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Abstract

A Piping and Instrumentation Diagram (P&ID) is a type

of engineering diagram that uses symbols, text, and lines

to represent the components and flow of an industrial pro-

cess. Although used universally across industries such as

manufacturing and oil & gas, P&IDs are usually trapped

in image files with limited metadata, making their contents

unsearchable and siloed from operational or enterprise sys-

tems. In order to extract the information contained in these

diagrams, we propose a pipeline for automatically digitiz-

ing P&IDs. Our pipeline combines a series of computer vi-

sion techniques to detect symbols in a diagram, match sym-

bols with associated text, and detect connections between

symbols through lines. For the symbol detection task, we

train a Convolutional Neural Network to classify certain

common symbols with over 90% precision and recall. To

detect connections between symbols, we use a graph search

approach to traverse a diagram through its lines and dis-

cover interconnected symbols. By transforming unstruc-

tured diagrams into structured information, our pipeline

enables applications such as diagram search, equipment-

to-sensor mapping, and asset hierarchy creation. When in-

tegrated with operational and enterprise data, the extracted

asset hierarchy serves as the foundation for a facility-wide

digital twin, enabling advanced applications such as ma-

chine learning-based predictive maintenance.

1. Introduction

Engineering designs, such as Piping and Instrumentation

Diagrams (P&IDs), are used throughout the entire lifecy-

cle of a facility. Created during the engineering and design

phase, they are used to communicate requirements through-

out the construction and operational phases of an industrial

facility. In many jurisdictions, primarily for safety consider-

ations, there are legal requirements to keep these designs up

to date with any changes. Additionally, process engineers

rely primarily on P&IDs to understand an industrial process

and as a tool to plan and implement process changes. These

factors make P&IDs a valuable, up to date ground-truth data

source for the configuration of an industrial facility. How-

ever, P&IDs are often archived as hundreds of CAD files

per facility with limited or no metadata describing the com-

ponents, connections between components, or connections

between P&IDs.

As IoT sensors have proliferated throughout industrial

facilities they have become an important element of P&IDs.

These sensors, commonly referred to as tags, provide crit-

ical, real-time operational data (e.g., temperature, pressure,

flow, etc.) and are often connected to locally mounted in-

struments (LMIs) or installed directly onto equipment. This

real-time operational data has become increasingly impor-

tant for plant management, asset performance management,

and process optimization. As machine learning techniques

evolve to extract even more value from this data, contex-

tualizing these tags within diagrams and referencing them

to external sensor management systems is an increasingly

critical pre-processing step. For an end user of an AI ap-

plication to properly interpret machine learning predictions

they must have a clearly defined asset hierarchy with sensor

locations. For example, when implementing anomaly de-

tection, a well-defined asset hierarchy will enable a user to

localize an anomalous sensor within a facility and identify

a particular component of the machinery.

Performing the contextualization step manually on

P&IDs is time consuming and error prone. Our digitiza-

tion pipeline aims to automate this step by combining state-

of-the-art computer vision, graph search, and optical char-

acter recognition techniques to map the interconnectedness

of equipment, pipelines, and sensors within P&IDs. The

output of the pipeline, a high-fidelity asset hierarchy, will

serve as the foundation for a digital twin used in a multi-

tude of high-value business use cases for machine learning

analytics.

P&IDs depict the configuration and properties of all

equipment, components (such as valves and insulation),

process lines, and instrumentation with standardized sym-

bols related to an industrial process. Connections between



Figure 1. A section of a Piping and Instrumentation Diagram (P&ID). Instrumentation is represented by a circle. Text inside a circle

indicates the instrument type and unique ID. Text adjacent to process lines and components specifies size and/or material.

P&IDs are marked as inputs or outputs to other equipment

shown on separate P&IDs. Our digitization pipeline does

not attempt to map all these connections and symbols, but

rather focuses on a subset of equipment and instrumenta-

tion relationships that are of value for analytical applica-

tions. Symbols of interest for our digitization pipeline are

shown in Figure 1: (A) locally mounted instrument (LMI)

sensor for in-field readings, (B) electrical signal between in-

struments, (C) sensor (or tag) represented in a database, (D)

process line, (E) equipment (such as a vessel, or pump).

