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Abstract

Binary image based classification and retrieval of
documents of an intellectual nature is a very challeng-
ing problem. Variations in the binary image generation
mechanisms which are subject to the document artisan
designer including drawing style, view-point, inclusion
of multiple image components are plausible causes for
increasing the complexity of the problem. In this work,
we propose a method suitable to binary images which
bridges some of the successes of deep learning (DL)
to alleviate the problems introduced by the aforemen-
tioned variations. The method consists on extracting
the shape of interest from the binary image and apply-
ing a non-Euclidean geometric neural-net architecture
to learn the local and global spatial relationships of the
shape. Empirical results show that our method is in
some sense invariant to the image generation mecha-
nism variations and achieves results outperforming ex-
isting methods in a patent image dataset benchmark.

1. Introduction

Classification and retrieval of documents of intel-
lectual nature is an important and challenging prob-
lem. Most widely used methods rely mainly on text
and perform the aforementioned tasks by comparing
document relevance to text queries. However, intellec-
tual documents typically include and convey valuable
information not only through text but also through fig-
ures or illustrations. In fact, the USPTO includes in
their guidelines for patent application design that ”the
drawing disclosure is the most important element of
the application” [11]. Effective methods which exploit
such visual information could thus further improve and
facilitate the classification, retrieval and search of such
documents of intellectual domain. Unfortunately, im-
age based classification/retrieval from intellectual con-
tent (e.g., patents, research papers) still remains a very
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challenging problem.

Problems affecting effective image based classifica-
tion and retrieval of documents of intellectual content
are plausibly the image generation mechanisms. These
generally include the highly subjective drawing style
of the artisan, its preferred view-point to highlight as-
pects of relevance, the inclusion of multiple objects or
components in some sense related and whose spatial
distribution may or may not be of importance and the
lack of image texture and color. Note here that view-
point includes a projection of a 3D rotation and trans-
lation into the image reference frame which induces a
scaling factor while style includes binary (black and
white) images of varying line thickness, dashed/dotted
lines and shadings.

A number of methods and challenges have been envi-
sioned as attempts to resolve the image based classifica-
tion/retrieval problem for patent related applications.
For example, the work in [18] focuses on retrieval by
ranking a Euclidean distance similarity based on the
distribution of radial and angular features from im-
age contours. The adaptive hierarchical density his-
togram (AHDH) method of [15] consists of an adap-
tive multi-resolution-multi feature representation with
features from black and white pixel counts across the
multi-resolution blocks. [8] fused a set of local hand-
crafted features including local binary patterns and
edge histograms to train a linear SVM. The last rel-
evant work achieving the highest accuracy is the work
of [1]. This method, constructed Fisher vectors (FV)
through the parametric estimation of a Gaussian mix-
ture model (GMM) representation of the distribution of
local SIFT features computed across the entire image.
Distinct classifiers were trained with SVM significantly
outperforming the others. Unfortunately, most of these
methods suffer in performance achieving classification
accuracies around 65% with the exception of [1] with
90%.

Convolutional neural networks (CNN’s) [5] within
deep learning (DL) have revolutionized the way by
which we do image analysis and have outperformed
traditional methods in many application problems [4].
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Figure 1: Image shape analysis system. Shape and background in an image are segmented in the shape extraction
block, the shape is then sparsely sampled in the sampling block while the learn shapes block learns features
characterizing the spatial relationships between the point samples of the shape.

Connecting such research advances to solve the prob-
lems being faced for the classification/retrieval of im-
ages of intellectual property would be highly benefi-
tial. However, application of off-the-shelve CNN ar-
chitectures operating in the Euclidean image domain
although straightforward are not the most efficient
and do not exploit the full potential of CNN’s for
this specific problem mainly because binary images are
texture-less. But secondly, because of their inability
to cope with the generation mechanisms causing vari-
ations in the absence of sufficient data characterizing
all potential combinations of these [10]. This later,
i.e., controlling and intervening the highly subjective
nature of the generation process of intellectual images
as well as its access to generate a sufficient dataset is
extremely challenging.

