5F 71.7 68.9 75.1 53.3 51.0 59.0

Online-DET-CPN101-2F 72.4 69.1 76.0 54.2 51.5 60.0

Online-DET-MSRA152-8F 71.1 69.5 75.0 54.6 54.6 61.0

Online-DET-MSRA152-5F 72.1 70.4 76.1 55.2 55.5 61.9

Online-DET-MSRA152-2F 73.3 70.9 77.2 56.5 56.6 63.3

Table 4. Comparison of offline and online pose tracking results

with various keyframe intervals on PoseTrack’18 validation set.

mance improves with GCN-based pose matching. However,

in some situations, different people may have near-duplicate

poses, as shown in Fig. 6. To mitigate such ambiguities,

spatial consistency is considered prior to pose similarity.

Method Detect Keyframe
MOTA

CPN101 MSRA152

SC

GT

8F
68.2 72.0

SC+GCN 68.9 72.6

SC
5F

68.7 73.0

SC+GCN 69.2 73.5

SC
2F

72.0 76.7

SC+GCN 73.5 78.0

SC

DET

8F
58.1 61.0

SC+GCN 59.0 62.1

SC
5F

59.0 61.9

SC+GCN 60.1 63.1

SC
2F

60.0 63.3

SC+GCN 61.3 64.6

Table 5. Performance comparison of LightTrack with GCN and

SC on PoseTrack’18 validation set.

Figure 6. In some situations, different people indeed have very

similar poses. Therefore, spatial consistency is considered first.

GCN vs. Euclidean Distance (ED): We studied whether

the GCN network outperforms a naive pose matching

scheme. With same normalization on the keypoints, ED

as the dissimilarity metric for pose matching renders 85%

accuracy on validation pairs generated from PoseTrack

dataset, while GCN renders 92% accuracy. We validate on

positive pairs and hard negative pairs.



4.5. Performance Comparison

Since PoseTrack’18 test set is not open yet, we compare

our methods with other approaches, both online and offline,

on PoseTrack’17 test set. For fair comparison, we only use

PoseTrack’17 training set and COCO train+val set to train

the pose estimators. No auxiliary data is used. We per-

formed ablation studies on validation sets with CPN-101

[36] as the pose estimator. During testing, in addition to

CPN-101, we conduct experiments using MSRA-152 [21].

Method Wrist-AP Ankles-AP mAP MOTA fps

O
ffl

in
e

Posetrack 2017 Test Set

PoseTrack, CVPR’18 [2] 54.3 49.2 59.4 48.4 -

BUTD, ICCV’17 [37] 52.9 42.6 59.1 50.6 -

Detect-and-track, CVPR’18 [18] - - 59.6 51.8 -

Flowtrack-152, ECCV’18 [21] 71.5 65.7 74.6 57.8 -

HRNet, CVPR’19[20] 72.0 67.0 74.9 57.9 -

Ours-CPN101 (offline) 68.0 / 59.7 62.6 / 56.3 70.7 / 63.9 55.1 -

Ours-MSRA152 (offline) 68.9 / 61.8 63.2 / 58.4 71.5 / 65.7 57.0 -

Ours-manifold (offline) - / 64.6 - / 58.4 - / 66.7 58.0 -

O
n

li
n

e PoseFlow, BMVC’18 [19] 59.0 57.9 63.0 51.0 10*

JointFlow, BMVC’18 [38] 53.1 50.4 63.3 53.1 0.2

STAF, CVPR’19 [17] 65.0 60.0 70.3 53.8 2

Ours-CPN101-LightTrack-3F 61.2 57.6 63.8 52.3 47* / 0.8

Ours-MSRA152-LightTrack-3F 63.8 59.1 66.5 55.1 48* / 0.7

Posetrack 2018 Validation Set

Ours-CPN101 (offline) 72.6 / 63.9 68.9 / 62.6 76.4 / 69.7 62.4 -

Ours-MSRA152 (offline) 73.6 / 65.6 70.5 / 64.9 77.3 / 71.2 64.9 -

Ours-YoloMD-LightTrack-2F 62.9 / 56.2 57.8 / 53.3 70.4 / 66.0 55.7 59* / 1.9

Ours-CPN101-LightTrack-2F 72.4 / 66.3 69.1 / 64.2 76.0 / 70.3 61.3 47* / 0.8

Ours-MSRA152-LightTrack-2F 73.3 / 66.4 70.9 / 66.1 77.2 / 72.4 64.6 48* / 0.7

Table 6. Performance comparison on Posetrack dataset. The last

column shows the speed in frames per second (* means excluding

pose inference time). For our online methods, mAP are provided

after keypoints dropping. For offline methods, mAP are provided

both before (left) and after (right) keypoints dropping.