2. Related work

Digitization of complex engineering diagrams has been

an active area of research long before the recent adoption of

deep learning techniques. In their survey paper, Moreno-

Garcı́a et al. describe the motivations and challenges in

engineering diagram digitization and provide an extensive

review of methods for the digitization problem [6]. The

authors insist that the automatic analysis and processing of

engineering diagrams is far from being complete and call

for the application of deep learning in this domain. Addi-

tionally, they mention a set of contextualization challenges

concerning the connectivity of symbols in diagrams which

are not addressed by the current literature.

Most of the prior work on diagram digitization was prior

to the popularization of deep learning and featured tra-

ditional computer vision techniques. The older methods

achieved reasonable results but were limited in their ap-

plication as they were inflexible across different diagram

drafting standards and between companies. Our method

is designed to be extendable to any diagram drafting stan-

dards and requires only a small number of labeled diagrams.

Therefore, users can hand label a limited set of diagrams

from any company and parse them effectively. Recent ap-

proaches have also leveraged deep learning for symbol and

text detection with relatively high precision and recall. We

extend upon these works by using a different CNN for sym-

bol detection and a graph search approach to determine the

interconnections between symbols.

While there exists a vast literature on symbol and text

detection in engineering diagrams, there are relatively few

examples that address the problem of connection detection.

Some approaches use a simple Euclidean distance approach

to assign symbols as connected symbols if they are within a

predefined threshold distance of each other [3]. While this

is sometimes a reasonable heuristic, it fails when applied to

dense, complex P&IDs in which symbols may be close to

each other but not connected via lines – the ultimate indica-

tor of connectivity. To address this limitation, our pipeline

features a graph search approach which traverses the di-

agram through its solid and dashed lines and only marks

symbols as connected if there is a valid path between them.



A similar approach is implemented by Cardoso et al., who

detect staff lines in musical scores by representing the mu-

sic sheet image as a graph and identifying the shortest con-

nected paths of black pixels in the image graph [1].

Most prior work in this field addressed a specific part

of the digitization process such as symbol or text detec-

tion; an exception is the pipeline proposed by Rahul et

al. which performs symbol detection, text detection, and

symbol-to-line association [7]. Their pipeline uses state-of-

the-art deep learning models such as the Connectionist Text

Proposal Network (CTPN) for text detection and a Fully

Convolutional Network (FCN) for symbol detection. While

we share the common objective of completely digitizing

P&IDs, our methods for symbol detection are noticeably

different. Their pipeline uses an FCN which performs im-

age segmentation to segment out symbols of interest using

a 19-layer VGG-19 architecture which requires them 7000

epochs to train. Instead of doing segmentation, we classify

symbols directly and use a much lighter CNN.

Other examples of pipelines include the system proposed

by Kang et al., which uses relatively simple methods such

as template matching to detect symbols and a sliding win-

dow approach to detect lines and text [4]. Although easy

to implement, template matching approaches either fail to

generalize well due to minor differences in visual appear-

ances between symbols across diagrams or require a vast

symbol library (i.e. the templates) to perform well. Finally,

Daele et al. present a promising approach for similarity-

based search in CAD drawings by developing a pipeline to

extract components using image segmentation and object

recognition, parse properties from tabular data in the draw-

ings, and represent the extracted information in a feature

vector to facilitate similarity comparisons [2].

3. Methodology

There are three steps in our diagram digitization

pipeline: symbol detection, text recognition and associa-

tion, and connection detection. The inputs to the pipeline

are a diagram image and an optional set of manually-labeled

symbols in the diagram. The manually-labeled symbols are

ones that are of interest to the user but are not among the

symbols automatically detected during the symbol detec-

tion step. An example of a snippet from an input diagram

and a manually-labeled symbol is shown in Figure 2.

In this section, we describe each step of the pipeline and

demonstrate how each step transforms the input diagram

snippet in Figure 2 into intermediate outputs. The final out-

put of the pipeline, presented in Table 1, is an asset hierar-

chy table containing all information extracted from the dia-

gram snippet. See Appendix A for the asset hierarchy table

on the entire diagram.