Here, we propose a learning based method that aims
both at making the application of neural-nets on bi-
nary images more efficient and at disentangling the
learned functionals from some of the variations in the
image generation mechanisms. Efficient application of
the neural net is made by operating directly on the
object or shape of interest contained and extracted
from the patent image rather than on the entire im-
age. This of-course implies usage of a neural-net oper-
ating on the non-Euclidean domain learning local and
global features characterizing the spatial relationships
of the shape. Operating on the shape allows one to
disentangle from the generation mechanisms of scaling,
translation by centering and normalizing while plausi-
bly introducing some invariance to rotations and style
from the learned local and global features characteriz-
ing spatial relationships. Given this, our paper presents
the proposed approach in Section 2. Section 3 presents
experimental results comparing classification/retrieval
performance across different datasets with scaling, ro-
tation and translation transformations, and finally Sec-
tion 4 concludes our findings.

2. Approach

The basis of the method we propose consists on the
extraction of shapes from images, point sampling from
the shape and finally learning node and edge intercon-
nection features that characterize shape point samples.

A summary of the system is shown in Figure 1.

2.1. Point clouds from image shapes

Shapes are first extracted from images by segment-
ing shape from background through the well known
adaptive thresholding method of Otsu [9]. Note that
the use of a shape segmentation method is a neces-
sity only in cases when images are non-binary. Such
an extraction and analysis on the non-Euclidean spa-
tial composition of a shape instead of the Euclidean
analysis on image pixel values will enable the learning
engine to be invariant against image texture or color;
a property of crucial importance to many applications.

Following, a representative sparse point-cloud of the
shape is extracted by clustering the pixel locations con-
forming the segmented shape. The algorithm we use
here for such clustering is the mini-batch k-means [14]
which is orders of magnitude more computationally ef-
ficient than standard k-means with only small penal-
ties in performance. The efficiency of such method
is obtained by processing data iteratively in batches
of randomly picked points with centroids computed
through stochastic gradient descent (SGD). Each of the

estimated S centroids denoted here by x
(0)
i ∈ R

2 for
i ∈ {1, .., S} contains the corresponding (x, y) location
of the estimates. Comforming all of the k-means cen-

troids results in a point cloud X(0) = {x
(0)
1 , ...,x

(0)
S }

of sparsely sampled representative points of the shape.
Note that, throughout this paper the superscript (0)

denotes an input.
Shape sampling is solely meant here to reduce the

computational complexity of the learning algorithm de-
scribed in the next section, specially in cases when the
shape is not complex. However, dense point clouds in-
cluding all the (x, y) pixel locations conforming a shape
could also be used instead. This of course at the cost
of higher computational complexity for the learning al-
gorithm.

2.2. Learning shapes through graphs

The sampled points X(0) of the shape are used as
input to a deep neural net that learns features charac-
terizing the meaningful spatial relationships between
the points. Here, the sampled points and their spa-



Figure 2: Dynamic Graph CNN Architecture.

Figure 3: EdgeConv at a node.

tial relationships are represented as nodes and edges
of a graph, respectively. The learning engine of such
graphs is a dynamic graph CNN (DGCNN) [16] ar-
chitecture dynamically operating and learning graphs
across its layers. Here, each layer l produces graphs

G
(l)
m = (V(l), E

(l)
m ) indexed by m ∈ {1, ..,M (l)} by dy-

namically associating k nearest learned feature neigh-
bors (f-kNN’s) according to node distances in the fea-
ture space. An instance of the DGCNN architecture we
use is shown in Figure 2. Such an architecture consists
of a sequence of M (l)-dim edgeConv layers consisting

each of node and edge connection features x
(l)
i ∈ R

M(l)

for i ∈ V(l) and e
(l)
ij ∈ R

M(l)

for (i, j) ∈ E
(l)
m , respec-

tively. Node features x
(l)
im are computed element-wise

as

x
(l)
im = max

j:(i,j)∈E
(l)
m

e
(l)
ijm (1)

where the maximum is computed over the f-kNN’s at
the node i and edge features computed element-wise as

e
(l)
ijm = ReLU(θθθ(l)m · (x

(l−1)
j −x

(l−1)
i )+φφφ(l)

m ·x
(l−1)
i ) (2)

with θθθ
(l)
m ,φφφ

(l)
m ∈ R

M(l)

being parameters of the learned
convolution filters. Note that the first inner product in
Eq (2) captures local information whereas the second
inner product captures global information. Fig. 3 il-
lustrates the mechanism by which the edgeConv layer
generates features in a node. First it computes the
f-kNNs ji1 , ..., ji5 centered at node i using Euclidean
distances between features. Then, computes functions
e′ijm in Eq. (2) through the learned filters only for
the f-kNNs and then applies (1). Implementations of

these operators can be framed as a shared multi-layer
perceptron (mlp).

