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Abstract

A structured query can capture the complexity of object

interactions (e.g. ’woman rides motorcycle’) unlike single

objects (e.g. ’woman’ or ’motorcycle’). Retrieval using

structured queries therefore is much more useful than sin-

gle object retrieval, but a much more challenging problem.

In this paper we present a method which uses scene graph

embeddings as the basis for an approach to image retrieval.

We examine how visual relationships, derived from scene

graphs, can be used as structured queries. The visual re-

lationships are directed subgraphs of the scene graph with

a subject and object as nodes connected by a predicate re-

lationhship. Notably, we are able to achieve high recall

even on low to medium frequency objects found in the long-

tailed COCO-Stuff dataset, and find that adding a visual

relationship-inspired loss boosts our recall by 10% in the

best case.

1. Introduction

An image is composed of a complex arrangement of

objects and their relationships to each other. As noted in

[1][2], this is why content-based image retrieval is more

successful when using complex structured queries (e.g. ‘girl

programs computer’) rather than simply using single object

instances (e.g. ’girl’, ’computer’, etc.). Instead of viewing

objects in isolation, they can be coupled as a subject and

object by a relationship that describes their interaction [3].

These visual relationships, in the form of <subject, pred-

icate, object> (e.g. <girl, programs, computer>), can be

used as complex structured queries [1] for performing im-

age retrieval, which are more descriptive and efficient via

their specificity.

Visual relation-based retrieval, although more useful, is

much more difficult than single object-based retrieval as the

representation learning for the former case is more difficult.

For example, the current state-of-the-art (SOTA) for object

detection including both small object and long-tailed distri-

butions achieves well over 50% [4] mean average precision

(mAP) and recall at k=100 is about 70%. However, when it

Figure 1. Visual Relationship Subgraph Query. We use visual

relationships, represented as directed subgraphs extracted from

scene graphs, to form structured queries. Each subgraph contains

a subject and object as nodes connected by an edge representing a

predicate relationship.

comes to visual relationship detection (in particular ‘scene

graph detection task’), even only for large and frequent ob-

jects from Visual Genome, the SOTA [5] recall at k=100

is below 35%. This intuitively speaks to the difficulty of

working with visual relationship representations, and thus

the retrieval task at hand.

In this paper, we approach the image retrieval problem

by using a learned scene graph embedding from a scene lay-

out prediction model (Fig 2). Scene graphs are a structured

data format which encodes semantic relationships between

objects [6]. Objects are represented as nodes in the graph

and are connected by edges that express relationship, in the

form of triplets. As shown in Figure 1, we use visual rela-

tionships, represented as directed subgraphs extracted from

scene graphs, to form structured queries. Each subgraph

contains a subject and object as nodes connected by an edge

representing a predicate relationship.



Our work is unique in that we perform retrieval using

only the embeddings extracted from scene graphs rather

than visual features, which is a common modality in image

retrieval [2]. We perform a quantitative and qualitative anal-

ysis which demonstrates our method’s efficacy when deal-

ing with a long-tailed dataset with overwhelming majority

of low-frequency classes. We also observe that learning ob-

jectives derived directly from the visual relationships boost

the image retrieval efficiency significantly.

2. Related Work

Early work by Johnson et al. [2] uses visual relationships

derived from scene graphs for image retrieval. A scene

graph is a structured data format which encodes semantic

relationships between objects. A set of visual relationships

containing a <subject, predicate, object> are the building

blocks of these scene graphs. Johnson et al. [2] use a con-

ditional random field (CRF) model trained over the distri-

bution of object groundings (bounding boxes) contained in

the annotated scene graphs. Object classification models

are used as part of the CRF formulation. Wang et al. [7]

use cross-modal scene graphs for image-text retrieval where

they rely upon using word embeddings and image features.

We distinguish our approach from [7] [2] as we do not use

object groundings, word embeddings nor the input image

features to perform our retrieval.

A line of work that emerged recently [8, 9, 10, 11, 12,

13, 14] takes scene graphs as input and produce final RGB

images. All of these methods perform an intermediate lay-

out prediction by learning embeddings of nodes. We use

layout generation as a pretext task for learning the embed-

ding to perform image retrieval as the downstream applica-

tion. However, unlike the above layout generation models,

our method utilizes <subject, predicate, object> triplets as

additional supervisory signal for more effective structured

prediction [15]. In a closely related work, Belilovsky et al.

[16] learn a joint visual-scene graph embedding for use in

image retrieval. In contrast, our model is trained from scene

graphs without access to visual features.