Figure 2. A snippet from an input diagram with a manually-labeled

symbol (green).

3.1. Symbol detection

The goal of the symbol detection step is to automate the

identification of frequently appearing symbols in diagrams.

Two of the most common and useful symbols in P&IDs are

tags and LMIs. In this set of diagrams, a tag is the digital

representation of a sensor in the facility and is represented

by a circle inscribed in a square. An LMI is a physical in-

strument such as a pressure gauge or temperature reading

and is represented by a circle. Tags and LMIs are important

because they often have corresponding entries in time series

sensor databases. By identifying the tag and LMI symbols

in a diagram we can localize sensor data to specific equip-

ment or sections of a facility.

In order to train and validate a machine learning model

to detect and classify tags and LMIs, we created a dataset

of symbol crops from a collection of 18 P&IDs. Tags and

LMIs across the diagrams had a constant size and fit within

a 100 x 100-pixel window. So, we labeled all the tags and

LMIs in the 18 diagrams using 100 x 100-pixel bounding

boxes, resulting in 308 tag crops and 687 LMI crops. Ad-

ditionally, we took 100 random crops that did not contain

a tag or LMI symbol from each diagram, resulting in 1800

“not symbol” crops. Examples of crops in each of the three

classes are given in Figure 3.

Using our dataset of symbol crops, we trained a Con-

volutional Neural Network (CNN) to perform a three-way

classification task: to determine whether an input image

contained a tag, LMI, or no symbol. We designed a

simple CNN architecture with three convolutional layers

(with ReLU activations and max pooling) and two fully-

connected dense layers. The first hidden layer had 64 units

with ReLU activations. The final output layer had three

units with softmax activations to predict the probability that

the input image belonged to each of the three classes. This



Figure 3. Examples of crops in each of the three classes.

architecture, shown in Figure 4, was inspired by the LeNet

architectures popularized for digit recognition [5], as we

expected the complexity of diagram symbols to be similar

to that of handwritten digits. The network had a total of

437,923 parameters.

Figure 4. The CNN architecture used for symbol detection.

Given the limited number of training examples, we used

data augmentation and dropout to achieve a more robust

and generalizable model. We augmented the training ex-

amples by rotating, shifting, shearing, zooming, and flip-

ping to make the network invariant to these transformations.

Dropout was applied in the dense layers to add some regu-

larization and improve the network’s generalization perfor-

mance. We randomly split the symbol crops dataset into

training (60%) and validation (40%) sets and trained the

network to minimize cross-entropy loss on the validation

set. As shown in Figure 5, both the training and valida-

tion loss had converged by 100 epochs of training. We then

combined the training and validation sets and trained a final

model on the entire dataset for 100 epochs.

To apply the trained CNN to detect symbols in a new di-

agram, we first slide over the diagram image with a small

stride length and generate all 100 x 100-pixel windows

from the input diagram. Because most of the diagram is

sparse, we filter out windows which are over 90% blank

and automatically classify them as “not symbol.” The re-

maining dense windows are processed through the CNN to

produce predicted probabilities of belonging to each sym-

bol class. Non-maximum suppression is applied to resolve

Figure 5. The training and validation loss converged by 100 epochs

of training.

multiple symbols detected in overlapping windows to a sin-

gle detected symbol. Finally, the predicted probabilities are

thresholded, using a predefined threshold for each symbol

class, to convert the probabilities into a discrete symbol

classification. Windows with predicted probabilities less

than all thresholds are classified as not symbol.

Figure 6 shows the results of symbol detection on the

input diagram snippet. The detected tag and LMI symbols

are displayed in red. Nearly all of the predicted symbols are

correctly classified, except for symbol 39, which is not an

LMI (LMI are circles, not ovals).

3.2. Text Recognition and Association

Text is a crucial element in P&IDs which identifies and

describes elements in the diagrams. For instance, the text

inside the tag symbols often serves as a key to fetch data for

the tag from a time series sensor database. Text is also used

to specify the length and diameter of pipes in the diagram.

Because of the importance of text, an digitization of the di-

agram is not complete without recognizing and interpreting

text, as well as associating it with detected symbols in the

diagram.