3. Experiments

Evaluation of the proposed approach is tested
against the task of classification of the MNIST bench-
mark [5] and the CLEF-IP dataset of patent images
in [12]. The intent to include experiments on the
MNIST dataset is to demonstrate the inability of stan-
dard CNN’s operating in the Euclidean domain to cope
with data transformations in the abscence of sufficient
data characterizing these. A matter of crucial impor-
tance to build effective classification/retrieval solutions
in the patent application realm.

3.1. Point cloud extraction

We generate a point-cloud for each image shape in
the aforementioned datasets following Section 2.1. Fig-
ure 4 illustrates a few representative point cloud exam-
ples where the first row shows the MNIST digit images
and the second row represents the corresponding ex-
tracted point clouds. The point-clouds are each of size
10×2 (i.e., S = 10 ) for which case the mini-batched k-
means algorithm runs near real-time and thus does not
represent a significant computational bottleneck. Here,

Figure 4: Sampling points from MNIST digit images.
Row 1: MNIST images, Row 2: Sampled points.

we also observe that the proposed sampling mechanism
captures the underlying structure of the MNIST shapes
even when S = 10. For illustration purposes we also
include in Figure 5 an example that shows the effect
of increasing sparsity. Note that at the sparsest point
cloud it is visually difficult to identify the digit and
some ambiguity exists as to whether it is a 2, 3 or an
8. Fortunately, with sparsity of at least S = 10 the
digit can be identified. Such effect is consistent with



at least a vast number of examples manually inspected
from the MNIST.

(a)
MNIST

(b) S=35(c) S=30(d) S=25(e) S=20 (f) S=15(g) S=10 (h) S=5

Figure 5: MNIST digit point cloud as a function of
sparsity

In addition, we also include representative examples
of the sampled shapes extracted from CLEF-IP’s [12]
images extracted from patent documents. The first col-
umn in Fig. 6 are the raw images while the second col-
umn is the result of sparsely sampling the image shape
with S = 1000. Note that the sampling mechanism we
employ visually preserves the shapes in all three cases
as long as the point-cloud is relatively dense.

3.2. Classification

Following the architecture model of [16] we use four
EdgeConv layers as shown in Figure 2 of which the
first three are fully-connected producing, respectively,
features of size (64, 64, 128, 256). Max/sum pooling is
used, unless otherwise specified the number of f-kNN
is set to 5, dropout with keep probability of 0.5 and all
layers include LeakyReLU and batch normalization.

For training, we use stochastic gradient descent
(SGD) with self-adaptive learning rate. The rule to
self-adapt is based on the warm restart method of [6]
with an initial value of 0.1. Batch size is set to 32,
momentum for batch normalization is set to 0.9 and
#epochs = 100. We tested performance with a variety
of number of parameters and the ones selected are the
ones that yielded the best results.

Shapes are extracted from the image datasets by
first transforming them into binary images through seg-
mentation with Otsu’s adaptive thresholding method
[9]. After the shape-background segmentation, each
shape is sampled following the method description in
Section 2.1. A point cloud of size S × 2 is obtained for
each 28 × 28 image that is subsequently centered and
normalized to be within the unit ℓ2-norm ball.

The first experiment is intended to obtain MNIST
classification performance against the sparsity of the
point cloud extracted from the image shapes. This, to
justify sampling a shape sparsely with higher compu-
tational complexity benefits over denser points clouds.
For this experiment, partitions of 42K and 28K images
were utilized to train and test, correspondingly. Fig-
ure 7 illustrates classification performance as a func-
tion of point cloud sparsity. Our results validate the

(a) Bike seat image 2254× 1854 (b) Sampled image shape

(c) Circuit image 920× 1248 (d) Sampled image shape

(e) Helicopter image 964× 1440 (f) Sampled image shape

Figure 6: Sparse sampling of CLEF-IP image shapes.

intuition that classification performance does not suf-
fer with sparser point-clouds above a certain level; in
this case S > 15. At sparsity S = 5 the shape is no
longer visually identifiable from other sampled shapes
as observed in Figure 5.h.

Figure 7: Classification versus point cloud sparsity.

A comparison of MNIST classification performance
against a CNN method as training dataset size is var-
ied was also conducted with results included in Fig. 8.