3. Method

3.1. Dataset

In this work, we use the 2017 COCO-Stuff [17] dataset

to generate synthetic scene graphs with clean predicate an-

notations. COCO-Stuff augments the COCO dataset [18]

with additional stuff categories. The dataset annotates 40K

train and 5K val images with bounding boxes and segmen-

tation masks for 80 thing categories (people, cars, etc.) and

91 stuff categories (sky, grass, etc.). Similar to [8], we

used thing and stuff annotations to construct synthetic scene

graphs based on the 2D image coordinates of the objects.

Six mutually exclusive geometric relationships are encoded

and used as the predicate in visual relationships: left of,

right of, above, below, inside, surrounding.

3.2. Learning a Scene Graph Embedding

We use a layout prediction network [15] inspired by the

image generation pipeline in [8] to learn a scene graph em-

bedding for image retrieval. Figure 2 gives an overview of

the network architecture. A graph convolutional neural net-

work (GCNN) processes an input scene graph to produce

embeddings corresponding to object nodes in the graph.

The GCNN is a 5-layer multilayer perceptron where Dinput

= Doutput = 128 and Dhidden = 512. Singleton object em-

beddings are passed to the next stage of the layout predic-

tion network per [8]. The outputs of the second stage of the

layout prediction model are used to compose a scene layout

mask with object localization. We utilize the object em-

beddings to form a set of triplet embeddings where each is

composed of a <subject, predicate, object>. We pass these

through a triplet mask prediction network which learns to

label objects as either ‘subject’ or ’object’ (see Figure 3),

enforcing both an ordering and relationship between ob-

jects. We also pass triplet embeddings through a triplet ‘su-

perbox’ regression network, where we train the network for

joint localization over subject and object bounding boxes. A

superbox is defined as the enclosing bounding box of both

the subject and object bounding boxes as noted in Figure 2.

In this work, the layout prediction can be thought of as a

pretext task in which the scene graph embedding is learned

as an intermediary feature representation. To improve the

learning in this task, we apply two triplet-based losses [15]

in addition to those used in [8]. The first is a triplet mask

loss, Ltriplet−mask, penalizing differences between ground

truth triplet masks and predicted triplet masks with pix-

elwise cross-entropy loss. The second is a triplet super-

box loss, Ltriplet−superbox, penalizing the L2 difference be-

tween the ground truth and predicted triplet superboxes. We

also train a layout prediction model without triplet-based

losses for comparison.

4. Experimental Analysis

Query Database. In this approach we focus on utiliz-

ing the object embeddings from a learned scene graph em-

bedding to form structured queries. We have experimented

with multiple forms of queries, including but not limited to

visual relationships. For our testing, we query a database

of 3100 visual relationships extracted from annotated test

scene graphs from the COCO-Stuff dataset. We do not limit

our database by requiring visual relationships to have a min-

imum number of occurrences as was done in [2]. We use the

similarity metric S to rank our retrieved images correspond-

ing to their respective embedding space representation



Figure 2. Scene Graph Embeddings from Layout Prediction. A scene graph embedding is learned via a pretext task which is training a

layout prediction network. Later, image retrieval from structured queries, the downstream application we aim to address, uses the similarity

metric in the learned scene graph embedding space.

Figure 3. Triplet Mask Prediction. Triplets containing a

<subject,predicate,object> found in a scene graph are used to pre-

dict corresponding triplet masks, labelling pixels either as subject

and object. The mask prediction is used as supervisory signal dur-

ing training.

S =
1

d(q, rk)
(1)

where d is the L2 distance between the query q and re-

trieved result rk at position k.

Long-tail Distributions. We do not restrict the vocab-

ulary of object classes which are used to form our queries

as done in [2]. Given the long-tailed nature of the COCO-

Stuff dataset (see Figure 6), it is important to acknowledge

the difficulty a model may have in learning all classes suffi-

ciently [19], especially for low frequency classes. We wish

to understand how well our scene graph embedding per-

forms given these challenges. Therefore, we divide objects

Model R@1 R@25 R@50 R@100

Triplet-s+o 0.14 0.33 0.40 0.46

Triplet-s+p+o 0.10 0.29 0.35 0.42

NoTriplet-s+o 0.10 0.24 0.31 0.36

NoTriplet-s+p+o 0.11 0.26 0.31 0.38

Baseline-s 0.07 0.19 0.23 0.29

Baseline-o 0.07 0.19 0.23 0.29

Baseline-p 0.00 0.01 0.02 0.03

Random 0.00 0.00 0.01 0.01

Head Classes 0.10 0.33 0.41 0.50

Long-tail Classes 0.19 0.41 0.46 0.51

Table 1. Recall@k. Image retrieval performance is measured in

terms of Recall@{1,25,50,100} for all classes (upper portion) and

then separately for head and long-tail classes (bottom portion)