To detect text in the diagram, we use Efficient and Ac-

curate Scene Text Detector (EAST) [8], a state-of-the-art

pipeline which uses a neural network to produce bounding

boxes where text is present in an image. The text bounding

boxes generated by EAST on the input diagram snippet are

displayed in blue in Figure 6. For each symbol, we identify

associated text based on the proximity of the symbol to text

bounding boxes using a distance threshold. Associated text

for each symbol is then interpreted using Tesseract OCR,

and the results are added to the extracted information in the

asset hierarchy in Table 1.



Figure 6. The diagram snippet with detected symbols (red), de-

tected text (blue), and manually-labeled symbols (green).

3.3. Connection Detection

Symbols in the diagram are connected to each other via a

dense network of lines. While solid lines indicate physical

connections such as pipes transporting fluids, dashed lines

indicate digital connections such as equipment-to-sensor re-

lationships. The connection detection step builds on the

symbol detection step and determines which symbols are

connected to each other via lines. This final step in the

pipeline is essential for digitally reconstructing the relation-

ships in the diagram and creating an asset hierarchy.

We use a graph search approach for connection detec-

tion. First, the thresholded diagram image is represented as

a graph. In this diagram graph, nodes are individual pixels

in the diagram. Each node contains information on whether

it is black or white (based on its thresholded pixel inten-

sity) and whether it is part of a symbol (and if so, which

one). The graph’s edges are links between neighboring pix-

els, with a maximum of eight edges per node. Symbols

are represented in the graph as a collection of nodes corre-

sponding to the pixels that form the symbol.

With this graph representation of the diagram, connec-

tions between symbols can be identified through a depth-

first search (DFS). Specifically, for each detected symbol,

a DFS is initialized from one of the nodes in the symbol.

The DFS traverses the diagram graph along its black nodes,

hitting (and keeping track of) connected symbols along its

path. The search terminates once all valid paths are ex-

hausted.

Figure 7 shows the result of running connection detec-

tion on the diagram snippet, with the source symbol in red,

the connected symbols in green, and the paths traversed by

DFS to reach the connected symbols from the source sym-

bol in blue. Note that all detected symbols except for the

oval symbol are identified as connected to the source sym-

Figure 7. Connections detected between a source symbol (red) and

connected symbols (green) through lines traversed by depth-first

search (blue).

bol, which is correct as there are no continuous paths be-

tween those two symbols. We run connection detection

starting at every symbol in the diagram and populate the

entire list of connected symbols in the asset hierarchy in

Table 1. In Table 1, we represent this information by listing

the ids of connected symbols from each source symbol.

3.4. Diagram-to-Diagram Relationships

For large facilities or systems, multiple P&ID diagrams

will collectively represent the components and flow of an

industrial process. In these cases, in addition to the digitiza-

tion of intra-diagram relationships, diagram-to-diagram re-

lationships are also desired. Our approach is to convert the

problem into a symbol detection task and a text recognition

and association task. Diagram-to-diagram relationships are

often indicated by reserved symbols as shown in Figure 8.

The symbol representing the connection to a downstream

diagram is a right-pointing arrow box and the symbol for

the connection to an upstream diagram is represented as a

left-pointing arrow box.

Figure 8. Inlet and outlet symbols represent connections to other

diagrams.

Our methodology discussed in the previous Symbol De-



Symbol id Method Symbol type Associated text Connected symbols

3 Manually-labeled EQU 3030, 321, CO, E“X6F, XVZ, E.,

XJA, BX6F, 303,...

33, 5, 7, 9, 41, 11, 13, 16,

18, 20, 25, 26, 2...