This with the intent to observe the capabilities of the
neural-net to learn features effectively when dataset
size is reduced significantly. The methods we com-
pared against are the LeNet-5 [5] with full 28× 28 im-
age inputs and the DGCNN architecture. Note that
the LeNet-5 network can be considered as one of the
smallest sized neural-nets out there thus being one of
the least data hungry architectures out there. When
comparing against LeNet-5, our findings show that
the DGCNN performs consistently with variations in
dataset size even better than the LeNet-5 in the lower
size extreme case. Note that the LeNet-5 network can
be considered as one of the smallest sized neural-nets
out there thus being one of the least data hungry ar-
chitectures out there which sounds appealing to our
patent application problem.

Figure 8: Classification versus training dataset size.

Evaluations on classification were performed now
against the effect of data transformations that can
plausibly influence the patent image generation mecha-
nisms. Two experimental cases are included: (1) when
training examples include images subjected to the cor-
responding transformations and (2) when training does
not include examples of the transformed data. Since
the MNIST dataset is the simplest to manipulate for
transformations we use it as our comparison bench-
mark. The transformations for which we test here are
random uniformly sampled maximum absolute ±90◦

rotations, ± 9 pixel translations in both horizontal and
vertical directions and scaling in the (0.2,1) level. Table
1 summarizes the comparison results of performance
against such transformations. Here, the the results at
the same row as the transformation label (e.g., ”scale”)
show performance in the case of (2) i.e., when data does
not include transformation examples. The row where
the ”w re-training” label is (right under the transfor-
mation label) corresponds to performance of (1) when
transformation examples of the expected transforma-
tion levels are included in the data. These results show
that our proposed framework remains more or less in-
variant to the aforementioned transformations in com-
parison to LeNet-5 and that it outperforms it in most

Table 1: Classification against transformations on the
MNIST dataset.

Transformation LeNet-5 [5] Proposed

scale 0.630 0.9850.9850.985
w re-training 0.961

rotation 0.562 0.933
w re-training 0.9810.9810.981

translation 0.286 0.9950.9950.995
w re-training 0.976

scale, rot
0.134 0.9350.9350.935

translate
w re-training 0.874

binary inversion 0.257 0.9920.9920.992
w re-training 0.991

cases in its own intended benchmark dataset. The cen-
tering and ℓ2 normalization of point clouds from ex-
tracted shapes makes our method invariant to scaling
and translation transformations while some invariance
to rotations is learned by the neural net exploiting spa-
tial relationships between sampled points. In general,
we can say that analysis of shapes extracted from im-
ages with the proposed method better copes to rigid
body transformations in the 2D plane and across scales.
However, this is not necessarily true for general view-
point 3D-2D projections as these may include overlap-
ping but potentially different information depending on
the view-point drawing mechanism. The result in the
binary inversion case was interesting, it showed that
LeNet-5 suffered when the background was negatively
correlated with the expected shape pixel level, a per-
formance degradation issue mentioned in [13].

The final experiment on classification evaluates the
proposed method against the CLEF-IP [12] patent im-
age dataset. This dataset was built as a classification
challenge including image categorization into one of the
9 classes: drawing, flowchart, graph, symbol, math, ta-
ble, program, chem, geneseq. A representative example
of the images for each of these classes is shown in Figure
9. Note that CLEF-IP dataset contains image shapes
from an unknown and varying viewpoint. Such view-
points are assumed here to be a projection of a rigid
body transformation (3D rotation and translation) into
the 2D image space. Although such viewpoints and
generation process of patent figures are decided at the
best discretion of the patent artist to highlight certain
aspects of the inventions, we assume here that this
mechanism is random and that we have no interven-



(a) Drawing (b) flowchart (c) Graph

(d) Symbol (e) Program (f) Table

(g) Math (h) Chem (i) Geneseq

Figure 9: Examples of the CLEF-IP 9-class images.

tion power on its generation. In addition, some figures
contain multiple cross-class components which repre-
sents more challenges for learning class characteristics.
Figure 10 illustrates examples of some of these vari-
ations together with an example presenting multiple
components in a patent image. The CLEF-IP dataset

(a) Top-side-view (b) Side-view (c) Cross-class
components

Figure 10: Variations of CLEF-IP patent figures.