Accuracy: As shown in Table 6, LightTrack outperforms

other online methods while maintaining higher frame rates

among top-down approaches, and is competitive with of-

fline state-of-the-art methods. For the offline approach, we

use same detector and pose estimators, except that we re-

place LightTrack with the official release of PoseFlow [19]

for performance comparison. Although this algorithm is

conceptually online, the actual process is performed in mul-

tiple stages, and requires full-image keypoint extraction and

matching to be pre-computed between all adjacent frames,

which is computationally expensive (time not reflected in

Table 6). In contrast, LightTrack is truly processed online.

Speed: Testing on single Tesla P40 GPU, pose matching

costs an average of 2.9 ms. Since pose matching only occurs

at key-frames, its occurrence frequency depends on candi-

date number and keyframe intervals. Therefore, we test the

average process time on PoseTrack’18 val set, which con-

sists of 74 videos with a total of 8, 857 frames. It takes

CPN101-LightTrack 11, 638 seconds to process, 11, 450
secs of which spent on pose estimation. The frame rate

of the whole system is 0.76 fps. Excluding pose inference

time, the framework runs at 47.11 fps. In total, 57, 928
persons are encountered. An average of 6.54 people are

tracked per frame. It takes CPN101 140 ms to process

each candidate, including 109 ms pose inference and 31 ms

for pre-processing and post-processing. There is potential

room to improve the frame rate and tracking performance

with other choices of pose estimators and parallel infer-

ence optimization (20+ fps camera demo available). We see

an improved performance with MSRA152-LightTrack but

slightly slower frame rate due to its 133 ms inference time.

4.6. Discussion

Accuracy: Since the components in our framework are

easily replaceable and extendable, methods employing this

framework can potentially become faster, more accurate, or

possibly both. Note that the pose estimator mentioned in

Section 4.3 can be replaced by a more accurate [39] or a

much faster counterpart. The performance boost in the gen-

eral object detector, or methods that focus on detecting peo-

ple (e.g., using auxiliary dataset [40]), should also improve

the pose tracking performance. Ablation study in Section

4.4 has shown that better detection increases the MOTA

score, regardless of which detectors to use.

Speed: The pose estimation network can be prioritized for

speed while sacrificing some accuracy. For instance, we

use YOLOv3 and MobileNetv1-deconv (YoloMD) as de-

tector and pose estimator, respectively. It achieves an av-

erage of 2 FPS with 70.4 mAP and MOTA score 55.7%

on PoseTrack’18 validation set. Aside from network struc-

ture design, a faster network could also refine heatmaps

from previous frame(s). Recently, refinement-based net-

works [41, 42] have drawn enormous attention.

Flexibility: The advantage of our top-down approach in

pose tracking is that we can conveniently track specific tar-

gets and do not necessarily track all candidates. It can be

achieved simply by choosing the target(s) at the first frame

and providing target locations at key-frames. As a side ef-

fect, this further reduces computational complexity. If the

target has specific visual appearance, the framework can

be conveniently extended to ensure only the target can be

matched at key-frames and tracked at remaining frames.

5. Conclusions

In this paper, we propose an simple yet effective frame-

work for online top-down human pose tracking. We also

provide a baseline employing this framework, and propose a

Siamese graph convolution network for human pose match-

ing as a Re-ID module in our pose tracking system. The

skeleton-based representation effectively captures human

pose similarity and is computationally inexpensive. Our

method outperforms other online methods, stays competi-

tive with offline state-of-the-art methods with higher frame

rates. We believe the proposed framework is worthy to be

widely used due to its superior performance, generality, and

extensibility.
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