7 Detected TAG 3I07 16, 3

11 Detected TAG 7L?, XJA, 303J 3, 14

13 Detected LMI 3023, RV, 1251C, 3% 25, 3, 20, 5

16 Detected LMI 3I07, XVI, MOE.9, 1 3, 7, 41, 24, 26, 28

20 Detected LMI 3030, XVZ, BX6F, UFOZ, E, J91,

E, RIÉ.0O

3, 5, 13, 25, 31

25 Detected LMI P§IC, RV, CO, 355, 1533, —2M 5, 3, 20, 13

26 Detected LMI XVZ, E., 303, 303, E 16, 41, 3, 28

28 Detected LMI 303, 303, MOE.9 16, 41, 26, 3

31 Detected LMI E“X6F, E 3, 20

33 Detected LMI 347 18, 3

39 Detected LMI M.OE, MOVIÉO, JN, ZO5 34, 2

41 Detected LMI MOE.9 16, 26, 3, 28

Table 1. The output of the pipeline is an asset hierarchy table populated with information extracted from the diagram snippet in Figure 2.

tection section can be applied. Second, we realize that for

most P&IDs, the diagram names follow convention and al-

ways appear with the diagram-to-diagram connection sym-

bols. As shown in Figure 8, we see the connected P&ID

diagram names (DWG Number) are very structured. The

combination of our methodology discussed in the previous

Text Recognition and Association section and some regular

expressions can be applied to link diagrams by their names.

4. Results

We evaluated our symbol detection procedure on the

18 training diagrams and 11 diagrams in a held-out test

set. Symbols were considered correctly classified if the de-

tected symbol’s class matched the ground truth label and the

detected symbol’s bounding box had an intersection over

union (IOU) of at least 0.5 with the ground truth symbol’s

bounding box. In the 11 unseen test diagrams, tags were

classified with 100% precision and 98% recall using a clas-

sification probability threshold of 0.95. LMIs were classi-

fied with 85% precision and 90% recall using a classifica-

tion probability threshold of 0.95.

Precision-recall curves in Figure 9 summarize the clas-

sification performance for each symbol class over multiple

probability thresholds in the training and test diagrams. Tag

classification performance is considerably better than LMI

classification performance since many circular-shaped sym-

bols which are not LMIs are incorrectly classified as LMIs,

driving down the precision of LMI classification. Tags, on

the other hand, are consistently represented by a distinct

circle-inside-square symbol and are less prone to getting

confused for other symbols. A full comparison between the

detected symbols and ground truth symbols in a diagram is

provided in Appendix B.

Figure 9. Precision-recall curves show the classification perfor-

mance for each symbol class on the 18 training diagrams and 11

test diagrams.

5. Conclusion

In this paper, we have presented an automatic digitiza-

tion pipeline for P&IDs. Our pipeline combines state-of-

the-art computer vision methods to detect symbols, rec-

ognize and interpret text, and detect connections between

symbols through lines. To the best of our knowledge, our

pipeline is the first to apply graph search to detect connec-

tions between symbols in P&IDs. Moreover, our symbol

detection CNN model achieves high levels of precision and

recall and is easily extensible to additional symbol classes.

There are several future research directions which should

be pursued to improve the accuracy and scalability of P&ID



digitization. First, leveraging a binary object detection

CNN such as FasterRCNN to detect symbol/not-a-symbol

would not only improve the performance of the end classi-

fier but also reduce the overhead from the sliding window.

Second, we need to develop sample-efficient symbol detec-

tion models which can learn to classify symbols from only

a handful of examples instead of hundreds. Recent work in

few-shot learning techniques may be relevant for this chal-

lenge and help scale the symbol detection capability to the

myriad symbol classes that appear in P&IDs.

Text interpretation can also be made more accurate by

providing a dictionary of known terms in the facility, which

can help to resolve some of the mistakes made by OCR. Fi-

nally, the graph search approach for connection detection

can be made more robust by integrating simple heuristics

such as the maximum permissible distance between two

connected symbols, as well as more complex constraints

such as the direction of flow of the connecting pipes based

on arrow symbols.

The structured asset hierarchy extracted from diagrams

using our pipeline can be used to support a wide range of ap-

plications. We envision diagram search applications which

can help to localize symbols across a large number of di-

agrams based on just their associated text or symbol type.

Predictive maintenance applications for equipment can also

be supported with valuable knowledge of equipment-to-

tag connections, which can help to train better models for

equipment failure. By automatically transforming unstruc-

tured diagrams into structured information, our pipeline can

unlock the value of these diagrams for industries and sig-

nificantly reduce the manual work necessary to digitize and

understand them.
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