contains approximately 38K unbalanced-class images
partitioned into the training and testing subsets. Each
image was sampled and used as input to a DGCNN to
learn the spatial relationships characterizing the shape
classes. The sparsity of sampling was set in this case
to S = 1000 and the f-kNN was set to 25. Intuition
behind the usage of such sparsity is that in general the
CLEF-IP contains images of significantly higher com-
plexity compared to the simpler MNIST shapes. To
learn the spatial relationships between the shape sam-
ples, the hyperparameters of the DGCNN were set to

be the same as those described at the beginning of this
section. For comparison, we also include classification
performance against two standard CNN methods: the
basic LeNet-5 and the more sophisticated residual im-
age learning ResNet-50 architecture [2]. In addition,
we include results from [1] whose method was specifi-
cally designed for patent image based classification and
whose performance is the best for this task, to the best
of our knowledge. The results we obtained were sum-
marized in table 2.

Table 2: Classification performance on CLEF-IP [12]

.

LeNet-5 [5] Resnet-50 [2]
FV

Proposed
+ SVM [1]

0.555 0.244 0.907 0.9380.9380.938

Empirical results reflect that CNN’s operating in the
Euclidean domain are not powerful enough to disen-
tangle performance from view-point, drawing style and
the presence of multiple components in binary patent
imagery. The method of [1] based on the Fisher vec-
tor representation performs nicely and better than the
standard CNN methods for this task. However, our
proposed method seems to better cope with the plausi-
ble variations in the image generation mechanism and
outperforms all compared methods which includes to
the best of our knowledge the best method for such
task so far.

3.3. Retrieval

In addition to the classification task we also compare
the performance of the proposed approach against the
standard structural similarity Index (SSIM) method [3]
in a retrieval task. We tested against the MNIST,
fashion-MNIST [17] and CLEF-IP datasets described
in the previous subsection and show that the proposed
framework performs significantly better than the SSIM
approach. To measure performance, we use the mean
average precision (MAP) overall retrievals computed
as:

MAP =

∑Q

q=1 Ave(P (q))

Q
(3)

where Q is the number of queries and Ave(P (q)) is
the precision average of score for each query q. Here,
Ave(P (q)) is obtained by computing the average num-
ber of items correctly retrieved in a k nearest neigh-
borhood.

In the case of the proposed method, we re-use the
concatenated local and global features learned in the
classification task after the fourth EdgeConv layer in
Figure 2. For illustrative purposes we show how the



learned features naturally cluster for the CLEF-IP
dataset by using the t-Distributed Stochastic Neighbor
Embedding(t-SNE) [7] projection. Note in Figure 11
that features are nicely packed which seem as promising
to be used to effectively retrieve similar shapes. Stan-

Figure 11: TSNE projection of the features extracted
for CLEF-IP test dataset at the embedding layer of
DGCNN.

dard SSIM computes the structural pair-wise similarity
between all the image combinations in the test dataset
partition and yields the set of k-images with the high-
est similarity measure given a query. With that, we
summarize the MAP scores in both Figure 12 and in
Table 3 for quantitative clarity. Here, we note that the
proposed method for this task outperforms SSIM in
most cases, except on the MNIST dataset where there
is a huge structural uniformity in similarity within class
samples without significant view-point variations.

Figure 12: Mean average precision (MAP) analysis for
different datasets using SSIM vs proposed approach.

Table 3: Retrieval Performances.

Dataset
MAP MAP MAP

@10 retrievals @20 retrievals @30 retrievals

MNIST
0.88(SSIM) 0.83(SSIM) 0.80(SSIM)
0.86(DGCNN) 0.77(DGCNN) 0.72(DGCNN)

fashion-MNIST
0.807(SSIM) 0.770(SSIM) 0.750(SSIM)

0.878(DGCNN) 0.803(DGCNN) 0.760(DGCNN)

CLEF-IP
0.276(SSIM) 0.238(SSIM) 0.227(SSIM)

0.886(DGCNN) 0.814(DGCNN) 0.771(DGCNN)

4. Conclusion

In this work, we proposed a method connecting the
successes of deep learning (DL) to alleviate some of
the problems being faced in patent image classifica-
tion/retrieval applications. The method combines a
shape extraction pre-processing stage with a neural net
operating on the spatial representation of the shape
(i.e., in the non-Euclidean domain). Empirical results
demonstrate the ability of the proposed method to bet-
ter cope with the plausible binary image generation
mechanisms which are of a highly subjective nature in
patent documents. Such mechanisms include variations
in drawing style, view-point, and presence of multiple
components or image parts.
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