.

classes into two parts for our experimental analysis. The

first is head classes which comprise the first 20% of dataset)

(e.g.person, tree and sky). The second is long-tail classes

which comprise the remaining 80% of dataset (e.g. zebra ,

skateboard and laptop).

Results. Initially, we break down our queries individu-

ally by subject (s), object (o) or predicate (p) as baselines.

We see that the contribution from the subject and object em-

bedding is much more significant over the predicate, as seen

in Figure 5 on the left. Image retrieval using only the pred-

icate embedding is poor in terms of Recall@100 of 3%, no

better than random which has Recall@100 at 1%. However,

the subject and object embeddings both have a Recall@100



Figure 4. Image Retrieval Results. Retrieval for structured queries with object types with varying levels of frequency in COCO-Stuff

dataset: (a) head (person, tree), (b) (long-tail) medium frequency (zebra, truck), and (c) (long-tail) low frequency (skateboard, skis). Query

is in left-most column corresponding to red boxes.

Figure 5. Image Retrieval Performance. Recall@k for all classes

(left) and long-tail vs. head classes (right) found in COCO-Stuff.

of 29%, an increase of 26% over the predicate. The reason

for this could be that the triplet supervision biases the scene

graph embedding towards subject and object, pointing to

the need for more supervisory signals for the predicate em-

bedding.

Given the minimal contribution of the predicate, we ex-

amine structuring our queries with and without using the

predicate (p) from the visual relationship. We compare

them using two types of models, those trained with and

without triplet supervision (‘Triplet’ and ‘NoTriplet’ in Fig-

ure 5). We see in Table 1 that the model trained with

triplet supervision using a query structured with only sub-

ject and object (‘Triplet-s+o’) outperforms all model and

query types by 10% in the best case (36% (‘NoTriplet-s+o’)

vs. 46% (‘Triplet-s+o’) for Recall@100).

The omission of the predicate in the non-triplet modes is

nominally worse (‘NoTriplet-s+o’ vs. ‘NoTriplet-s+p+o’ in

Figure 5). However, we clearly see that the omission of the

predicate in the triplet models (‘Triplet-s+p+o’ vs. ‘Triplet-

s+o’) improves recall by 4% (42% vs. 46% for Recall@100

for ). This follows the trend seen in the baseline of sub-

ject and object-only queries outperforming the predicate-

based queries. We also observe that visual relationship-

based queries (and structured variations thereof) outperform

single object queries by 17% in the best case (29% (subject

or object) alone vs. 46% (‘Triplet-s+o’) for Recall@100).

The triplet-based losses emphasize the interaction between

subject, object and predicate embeddings, and this may lend

to the significant boost seen in retrieval done with structured

queries.

Figure 5 (right) demonstrates the average retrieval per-

formance on long-tail and head classes in the COCO-Stuff

dataset. A low occurrence of an object class corresponds

to a low occurrence of visual relationships with this ob-

ject, making the task of image retrieval for long-tail classes

more challenging. The long-tailed distribution of COCO-

Stuff can be seen in Figure 6, where the majority of object

classes in the long-tail have a frequency (count) of less than

25 instances. Despite this, the long-tail classes have a high

recall@k, especially when k is less than or equal to 10. Fig-

ure 5 (right) and Table 1 show that long-tail classes tend

to do at least as well as the high-frequency head classes or

some cases, much better, especially at low values of k. This

is exemplified in Figure 4 where even the middle to low

frequency long-tail classes have several matches in the top

k=5.

Qualitative retrieval results can be seen in Figure 3 (test

image corresponding to query is shown for reference) using

a triplet-based model. Even with middle to low frequency

classes found in the long-tail distribution of COCO-Stuff,

we have successful retrieval for k=5. Importantly, note that

we are able to have exact matches despite omitting the pred-

icate (e.g. s+o), and also exact matches in predicate (only)

for all retrieval results despite its omission. Even incorrect

results have the correct predicate and often are semantically

similar (e.g.‘surfboard below person’ vs. ‘skateboard below

person’).



Figure 6. Long-Tail Class Distribution. COCO-Stuff dataset has a long-tail object class distribution. This can be partitioned into head

classes (first 20%) and long-tailed classes (last 80%).

5. Conclusion

We have trained scene graph embeddings for layout pre-

diction with triplet-based loss functions. For the down-

stream application of image retrieval, we use structured

queries formed using the learned embeddings instead of in-

put image content. Our approach achieves high recall even

on long-tail object classes.

References

[1] Tian Lan, Weilong Yang, Yang Wang, and Greg Mori. Image

retrieval with structured object queries using latent ranking

SVM. In Andrew W. Fitzgibbon, Svetlana Lazebnik, Pietro

Perona, Yoichi Sato, and Cordelia Schmid, editors, Com-

puter Vision - ECCV 2012 - 12th European Conference on

Computer Vision, Florence, Italy, October 7-13, 2012, Pro-

ceedings, Part VI, volume 7577 of Lecture Notes in Com-

puter Science, pages 129–142. Springer, 2012.

[2] Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li,

David Shamma, Michael Bernstein, and Li Fei-Fei. Im-

age retrieval using scene graphs. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2015.

[3] Xu Chen Ya Zhang Xiao Gu Yue Hu, Siheng Chen. Neu-

ral message passing for visual relationship detection. In

ICML Workshop on Learning and Reasoning with Graph-

Structured Representations, Long Beach, CA, June 2019.

[4] COCO detection leaderboard. http://cocodataset.

org/#detection-leaderboard. Accessed: 2020-

03-15.

[5] Ji Zhang, Kevin J. Shih, Ahmed Elgammal, Andrew Tao,

and Bryan Catanzaro. Graphical contrastive losses for scene

graph parsing. In The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2019.

[6] Danfei Xu, Yuke Zhu, Christopher Choy, and Li Fei-Fei.

Scene graph generation by iterative message passing. In

Computer Vision and Pattern Recognition (CVPR), 2017.

[7] Sijin Wang, Ruiping Wang, Ziwei Yao, Shiguang Shan,

and Xilin Chen. Cross-modal scene graph matching for

relationship-aware image-text retrieval. In The IEEE Win-

ter Conference on Applications of Computer Vision (WACV),

March 2020.

[8] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image genera-

tion from scene graphs. CVPR, 2018.

[9] Subarna Tripathi, Anahita Bhiwandiwalla, Alexei Bastidas,

and Hanlin Tang. Heuristics for image generation from scene

graphs. ICLR LLD workshop, 2019.

[10] Gaurav Mittal, Shubham Agrawal, Anuva Agarwal, Sushant

Mehta, and Tanya Marwah. Interactive image generation us-

ing scene graphs. CoRR, abs/1905.03743, 2019.

[11] Subarna Tripathi, Sharath Nittur Sridhar, Sairam Sundare-

san, and Hanlin Tang. Compact scene graphs for layout com-

position and patch retrieval. CVPRW, 2019.

[12] Akash Abdu Jyothi, Thibaut Durand, Jiawei He, L. Sigal,

and Greg Mori. Layoutvae: Stochastic scene layout genera-

tion from a label set. ICCV, 2019.

[13] Oron Ashual and Lior Wolf. Specifying object attributes

and relations in interactive scene generation. https:

//www.youtube.com/watch?v=V2v0qEPsjr0tm,

2019. [ICCV 2019, Accessed: 2019-08-14].

[14] Duc Minh Vo and Akihiro Sugimoto. Visual-relation con-

scious image generation from structured-text, 2019.

[15] Brigit Schroeder, Subarna Tripathi, and Hanlin Tang. Triplet-

aware scene graph embeddings. In The IEEE International

Conference on Computer Vision (ICCV) Workshops, Oct

2019.

[16] Eugene Belilovsky, Matthew Blaschko, Jamie Ryan Kiros,

Raquel Urtasun, and Richard Zemel. Joint Embeddings of

Scene Graphs and Images. International Conference On

Learning Representations - Workshop, 2017. Poster.

[17] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-

stuff: Thing and stuff classes in context. In Computer vision

and pattern recognition (CVPR), 2018 IEEE conference on.

IEEE, 2018.

[18] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D.

Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft

coco: Common objects in context. In ECCV, 2014.

[19] Ji Zhang, Mohamed Elhoseiny, Scott Cohen, Walter Chang,

and Ahmed Elgammal. Relationship proposal networks.

pages 5226–5234, 07 2017.


